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Abstract: Based on Game Theory and Multi-objective optimization problems (MOP), 

Game Optimization Theory (GOT) is discussed in this paper. Optimization Stability 

Analysis (OSA), Distance Entropy Multi-Objective Particle Swarm Optimization 

(DEMPSO) and Fuzzy Multi-weights Decision-making Method (FMW) are proposed as 

well. Game Optimization Theory, which is a comprehensive system, could not only handle  

multi-objective optimization problems effectively, but also could offset the disadvantages 

of traditional optimization theories, such as lack of framework and the insufficient 

consideration of relevant elements. In this paper GOT is used for the first time in solving 

the distribution systems planning (DSP) issue by implementing distributed generation. The 

proposed model integrates costs, losses, and voltage index to achieve optimal size and site 

of distributed generation. The model allows minimizing total system costs, system power 

losses and maximizing voltage improvement. A detailed DSP example is used for verifying 

the effectiveness and reasonableness of GOT in this context. 

Keywords: game theory; multi-objects optimization; game optimization theory; distributed 

generation; distribution system planning 

Nomenclature: 

N  total number of system buses 

M  total number of load buses 
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Tu  total number of substation transformers 

ijC
 

the total feeder costs from i to j 

eC  electricity market price 

iuC  the costs of potential transformer u in substation i 

riC  the operation costs for DG 

T  horizon planning year 
  present worth factor 

d  discount rate 

iuP  transformer u in substation i dispatched power 

DGiS  power generated from distributed generation 

pf  system power factor 

ij
 

feeder i to j binary decision variable 

iu  transformer u in substation i binary decision variable 

DGi  distributed generation binary decision variable 

V  bus voltage 

Y  the line admittance 

ij  
the angle of admittance connecting i to j 

ji
 

the difference of phase of voltage 

ijP
 

the active power flow from node i to j 

ijQ
 

the reactive power flow from node i to j 

R  the line resistance 

X  the line reactance 

ijS
 

power flow in feeder connecting bus i to j 

maxijS
 

feeder’s thermal capacity limit 

maxDGiS  distributed generation capacity limit 

maxSS  substation capacity limit 

 

1. Introduction 

Game theory, as a branch of applied mathematics, is the study of mathematical models of conflict 

and cooperation between intelligent rational decision-makers. In addition to being used to describe, 

predict and explain behavior, game theory has also been used to develop theories of ethical or 

normative behavior. Game theory is mainly used in economics, political science and psychology, as 

well as logic and biology [1–4]. 

Multi-objective optimization problems (MOP) are the process of simultaneously optimizing two or 

more conflicting objectives subject to certain constraints. Multi-objective optimization problems can 

be found in various fields: product and process design, finance, aircraft design, or wherever optimal 

decisions need to be taken in the presence of trade-offs between two or more conflicting objectives.  
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The optimization problems in power system generally belong to MOP, such as Reactive Power 

optimization, Unit Commitment, and Substation Locating and Sizing optimal planning. The problem 

of Distributed Generation (DG) optimal planning in distribution systems also belongs to MOP. 

However, the traditional research achievements concerning DG planning have some deficiencies.  

In [5], network losses work is selected as objective function and tabu search is applied for finding the 

optimal allocation of DG, but lacks a comprehensive mathematical model by only using network losses 

as objective function. In [6], the influences of losses made by implementing DG in a distribution 

system is analysed; it also lacks a reasonable objective function and a sufficient consideration of the 

constraints. The above theses choose losses to serve as object function, and cannot formulate a 

scientific model to assess the effects of implementing DG in distribution systems. In [7–10], the theses 

construct multi-objective mathematical models, but they convert the multi-objective function into the 

single objective function, a method that not only omits the relationship among objectives, but also 

results in the absence of a comprehensive optimization perspective to find the global optimal result.  

In [11,12], though the theses build reasonable multi-objective functions, they lack a systematic 

optimization method to handle multi-objectives.  

From the above, we can conclude that scientific mathematical models and reasonable optimization 

methods are needed in solving the DSP by implementing DG. However, traditional optimization 

methods cannot formulate comprehensive systems to deal with optimal problems. The way the 

traditional optimization methods generally work is to calculate directly using an optimization 

algorithm after the objective functions are selected. This mode cannot evaluate the influence of 

improved approaches, and also they still cannot formulate a general frame to deal with optimal 

problems. The common methods always convert multi-objective optimizations into single-objective 

optimizations, however, this approach contains little effective information to obtain the internal 

relations among objective functions. A tentative solution is called Pareto optimal if there is no other 

solution yielding at least one better objective without worsening any of the rest. Finding such  

non-dominant solutions, and quantifying the trade-offs in satisfying the different objectives, is the 

main problem when setting up and solving MOP. 

Combining Game Theory with MOP, Game Optimization Theory (GOT) is formulated to handle 

MOP in this paper. By presenting Optimization Stability Analysis (OSA) and establishing a new type 

of game model, GOT constructs a main frame about optimization, it can find non-dominant solutions 

quickly and qualify the trade-offs to satisfy the different objectives comprehensively. A typical MOP 

problem in power system concerning DG planning is processed by using GOT, and the results shows 

that GOT could find a reasonable DSP solution. GOT can be used in other MOP problems in power 

systems as well. The main content of this paper consists of two parts, one is the introduction of GOT, 

and the other is the analysis of DSP. The two parts correspond to the two main problems in embedding 

DG in distribution systems, one is the lack of scientific mathematical models and the other is the lack 

of comprehensive optimization methods. In this paper, GOT is used to handle DG planning for the first 

time, and obtain a scientific, reasonable result. 
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2. Game Theory Concepts 

GOT is the development and extension of Game Theory. The application of GOT in power systems 

expands a new research field, and for this purpose it is necessary some describe some concepts of 

Game Theory. A normal game consists of a set of players, a set of strategies available to those players, 

and a specification of payoffs for each combination of strategies [4]. 

The common situation is n-player game in which the players are numbered 1 to n and an arbitrary 

player is called player i. Si denotes the set of strategies available to player i (called i’s strategy space), 

si denotes an arbitrary member of this set (si   Si indicates that strategy si is a member of strategies Si). 

(s1,···,sn) denotes a combination of strategies, ui denotes players i’s payoff function, ui(s1,···,sn) denotes 

the payoff of the player i which is dependent to all players’ chosen strategy. 

Definition 1. The normal-form representation of an n-player game specifies the players’ strategy 

spaces (S1,···,Sn) and their payoff functions (u1,···,un).We denotes this game by G = {S1,···,Sn; u1,···,un}. 
Definition 2. In the normal-form game G = {S1,···,Sn; u1,···,un}, let '

is and ''
is  be feasible strategies  

for player i, (i.e., '
is  and ''

is  are members of Si).Strategy '
is  is strictly dominant by strategy ''

is  if for  

each feasible combination of the other players’ strategies, i’s payoff from playing '
is  is strictly less 

than i’s payoff from playing ''
is : ' ''

1 1 1 1 1 1( , , , , , , ) ( , , , , , , )i i i i n i i i i nu s s s s s u s s s s s            , for each strategies 

combination 1 1 1( , , , , , )i i ns s s s       that can be constructed from the other players’ strategy spaces 

1 1 1, , , , ,i i nS S S S       . 

Each player’s predicted strategy must be that player’s best response to the predicted strategies of the 

other players. This prediction is called Nash equilibrium. 
Definition 3. In the n-player normal-form game G = {S1,···,Sn; u1,···,un}, the strategies * *

1( , , )ns s   are a 

Nash equilibrium if, for each player i, *
is is (at least tied for) player i’s best response to the strategies 

specified for the n-1 other players * * * *
1 1 1( , , , , , )i i ns s s s       : 

* * * * * * * * *
1 1 1 1 1 1( , , , , , , ) ( , , , , , , )i i i i n i i i i nu s s s s s u s s s s s                . 

These concepts are the foundations of Game Optimization Theory. 

3. Game Optimization Theory 

Inspired by Game Theory and MOP, GOT is proposed in this paper and used in the field of power 

system optimal problems for the first time. GOT could assess the value of optimization programming 

problems and could handle MOP more flexibly than other methods, and it formulates a comprehensive 

optimization system that could be used in engineering practice. The optimization problems in power 

system generally belong to MOP, such as that we generally select losses and voltage as objective 

functions in reactive power optimization, and select costs and losses in substation planning. Therefore, 

the prospect of the application of GOT in power system is wide-reaching and practicable. The structure 

of GOT mainly consists of three parts: 

(1) Optimization Stability Analysis (OSA); 

(2) Iterated Elimination of Strictly Dominant Strategies; 

(3) Generate the final strategy. 

The above parts compose a whole system and formulate a new optimization theory. 
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3.1. Optimization Stability Analysis 

There is a lack of criteria to evaluate the influence on engineering practice made by improved 

approaches, and also a lack of mathematical models to judge their value. The usual optimal problem 

method is to calculate directly with an optimization algorithm after the objective functions are selected. 

However, this process cannot explain the reasons of the introduction of the improved approach. 

Therefore, Optimization Stability Analysis is proposed in this paper, as a part of GOT, to offset the 

insufficient consideration of existing methods. 

Optimization Stability is an index to assess the efficiency of an improved approach. A specific 

system will generate two states, initial state and the final one, after a MOP is established. The initial 

state is the pre-status before the system is optimized, and final state represents the optimized status. 

OSA can reach a conclusion to evaluate an improved approach by analyzing the relations between 

initial state and final state. Evolutionary stable strategy is introduced to analyze the Optimization 

Stability; the specific process is discussed below. 

Evolutionary stable strategy (ESS) was defined and introduced by Maynard Smith and Price in a 

1973 Nature paper. ESS is a concept belongs to Evolutionary Game Theory. It is a strategy such that, 

if all the members of a population adopt it, then no mutant strategy could invade the population under 

the influence of natural selection. An ESS is an equilibrium refinement of the Nash Equilibrium [13,14]. 

In a specific optimal problem, initial state and final state are similar to two species in a population, 

where the initial state is the original species and the final state is the mutant one; the improved 

approach is similar to the mutation of species. When a new game is formulated between two states, we 

call it Similar Game (SG, the players of a game are two different states for a same participant). If the 

result of SG is evolutionarily stable, then the Optimization Stability of the optimal problem is stable. 

Tables 1 and 2 are used to explain the progress of OSA. 

Table 1. SG matrix, Optimization Stability Analysis (1). 

 O M 

O 11 ; 11  12 ; 12  

M 21 ; 21  22 ; 22  

 1 − ε ε
Notes: O: original species; initial state; M: mutant species; final state; ε: mutant probability; the scale of 

improved approach. 

Table 2. SG matrix, Optimization Stability Analysis (2). 

 O M 

O 11 ; 11  12 ; 12  

M 21 ; 21  22 ; 22  

 ε 1 − ε 
Notes: O: original species; initial state; M: mutant species; final state; ε: mutant probability; the scale of 

improved approach. 
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Tables 1 and 2 represent two extreme situations, where one situation assumes the original species is 

the majority and another is when the mutant species is the majority. In the OSA process, ε is a small 

positive number, α and β are the payoffs to the original and mutant species when they choose their 

strategies, α represents the payoffs of the original species, β represents the payoffs of the mutant 

species. Strategies combination (O,O) denotes that the final state is only the scale expansion of the 

initial state, there is no improved approach is adopt to the optimal system, α11 denotes the payoffs of 

the initial state under the selected objective functions, β11 denotes the payoffs produced by the 

improved approach (β11 is 0 in this strategies combination); strategies combination (O,M) denotes that 

an improved approach is adopted to the optimal problem, α12 denotes the payoffs of the initial state 

when the improved approach is adopted, β12 denotes the payoffs produced by the improved approach; 

strategies combination (M,O) denotes the interchange of initial state and final state (i.e., this strategies 

combination is the inverse process of optimization), α21 denotes the payoffs of the optimized initial 

state, β21 denotes the payoffs produced by the inversion process; strategies combination (M,M) denotes 

the initial state is the optimized state, and the final state is the expansion of the initial state, α22 is the 

payoff of the initial state, β22 denotes the payoffs produced by the improved approach. 

When the original species is a majority in the population as shown in Table 1, the expectation 

payoffs of the original species and mutant species correspond to A and B: 

O: 11 12(1 ) A         (1)  

M: 21 22(1 ) B         (2)  

If the optimization stability is stable, it should satisfy the condition B > A; this result represents that 

the improved approach will produce better payoffs. 

When the mutant species is the majority in the population as shown in Table 2, the expected payoffs 

of the original species and mutant species correspond to C and D: 

O: 11 21 (1 ) C         (3)  

M: 21 22 (1 ) D         (4)  

If the optimization stability is stable, it should satisfy the condition D > C; this result represents that 

the initial state cannot produce better payoffs. 

In addition to the conclusions made above, another two inequality constraints should be satisfied to 

guarantee the stability of optimization: 

12 12 11 11       
(5)  

22 22 21 21       
(6)  

The values of α and β are closely related to the object functions, and the OSA process needs a large 

number of historical data which relate to the optimal problem. From the analysis above, the OSA result 

could assess the improved approach from a comprehensive viewpoint. Then the general criteria of 

optimization stability could be summarized as two comparison and two criteria. This criterion 

formulates a mathematical model to evaluate the improved approach and can be used as guidance for 

the engineering practice. 



Energies 2013, 6 1107 

 

 

3.2. Iterated Elimination of Strictly Dominant Strategies 

Iterated elimination of strictly dominant strategies is based on the appealing idea that rational 

players do not play strictly dominant strategies. Iterated elimination of strictly dominant strategies 

could generate Pareto non-dominant set completely. 

3.2.1. The Establishment of a Game 

In mathematic terms, MOP can be written as: 

1 2  ( ) ( ( ), ( ),..., ( )..., ( )),  1, 2,...m Mminimize y f x f x f x f x f x m M    

. .: ( ) 0 1,2,..., ; ( ) 0 1,2,...,i js t g x i k h x j l     

( )if x  is the i-th objective function, ( )g x and ( )h x  are the inequality and equality constraints, 

respectively, and x  is the vector of optimization or decision variables. Instead of being a unique 

solution to the problem, the solution to a MOP is a possibly infinite set of Pareto points. 
Pareto-optimality is used to handle multiple objectives. A decision vector, 

*
x F  is Pareto-optimal 

if there does not exist a decision vector, 
*

x x F   that dominates it. An objective vector, *( )f x , is 

Pareto-optimal if x is Pareto-optimal. The concept of Pareto-optimality, first introduced by Francis 

Ysidro Edgeworth [15], is named after Vilfredo Pareto. 

For a specific MOP, it should be possible to find non-dominant solutions after the OSA step.  

To find non-dominant solutions, a game must be established and an optimization algorithm must  

be selected. 

For constructing a suitable game model, Similar Mixed Game (SMG) is proposed in this paper; its 

description is as follows: 
Definition 4: In the normal-form game  1 1, , ; , ,n nG S S u u      , suppose Si = {si1,···,sik}. Then a 

similar mixed strategy for player i is a fuzzy vector Pi = {si1,···, sik}, where k = 1,…,K, and piK ≤ 1, PiK 

is a degree of membership belongs to pure strategy siK. 

Table 3. Optimized classification among three object functions. 

 
F1 

Low Middle High 

F2 

Low a1 ;b1; c1 a1; b2; c1 a1; b3; c1

Middle a2; b1; c1  a2; b2; c1 a2; b3; c1

High a3; b1; c1 a3; b2; c1 a3; b3; c1

The set of strategies for each player is the non-dominant set generated by the optimization 

algorithm. The payoffs for each player relate to the decision maker’s degree of attention. A 3-objective 

optimization problem works as an example to describe the structure of SMG and the process of 

generating a non-dominant set. 

The object functions are F1, F2 and F3. We use fuzzy mathematics to determine the hierarchical 

organization for each object function, as Table 3 shows (the level of F3 is low). (Low; Low; High), 

(Low, Middle, High), and other strategy pairs are the combinations of strategies. Distance Entropy 

Multi-Objective Particle Swarm Optimization (DEMPSO) is used to generate a non-dominant set and 
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Fuzzy Multi-weights Decision-making Method (FMW) is used to quantify the trade-offs in satisfying 

the different objectives. The trade-offs in this game are called Similar Nash Equilibrium (SNE). 

The SMG is suitable for the optimization programming problem in engineering practice, as it 

converts an optimization procedure into a process of seeking SNE in SMG. The SNE exists in the 

strategy space of the players in SMG, it is the optimal response and best trade-off for each player, for 

example, the SNE is the optimal scheme of the size and site of DG in the game of DG optimal 

planning. SMG, as a part of GOT, could offer integrity strategy space and supply a scientific method to 

find SNE in a specific game. 

3.2.2. Iterated Elimination of Strictly Dominant Strategies 

The essence of generating a non-dominant set is the updating of non-dominant solutions; this 

progress can be reasonably shown in Table 4 and Figure 1. 

Table 4. Iterated Elimination of Strictly Dominant Strategies. 

 
F1 

Low Middle High 

F2 

Low a1 ;b1; c1 a1; b2; c1 a1; b3; c1

Middle a2; b1; c1  a2; b2; c1 a2; b3; c1

High a3; b1; c1 a3; b2; c1 a3; b3; c1

      Eliminate 

 
F1 

Low Middle High 

F2 

Low a1 ;b1; c1 a1; b2; c1 a1; b3; c1

Middle a2; b1; c1  a2; b2; c1 a2; b3; c1

High a3; b1; c1 a3; b2; c1 a3; b3; c1

Figure 1. The schematic diagram of iterated elimination of strictly dominant strategies. 

 

An improved Particle Swarm Optimization is used to generate a non-dominant set. Particle Swarm 

Optimization (PSO) is attributed to Kennedy, Eberhart and Shi and was first intended for simulating 

social behaviour, as a stylized representation of the movement of organisms in a bird flock or fish 

school [16,17]. The algorithm was simplified and it was observed to perform optimization. Combining 

Pareto-optimality with PSO, Coello proposed multi-objective particle swarm optimization (MOPSO) 

to handle MOP [18]. In this paper Distance Entropy Multi-Objective Particle Swarm Optimization 

Eliminate 
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(DEMPSO) is proposed to improve the performance of MOPSO which turns out that Pareto front can 

be found quickly. 

(1) Adjust Weight 

Define the Evolutionary factor: 

1 2

1 2

( ) ( ) ... ( )

( 1) ( 1) ... ( 1)
mean mean mmean

mean mean mmean

f t f t f t
e

f t f t f t

  


     
 (7)  

fimean denotes the i-th average fitness of objective function for each particle. From the definition of 

Evolutionary factor, the values of e reflects the update speed of non-dominant set, when the values of e 

approach or maintain at 1, it represents that the algorithm is stagnate or the Pareto front is found. 

Define the Aggregation factor: 

1 2

1 2

...

...
p p mp

mean mean mmean

f f f
g

f f f

  


  
 (8)  

fip denotes the i-th fitness of objective function for ‘best’ particle. From the definition of Aggregation 

factor, the values of g reflects the degree of aggregation of particle. When the values of g approach or 

stay at 1, it represents that the algorithm easily sinks into a local optimum. 

Introduce the Focus Distance ratio factor: 

MaxDist MeanDist
k

MaxDist


  (9)  

2

1

max( ( ) )
D

best id
d

MaxDist x x


   (10) 

2

1 1

( ( ) )
m D

best id
i d

x x

MeanDist
m

 



 

 (11) 

where m denotes the number of particles, D denotes the number of dimensions for each particle, xbest 

denotes the best position for all particle at present, xid denotes the value of the i-th particle’s position in 

dimension d. The Focus Distance ratio factor reflects the degree of aggregation and the diversity of 

particle swarm from the view of spatial distance [19,20]. 

e, g, and k reflect the rate of optimal progress from the point of view of the speed of optimization, 

fitness and spatial distance. Combining these factors, it formulates the Weight adjusted factor: 

e g k     (12) 

Then we use   to adjust weight. The nonlinear expression is shown in Equation (13): 

max

max min

min

( / 2) ln 2.1

/ 2 0.05 2.1

( / 2) / ln 0.05

r

r

r

  

   

  

   


    
  

 (13) 
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(2) The Introduction of Entropy 

sc and fc denote the number of consecutive successes and failures, respectively. A success is 

defined as the present fitness of object functions that dominate the fitness in the last iteration. 

Euqations (14) and (15) are used to adjust the velocity and position of a particle: 

( ) / 2,i i best sx x x sc     (14) 

( 1) ( ) ( ( )),i i worst i fv t v t cr x x t fc       (15) 

where xbest denotes the present global best position, worst denotes the present global worst position. The 

optimal choice of values for εs and εf is problem-dependent. The threshold parameters adhere to the 

following conditions: 

( 1) ( ) 0

( 1) ( ) 0

sc t sc t fc

fc t fc t sc

   
   

 (16) 

The entropy reflects the degree of confusion for a system. The function of sc is to speed up 

convergence, it is equivalent to the introduction of negative entropy. The function of fc is to introduce 

positive entropy to the system to improve the possibility of a particle escaping the local optimum. 

DEMPSO could effectively prevent the algorithm from falling into a local optimum and find the 

Pareto front reasonably. Figure 2 shows the DEMPSO process. 

Iterated elimination of strictly dominant strategies could generate a non-dominant set. This process 

could offer an integrated strategy space to the players in SMG. Then the optimization could go to the 

next step: Generate the final strategy. 

3.3. Generation of the Final Strategy 

Once a set of Pareto optimal solutions (strategy space) is obtained through DEMPSO, it needs to 

select one optimum solution (Similar Nash Equilibrium), which satisfies all the goals to some extent. 

The traditional method is to take fuzzy membership functions to deal with a non-dominant set, but this 

approach cannot process multi-objectives comprehensively. The Fuzzy Multi-weights Decision-

making Method (FMW) is proposed to find SNE in SMG and generate final strategy for an optimal 

problem. A 3-objective optimization problem works as an example to describe the process of FMW. 

Using fuzzy mathematics to determine hierarchical organization: 

 (17) 

min

m min
max

max m

m

F F

F ean F
F F

F F ean




   
 

 (18) 

min

max minh

F F

F F
 




 (19) 

where Fmin, Fmean and Fmax are the lower, mean and upper bounds of the i-th objective function (Figure 3), 

and their values are evaluated using the results obtained by optimizing each objective separately. 

 

max

max minl

F F

F F
 



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Figure 2. The flowchart of DEMPSO. 

Start

Set the time counter
T=0 

Generate initial non-dominated set

Velocity updating

Position updating

Individual,global best updating

Update time counterT+1

Stopping 
criterion?

Non-dominated set 
updating

Generate non-
dominated set

Output final result

N

Y

Constraint processing

 

 

Figure 3. Membership function. 

Fmin       Fmean      Fmax  

As Table 5 shows, according to the fuzzy membership function of each object function, it is divided 

into three levels: Low, Middle and High. This method can generate 3 × 3 (M × N, M denotes the 

number of object functions, N denotes the number of levels for each object function) weights to 

evaluate each non-dominant solution. 

Then the process of finding SNE could be described as: 

1 1 1 2 2 2 3 3 3

( , , )

 
i i i i i

l l m m h h l l m m h h l l m m h h

Obj a b c

a a a b b b c c c


        

 

                 
 (20) 
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The maximum values of Obji in all non-dominant solutions correspond to the SNE for a SMG, that 

is, the final strategy in a MOP. The values of Obj correspond to the values of β in the OSA step, and 

reflect the payoffs produced by the improved approach. Subjective preference information could have 

an influence on the final strategy, and FMW could solve this question by using multi-weights to offset 

this shortcoming. From the analysis made above, the process of GOT can be represented as in Figure 4. 

Table 5. Payoffs among object functions table.  

 F1 F2 F3

Low la lb lc

Middle ma mb mc

High ha hb hc

Figure 4. The flowchart of GOT. 

Iterated eliminated strictly 
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GOT formulates a complete optimization system, the OSA offers an assessment of the value of 

optimization, the analysis of SMG generates a non-dominant set and quantifies the trade-offs in 

satisfying the different objectives. To sum up, GOT supplies a new way of handling MOP, and can be 

widely used in the field of optimization. 

4. Results and Discussion 

In this paper GOT is introduced to handle the problem of Distributed Generation (DG) optimal 

planning in a distribution system. As mentioned above, a scientific mathematical model and reasonable 
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optimization method are needed in this field. A multi-objective function is constructed in this part, and 

GOT is used in a detailed case to test the reasonableness of the proposed mathematical model.  

4.1. Mathematical Formulation 

The problem of DG placement can be formulated as a non-linear optimization problem. The three 

sets of objectives can be: 

(1) To minimize the investment costs of DG; 

(2) To maximize the reduction in line losses; 

(3) To maximize the improvement in the voltage profile. 

Costs, line losses and voltage profile represent three important indexes to assess the performance of 

a power system. These objectives are contradictory in nature, as the costs are based on the economy 

viewpoint, the losses are considered from the viewpoint of the system’s operation, and the voltage 

profile is a reflection of the power quality. As a result, we can find that these object functions represent 

three different views of DG planning, however, these functions also have interactions, and any changes 

in an objective function will have impact on the others, and the key element is the location and 

capacity of DG in the distribution system. As a consequence, this is a typical MOP problem of  

DG optimization planning in a power system. Traditional optimization methods cannot establish the 

internal relations among those objectives. Therefore, GOT can be used to obtain the comprehensive 

trade-off solution. 

4.1.1. Investment Costs 

The investment costs are the key element of the planning of DG, and could decide the DG capacity 

and the scale of the network transformation, moreover, they will have an influence on the distribution 

of power flow and affect the performance of other objective functions. 

The costs of investment consist of three terms: the costs of the new transformers in substation(s); 

the costs of DG; the costs of upgrading to new feeders [9,10]. The fixed costs are the investment costs, 

and the variable costs are the costs of the operation and maintenance of the equipment. The objective 

function is described as:  

1 2 3C c c c    (21) 

1
1 1

N M

ij ij
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t
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       (24) 

c1 denotes the capital costs for upgrading the feeders; c2 denotes the investment and operation costs for 

substation expansion; c3 denotes the investment and operation costs for DG. 
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4.1.2. Line Losses 

This will produce an effect on power flow by embedding DG in the distribution system, and a 

reasonable location and capacity of DG could reduce network losses. It is a common method to select 

network losses as an objective function in the optimal planning of DG. The active power losses is an 

objective function, it can be described as:  

2

1 1

cos( ) cos( )
N M

i ij ij i j ij ji ij
i j

L V Y VV Y  
 

    (25) 

4.1.3. Voltage Profile 

Voltage profile is based on the viewpoint of power quality, and it consists of voltage stability index 

and voltage deviation index. The voltage stability index reflects the voltage stability of a distribution  

system [21] and the voltage deviation index could assess the quality of the power energy. The 

corresponding objective function is described as: 

1 1 2 2V v v      (26) 
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 

     (28) 

v1 denotes voltage deviation; v2 denotes voltage stability index; ω denotes weight. C, L and V act as 

three players for a SMG, and the final strategy can be obtained by using GOT. 

4.1.4. Constraints 

(1) Total Power Conservation. The summation of all incoming and outgoing power should be equal 

to the total demand at that bus: 
2

1 1

( )
N M

ij
ij ji DGi j

i iij

V
S S S D

Z 


      (29) 

(2) Distribution Feeder’s Thermal Capacity. The feeder has a capacity limit for the total power 

flow through it during peak loads: 

max0 ij ijS S   (30) 

(3) Distribution Substation’s Capacity. The summation of total power delivered by the substation’s 

transformers to the distribution system must be within the substation’s capacity limit: 

maxSS SS  (31) 

(4) DG Operation. The DG’s generated power must be less than the DG’s capacity: 

max0 DGi DGiS S   (32) 
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(5) Voltage Drop. The voltage range should be satisfied to the maximum permissible voltage  

drop limit: 

min maxi i iV V V   (33) 

To sum up, the investment costs, losses and voltage profile represent three different views of a 

power system, and there are inner relationships and contradictions among the objective functions. The 

objective functions formulate a typical MOP problem and work as three players in a DG optimization 

similar to a mixed game. 

4.2. DG Optimization Similar Mixed Game 

The DG optimal planning constructs a SMG, the players are investment costs, losses and voltage 

profile, the strategy space is obtained by the iterated elimination of strictly dominant strategies and the 

payoffs are determined by the subjective preference. The DG optimization similar mixed game can be 
written as:  1 2 3 1 2 3, , ; , ,DGG C C C u u u , where C1 denotes investment costs, C2 denotes network losses 

and C3 denotes voltage profile objective function and u1, u2, u3 denote the payoffs of each player. The 

process of DG optimization is similar mixed game and can be shown as in Figure 5. The process of the 

handling the constraints can be illustrated as in Figure 6. 

Figure 5. The flowchart of DG optimization similar mixed game. 
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Figure 6. The flowchart of the progress of constraints. 

 

4.3. The OSA of DG Optimization Planning 

The embedding of DG in distribution system could reduce investment costs, reduce line losses and 

improve voltage profiles. DG could reduce environmental emissions, and a large scale DG embedded 

in a distribution system is beneficial to the operation of the power system [21–25]. Under the selected 

objectives, a SMG could be formulated, and the progress of OSA for the SMG can be described as in 

Table 6. 

Table 6. The OSA table of DG planning. 

 NDG DG 

NDG 3;0 3;1 

DG 4;0 4;1 

The initial state is without DG, the final state corresponds to the embedding of the DG into the 

distribution system, and the improved approach is the embedding of the DG. The values of 3 denote 

the payoffs of the initial state, the values of 1 denote the payoffs produced by the DG. From the OSA 

result, we can find that the optimization stability has no relation to the values of ε, and we define this 

situation as Strictly Optimization Stable (SOS). The OSA is the first part of GOT, and it analyses the 

benefits of embedding DG in the distribution system.  

4.4. Case Study 

The system under study is shown in Figure 7 and Tables 7 and 8. This system was also considered  

in [7,9–11], and it represents a typical case of DG optimization planning. It consists of one  
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132 kV/33 kV substation (40 MVA capacity) at bus 9 to serve eight aggregated loads (33 kV/11 kV 

service transformers) at buses 1–8 under normal operation conditions. There are four existing distribution 

feeders with a thermal capacity of 12 MVA and an impedance of Z = 0.1738 + j 0.2819 Ω/km. Feeders 

are upgraded to a higher capacity limit of 20 MVA with an impedance Z = 0.1469 + j 0.2719 Ω/km. 

There is forecasted load growth of 28 % 4 years after the base year and the power demand will be 

approximately 51.1 MVA. The kind of DG is assumed to be micro gas turbines. There should be a 

backup DG unit installed in case of any DG failure and for scheduled maintenance intervals.  

Figure 7. System under study. 
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[4]

[5]

[6]
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[9]
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D6
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Table 7. System loading. 

Bus Base Year/MVA Horizon Year/MVA 

1 5.98 7.64 
2 6.83 8.72 
3 5.98 7.64 
4 3.13 4.00 
5 4.78 6.11 
6 4.02 5.14 
7 3.59 4.58 
8 3.69 7.27 

Table 8. The feeder’s characteristics. 

From To Resistance/Ω Reactance/Ω Length/km 

9 1 1.390 2.255 8 
9 3 2.085 3.383 12 
9 5 2.259 3.664 13 
9 7 1.738 2.819 10 
1 2 2.780 4.510 16 
3 4 2.780 4.510 16 
5 6 2.433 3.946 14 
7 8 2.085 3.383 12 
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The system power factor is set to be 0.9 and the size of the DG’s is multiples of 0.1 MVA. The 

maximum limit of the DG capacity at each bus is 4 MVA plus the backup DG. The new transformer 

units used in case of substation expansion are two three phase 10 MVA transformers (132 kV/33 kV). 

For the cost data, the electricity market price is considered to be 70 $/MWh for purchasing power from 

the main grid. The micro gas turbine sets’ investment cost is assumed to be 0.5 M$/MVA and the 

running cost of the DG is assumed to be 50 $/MWh. The fixed cost of the new 10 MVA transformer is 

0.2 M$. The cost of upgrading the existing primary distribution feeder with another higher capacity is 

0.15 M$/km. The discount rate is taken as 12.5%. 

4.4.1. Iterated Elimination of Strictly Dominant Strategy 

The process of optimization goes into the second step after OSA. Using DEMPSO to eliminate 

strictly dominant strategies, we set the number of particles at 100 and iterations at 400. The 

optimization result is shown in Figure 8. The non-dominant set obtained by the iterated elimination of 

strictly dominant strategies is shown in Figure 8, and it is the second step of GOT. Figure 8 shows  

the DSP optimization result, where the blue parts are the Pareto front, which consists of 4,394  

non-dominant solutions.  

Figure 8. Pareto front distribution graph. 
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Each non-dominant solution involves the information of the DG’s location and capacity, the  

non-dominant set serves as the strategies space for each player in SMG. The Pareto front shown in 

Figure 8 consists of two lines, one is the feeders upgrading schemes, and the other one is consists of 

the schemes only embedding DG into the distribution system. 

Figure 9 shows that the feeders upgrading schemes could reduce line losses more when the 

investment costs are equivalent. Figure 10 shows that the introduction of DG is beneficial to the 

voltage profile when the investment costs are same. Figure 11 shows that the feeder upgrading 

schemes have better performance in voltage profile when the total line losses are similar. From the 

analysis we can know that the feeder upgrading has an influence on the distribution of the two lines in 

the Pareto front. 
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Figure 9. Costs, losses projection graph. 
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Figure 10. Costs, voltage index projection graph. 
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Figure 11. Losses, voltage index projection graph. 
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4.4.2. Generate Final Strategy 

According to the subjective preference information, we use FMW to find SNE in SMG when a  

non-dominant set is generated. It can find SNE through the analysis of the strategy space, and five 

schemes are compared in this paper, Scheme 1 is obtained by the traditional decision-making method, 

Scheme 2 to Scheme 5 correspond to different subjective preferences, and each scheme has specific 

Feeders upgrading schemes

Feeders upgrading schemes 



Energies 2013, 6 1120 

 

 

characteristics. From the results of comparison, we could deduce that FMW could handle subjective 

preference flexibility and find SNE scientifically: 

Scheme 1: The final strategy is proposed by fuzzy method [26]; 

Scheme 2: The final strategy is proposed by FMW, the subjective preference is total costs; 

Scheme 3: The final strategy is proposed by FMW, the subjective preference is total losses; 

Scheme 4: The final strategy is proposed by FMW, the subjective preference is voltage profile; 

Scheme 5: The final strategy is proposed by FMW, there is no subjective preference among  

the objectives. 

Table 9 shows the performances in total costs among the five schemes, where Schemes 2, 3 and 5 

are feeder upgrading schemes. Scheme 1 cannot reflect the influence of subjective preference 

information. Scheme 4 has the best performance in voltage profile, however, the DG embedded 

capacity approaches 35.5 MW, it is larger than the other schemes, so this configuration could reduce 

substation operation costs but increase DG investment costs. Scheme 2 has preference on total costs, it 

takes an improved feeder upgrading approach to reduce costs, and it has the minimum DG embedded 

capacity (26.6 MW). Scheme 3 has preference on line losses; this scheme requires the upgrading of 

feeders to reduce line losses, and the DG embeded capacity is 29.9 MW. Scheme 5 is a comprehensive 

strategy compared with Scheme 1, it has lower total costs and the DG embedded capacity is 29.6 MW. 

Table 9. Costs of five schemes. 

Economical parameter Scheme1 Scheme2 Scheme3 Scheme4 Scheme5

Number of Feeders Upgrades 0 1 1 0 1 
Feeders Fixed Cost/M$ 0 1.2 1.2 0 1.2 

Number of New Transformers 0 0 0 0 0 
Substation Total Cost/M$ 34.21 39.92 36.71 31.58 37.01 

DG Capacity/MVA 32.7 26.6 29.9 35.4 29.6 
DG Total Cost/M$ 45.62 35.34 40.90 50.16 40.39 

Total Planning Cost/M$ 79.83 76.46 78.81 81.74 78.60 

Figure 12 shows the relations between bus voltage amplitude and DG embeded capacity. The DG 

embedded capacity is approaching 4 MVA at the terminal of feeders in each scheme. Schemes 2, 3 and 

5 are feeder upgrading schemes, and the upgrading of feeders could improve the voltage amplitude, 

such as the amplitude of voltage is improved from 32.2 kV to 32.9 kV in node 2 after the feeder is 

upgraded. The five schemes could satisfy the voltage requirement of the power system’s operation. 

Figure 13 shows the voltage stability index of the five schemes, where the small values of voltage 

stability index reflect a better voltage stability performance, reaching the static voltage stability limit 

when the values are beyond 1. Scheme 4 has the best voltage stability index because large scale DGs 

are embedded in the system. All schemes have good voltage stability index performance. 

Figure 14 shows the line losses in each feeder. The values of total losses in the five schemes are 

0.425, 0.363, 0.281, 0.357 and 0.298 MW, respectively. Comparing Scheme 1 with Scheme 2, it can be 

find that the upgrading of feeders could reduce line losses, as the losses in scheme 2 reduce to 

0.17 MW in feeder 1 compared with Scheme 1. From the analysis we can conclude that the embedding 

of DG could reduce line losses to a great extent. 
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Figure 12. Voltage performance of five schemes. 
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Figure 13. Voltage stability index performance of five schemes. 

 

Figure 14. Branch losses performance of five schemes. 
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The scheme proposed by FMW is SNE in SMG under different subjective preference information. 

The FMW can find SNE comprehensively through the use of multi-weight factors to evaluate  

non-dominant solutions, and it could offset the shortcomings of traditional decision-making 

techniques. The DSP result shows that GOT can handle MOP effectively and find internal relations 

between objectives reasonably. 

Compared with the current optimization theory, GOT has three advantages, the OSA could assess 

the value of improved approach, the iterated elimination of strictly dominant strategies could offer 

complete strategy space, and the FMW could handle subjective preferenced reasonably and find SNE 

in SMG scientifically. The traditional optimization theory lacks an assessment of improved approaches 

and the decision-making method has limitations in processing subjective preferences. GOT formulates 

an optimization system and could offset the drawbacks of the traditional method which calculates 

directly with an optimization algorithm after the object functions are selected for an optimal problem. 

Furthermore, in the field of DG optimal planning, a comprehensive mathematical model is proposed in 

this paper, which could evaluate the influence of embedding DG in a distribution system reasonably. In 

conclusion, a novel optimization theory which is called GOT and a new multi-objective mathematical 

model for DG planning are proposed in this paper, offering a scientific solution to the problem of 

optimal DG planning in power systems. 

5. Conclusions 

Combined Game Theory and MOP, Game Optimization Theory is proposed in this paper, and used 

to handle DSP in a power system for the first time. From the analysis we can obtain the following 

conclusions:  

(1) The establishment of GOT supplies a new method to explain MOP, and GOT is used for the 

first time in solving the distribution system planning problem by implementing DG. The results 

obtain a suitable final DSP scheme. 

(2) Optimization Stability Analysis offsets the disadvantage of calculating directly with an 

optimization algorithm after the object functions are selected for an optimal problem. The OSA 

process could offer an assessment of the value of the optimization and improved measures. 

(3) The concept of SMG constructs a new type of game to handle the MOP and enriches the 

concepts of Game Theory. The DEMPSO could find the Pareto front quickly and generate  

a non-dominant set reasonably. The FMW could weaken the influences produced by subjective 

preference information by taking multi-weight into consideration in the evaluation of  

non-dominant solutions. 

(4) A mathematical model consisting of costs, line losses and voltage profile, is constructed in this 

paper. This model could assess comprehensively the influence of implementing DG in a 

distribution system. The result of optimization shows that the scheme of DG embedded in 

distribution system could bring benefits to the operation of the power system, reduce power 

losses, improve the amplitude of voltage and improve the voltage stability of feeders, and this 

method could dominate the substation expansion scheme. 
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