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Abstract: Compressed Air Energy Storage is recognized as a promising technology for 

applying energy storage to grids which are more and more challenged by the increasing 

contribution of renewable such as solar or wind energy. The paper proposes a medium-size 

ground-based CAES system, based on pressurized vessels and on a multiple-stage 

arrangement of compression and expansion machinery; the system includes recovery of 

heat from the intercoolers, and its storage as sensible heat in two separate (hot/cold) water 

reservoirs, and regenerative reheat of the expansions. The CAES plant parameters were 

adapted to the requirements of existing equipment (compressors, expanders and heat 

exchangers). A complete exergy analysis of the plant was performed. Most component cost 

data were procured from the market, asking specific quotations to the industrial providers. 

It is thus possible to calculate the final cost of the electricity unit (kWh) produced under 

peak-load mode, and to identify the relative contribution between the two relevant groups 

of capital and component inefficiencies costs. 

Keywords: Compressed Air Energy Storage (CAES); exergy; exergoeconomics; 

thermoeconomics  
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Nomenclature 

c cost of unit exergy [€ J
−1

] Acronyms  

cp constant-pressure specific heat [J kg
−1

 K
−1

]   

e exergy [J kg
−1

] ACAES Adiabatic CAES 

E overall system Exergy [J] BEP Best Efficiency Point 

h enthalpy [J kg
−1

] C Compressor 
.

m  mass flow rate [kg s
−1

] CAES Compressed Air Energy Storage 

P pressure [bar] CAR Compressed Air Reservoir 

Q heat rate [W] CWR Cold Water Reservoir 

R gas constant [J kg
−1

 K
−1

] EG Electric Generator 

s entropy [J kg
−1

 K
−1

] HE Heat Exchanger 

S system Entropy [J K
−1

] TES Thermal Energy Storage 

t time [s] IC Intercooler (heat exchanger) 

T temperature [°C] LPR Low Pressure Reservoir 

u internal energy [J kg
−1

] MD Motor Drive (electric) 

U system Internal Energy [J] RH Reheater (heat exchanger) 

V volume [m
3
]   

W power [W]   

Z capital cost [€]   

Subscripts and Superscripts 
  

0 reference state  

air air  

C compressor  

ch charge  

CV control volume (delimiting component)  

D destroyed  

disch discharge  

e component exit (thermodynamic conditions)  

gen entropy generation  

i impeller  

i component inlet (thermodynamic conditions)  

in inlet (stage)  

k k-th element  

L lost  

out outlet (stage)  

w water  
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1. Introduction 

Compressed Air Energy Storage (CAES) and Pumped Hydro Energy Storage, air and water being 

the most inexpensive fluids, are likely to be the most reliable and technologically sound options for 

massive energy storage [1,2], even if other alternatives are proposed [3]. 

Pumped Hydro Energy Storage systems require two reservoirs at different elevation and a 

pump/turbine for storing/recovering energy in form of water head. Their high energy efficiency  

(60%–78% [1]) has gained them widespread use, but development of new Pumped Hydro Energy 

Storage is often constrained by localization difficulties. In many situations where cost-effective and 

environmentally acceptable sites are unavailable, alternative technologies may be useful. 

CAES systems replace water basins with underground storage volumes (caverns in salt or rock 

formations, porous rocks, depleted natural gas fields) which are used as reservoirs for pressurized air 

(60–70 bar). Normally, for a given capacity, a CAES uses less land surface than a PHES and does not 

require an elevated reservoir.  

When natural storage volumes are scarce or too distant from the energy grid, artificial storage 

volumes can be developed in form of high-pressure vessels or underground pipes. Artificial storage is 

typically more expensive than a natural one. It has been shown [4] that an increase in the storage 

pressure (>100 bar) can decrease the material cost of the vessels. In any case, high storage pressure 

makes the compression/expansion train more complex.  

It is likely that artificial storage CAES would be preferable on a small scale (1–10 MW), whenever 

the convenience of a given site overcomes the lack of a natural reservoir. Incidentally, an artificial 

storage is easier to control in terms of air contaminants at turbine inlet.  

Existing CAES plants are all gas fuelled, compressed air being heated in a combustion chamber 

ahead of the turbine during the expansion phase. Hence, these systems combine energy storage within 

a power plant. The first 290 MW plant built at Huntdorf (Germany) in 1978 is very simple [5]: no 

attempt was made to recover any thermal energy at turbine exhaust or at compressor exit, before 

storage in the cavern. The main purpose of this earlier plant was to transfer energy produced by 

nuclear or coal plants from low to peak demand hours.  

A second plant, McIntosh-Alabama (U.S.A.) [6], has a recuperator between the hot turbine exhaust 

and the cold air stream coming from the cavern, in order to reduce the fuel consumption. Many refined 

schemes have been proposed [7,8], with notable energy efficiency improvements or using alternative 

fuels [9].  

A significant breakthrough is the so-called ―Adiabatic CAES‖ (ACAES) [10,11] that has been 

prompted by the increasing market share of renewable, intermittent energy sources. This configuration 

gets rid of the combustion chamber and takes full advantage of the thermal recovery from the hot, 

compressed air to raise the air temperature before expansion. If compression is performed in a 

common radial or axial machine, i.e., it is practically adiabatic, the recoverable thermal energy at 

compressor exit is of the same order of magnitude of compression work. Being compression and 

expansion performed in different phases, a Thermal Energy Storage is necessary. Expected benefits of 

this configuration are: 

• improved energy efficiency,  

• avoidance of a connection to the natural gas grid or any other fuel distribution,  
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• elimination of pollutant emissions,  

• lower turbine operating temperature.  

The second point may be useful if the CAES is thought as an addendum to a wind farm or any other 

remote energy source. According to the economic analysis presented in [10], ACAES may be useful as:  

• centralized plants—size around 300 MW—in countries with high spread between base and 

peak energy price; 

• decentralized plants—size around 150 MW—near large windfarms in order to increase full 

load operation, peak price sales and utilization of the power lines;  

• remote island solutions—size around 30 MW—integrated with wind power, aimed at  

increase of full load operation of wind turbines and savings of grid connection costs or  

fuel consumption. 

When designing the heat recovery, storage and reclaim system, the simplest option is to introduce 

one or more heat exchangers on the compression and on the expansion train. Heat storage medium can 

be liquid or solid or phase change material. In principle, the optimum thermodynamic design should 

pursue a quasi-isothermal compression/expansion. In the limit of isothermal transformations, the work 

consumed per unit mass of compressed air would be minimum and the same amount would be returned 

during expansion, i.e., energy recovery would be complete. In this case, the TES would be ambient air 

itself and hence would have infinite thermal capacity at no cost. The energy recovery efficiency is 

hence expected to increase with the number of stages (compressor plus cooler or heater plus turbine) as 

demonstrated in [12]. 

In practice, when the compression/expansion is divided in a large number of stages in order to 

approximate an isothermal behavior, concentrated losses in the connections between stages and heat 

exchangers become predominant. A compromise, accounting for system complexity and cost, must be 

pursued. In any case, increasing the number of stages reduces the maximum temperature of the TES 

during compression and hence simplifies its design. For example, if the TES temperature is kept below 

100 °C, the storage medium can be liquid water at moderate pressure. 

All components of a CAES plants are commercially available: compressors, heat exchangers, large 

volume vessels for high pressure (in case of artificial storage), radial expanders, insulated water 

reservoirs. Variable Inlet Guide Vanes may be used to adapt the compressors/expanders at the variable 

storage pressure. Variable configurations of the compression/expansion train have been shown  

in [4,12] to extend the operating range. Reciprocating compressors may be integrated in the train for 

the last stages, when the storage pressure approaches its maximum.  

Some caution must be used when comparing ACAES energy efficiency with gas fuelled CAES. For 

example, the ACAES efficiency (electrical energy output divided by electrical input) should not be 

matched against the ―round trip efficiency‖ of a non-adiabatic CAES [13], where a significant part of 

the energy is produced from a primary fossil source right at the time of peak demand. The two systems 

are different as they use different energy sources; moreover, the fossil fuel itself is used as a chemical 

storage backup. From this point of view, ACAES only can qualify—depending on the input electricity 

primary energy mix—as a fully-green storage device. 
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Plant Description and Mode of Operation 

The plant described hereafter represents an option currently proposed for storage of electricity  

to utilities and grid operators. The authors apologize for not being allowed to provide some  

confidential data.  

The proposed ACAES system (Figure 1, from an idea by ―ENEL Ingegneria e Innovazione‖ similar 

to the scheme proposed in [4]), is designed as a typical backup unit for wind energy plants. It is based 

on a seven-stage intercooled compression train. The inlet air (25 °C, 1 bar, dry air) passes through the 

compression train (an air-based version of that described in [14]), driven by an electric motor (MD), 

and is stored in pressurized vessels with an overall volume of 6,340 m
3
. The compressed air storage 

reservoir (CAR) is built as a system of interconnected vessels; it is pre-pressurized at 77 bar, so that 

the compressor train starts operating at this pressure, and finishes its operating cycle when the 

discharge pressure reaches 125 bar. The compressors operated most of the time in off-design 

conditions (variable Inlet Guide Vanes setting helps maintaining a good efficiency at off-design). The 

intercoolers (IC) are water-cooled: the heat from the intercoolers is recovered and stored in a hot water 

reservoir (TES). Following the description of the air path, the plant is completed by a six-stage 

expansion train (TE), geared to the electric generator (EG). The expansion is reheated after each stage, 

recovering heat stored in the hot water tank in a water/air heat recovery heat exchanger (RH). The cold 

water flow at the RH discharge is recovered in the cold water reservoir (CWR), from which it is  

re-used in a closed loop for the next operating cycle. Before re-use, water is cooled down to the 

temperature of the environment by an external cooler. 

Figure 1. Schematic of the CAES plant.  

MD EGC1 C6 C7C5C4C3C2

IC1 IC6 IC7IC5IC4IC3IC2 RH1 RH5 RH6RH4RH3RH2

TE1 TE5TE4TE3TE2 TE6CAR

CWR
TES 

(HWR)

Air In
Air 

Out

 

2. CAES Plant Components 

2.1. Compressor Train 

The reference case is built around a typical multi-stage centrifugal compressor train using a GE 

Oil&Gas/Nuovo Pignone SRL compressor (Figure 2), as it allows the modular selection of the required 

number of impellers optimizing the speed using different gear ratios between the High Speed Shafts 

and main shaft. This design allows also relatively simple inter-stage extraction, as is needed in the 

present case for intercooling (IC in Figure 1). The first three stages of the compressor train are 

equipped with variable-Inlet Guide Vanes control, which can adjust the Inlet Guide Vanes setting 



Energies 2013, 6 1055 

 

 

angle from +15° to −60°. It should be remarked that the compressor train is operated at constant mass 

flow (12, 2 kg/s) and variable discharge pressure (fixed volume of the CAR): accordingly, the 

characteristic curve can be adjusted along the pressure range, as is shown in Figure 3.  

Figure 2. SRL Compressor. 

 

Figure 3. SRL Compression Train pressure-flow rate characteristic curve with variable 

Inlet Guide Vanes setting.  

 

The variable-geometry Inlet Guide Vanes operating mode allows also to maintain a good efficiency 

under off-design operating conditions; Figure 4 shows the efficiency achievable (at optimal Inlet Guide 

Vanes setting) under the main reference operating conditions, over the full pressure range considered 

in the CAES application. 

The GE internal tool CCS was used to select each impeller of the SRL compressor. CCS is based on 

an internal database of different types of centrifugal impellers which have already been designed for 

other applications and whose performance has been checked against test data. The tool has a number of 

inputs: Pin, Tin, inm , RPM, D for each impeller stage; moreover, the inter-stage pressure drops, the 

casing size and rating, the size of flanges and volutes. The discharge pressure pout is a code output, as 

well as the Inlet Guide Vanes pre-rotation angle and the BEP efficiency at design conditions.  

The nominal design condition was assumed at a discharge pressure of 95 bar. The calculation of the 

operating point conditions was then repeated for off design, setting five discrete operating points: 125, 
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115, 95, 85 and 77 bar, and calculating the optimal Inlet Guide Vanes setting and the off-design 

efficiency. The power absorbed by the compression train ranges from 7.5 MW for pout = 75 bar  

to 8.1 MW for pout = 125 bar. The SRL motor drive is an asynchronous electric motor having the 

following target data: W = 9,600 kW; Nominal rotational speed = 1,500 rpm; Nominal voltage  

V = 13.8 kV. 

Figure 4. Compression Train calculated polytropic efficiency along the charging cycle 

(Varying Inlet Guide Vanes).  

 

2.2. Turbo-Expander Train 

The turbo-expander is again of the integrally-geared type: an example is shown in Figure 5. In the 

present case, 6 stages were considered, geared on three shafts (rotating respectively at 26,000, 14,000 

and 7,300 rpm). Each stage is of the radial/mixed flow design, with three-dimensional blade shape, and 

equipped with variable-setting Inlet Guide Vanes; each stage inlet is preceded by a Reheat Heat 

Exchanger (RH in Figure 1).  

Figure 5. Integrally-Geared Turbo-Expander. 

 

The turbo-expander mass flow rate was adjusted to maintain as far as possible a constant power 

output with variable inlet pressure: this operating condition results from the electric market day-ahead 

arbitrage pricing which is required by the Italian grid operator. In the present case, three reference 
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conditions were assumed for calculating the design and off-design performance, which are summarized 

in Table 1. 

Table 1. Turbo-expander train reference operating conditions.  

 HP IP LP 

PCAR, bar 125 98 75 
.

m , kg/s 24.5 26.6 27.4 

W, MW 8.60 8.62 8.34 

The EG is an asynchronous electric generator having the following target data: W = 10,500 kVA; 

Nominal rotational speed = 1,500 rpm; Nominal voltage V = 13.8 kV. 

2.3. Heat Exchangers (IC, RH) 

The heat exchangers were designed by an external provider after specifications by GE O&G Nuovo 

Pignone; a shell and tube arrangement was required; shell/tube arrangement between air and water 

were switched with variable pressure: in fact, air passes through shells (and water through the pipes) 

when the air pressure is low (first stages), while in the last stages air passes inside the pipes (and water 

through the shell side) in order to minimize heat exchanger capital costs. 

The shell side is provided with baffles which ensure a correct cross-flow arrangement. The water 

inlet/outlet conditions were specified as 20 °C/90 °C for the IC; and 89 °C/80 °C for the RH heat 

exchangers. Due attention was paid in not exceeding the boiling water temperature balancing the 

amount of water mass flow. Referring for example to coolers, the water mass flow rates were adjusted 

for each unit under each operating condition in order to have a delivery temperature of 90 °C, with a 

heat exchanger pinch temperature difference of 15 °C. The calculation was done by traditional HE 

sizing rules, assuming a constant overall heat transfer coefficient and surface. So, considering heat 

exchangers duty, it is possible, knowing air inlet and outlet temperature, to calculate the water flow 

rates (data reported in Table 2). 

Table 2. Main data for CAES plant heat exchangers.  

Unit External Diameter [mm] L [mm] 
.

m w [kg/s] Q [kW] 

Intercooler 1 900 4000 4.8 1414 

Intercooler 2 900 5000 5 1500 

Intercooler 3 900 4500 5.9 1800 

Intercooler 4 650 6000 3.2 1000 

Intercooler 5 600 6500 3.4 1000 

Intercooler 6 580 7000 3.3 1000 

Aftercooler 500 7500 3.5 1100 

Heater 1 700 6000 12 2700 

Heater 2 800 6000 9.5 1600 

Heater 3 950 5000 9.3 1500 

Heater 4 950 5000 9.3 1600 

Heater 5 1000 5000 8.7 1500 

Heater 6 1000 5000 8.9 1500 
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2.4. Reservoirs (CAR, CWR, TES) 

Air storage vessels (CAR) were selected considering an above ground storage ACAES plant, using 

2115 TENARIS pressure vessels with a unit capacity of 3 m
3
. The admissible work pressure for this 

vessel is 140 bar, tested following the 97/23/EC-PED standard. Each cylinder features 622 mm 

external diameter and 12 m length. 

In Thermal Energy Storage (TES), the hot water reservoir works at ambient pressure, therefore 

water cannot exceed the boiling temperature. An average temperature of the hot tank of 89 °C was 

estimated, with an overall volume of water equal to 810 m
3
, including 50 m

3
 used as fixed quantity to 

make sure that the tank never empties. 

The Cold Water Reservoir (CWR) has the same size; it starts its operation (storage mode) at 20 °C; 

at the end of the production mode, it is full of warm water at 47 °C, which has been delivered from the 

TES passing through the HR network. The cooling load needed for reducing the CWR temperature 

from 47 °C to 20 °C is provided by an external heat exchanger. 

3. Exergy and Exergoeconomic Analysis 

3.1. Exergy Analysis 

Exergy Analysis was set in the classical reference form [15,16]. Exergy is evaluated as an extensive 

property, so it can be transferred into or out of a control volume where streams of matter enter and exit. 

For each component, generally: 
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The term iiem  accounts for the time rate of exergy transfer at the inlet i. Similarly, eeem  accounts 

for the time rate of exergy transfer at the outlet e. 

The analyses considered in this work involves a slow evolution of steady-state operating conditions 

(as the pressure in the CAR is varied); for the analysis of most components, it is sufficient to  

consider the steady-state form of the exergy rate balance. At steady state, 0
dt

dECV  and 0
dt

dVCV , so 

Equation (1) reduces to: 
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This equation states that the rate at which exergy is transferred into the control volume exceeds the 

rate at which exergy is transferred out. The difference is the rate at which exergy is destroyed within 

the control volume due to irreversibilities. In compact form Equation (2) reads: 

  
i e

LDeiCV

j

jq EEEEWE 
,0  (3)  

where ei and ee can be calculated from enthalpy and entropy referring to unit mass of the fluid: 
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   000 ssThhe iii   (4)  

In this study, the compressors were assumed to be working without any heat transfer to the external 

environment (Adiabatic conditions). Both Heat Exergy and the Exergy Loss terms disappear, leading to: 

eiCVCD EEWE  ,  (5)  

The compression power is easily found: 

 eiC hhmW    (6)  

The compressor work is negative, as the sign convention defines as negative an energy flow 

entering the system.  

Heat exchangers are treated as steady-state adiabatic, no-work components; under these 

assumptions, DE  can be calculated from: 

weairewiairiHED EEEEE ,,,,,
   (7)  

Exergy destruction within the piping (air and water sides) were evaluated calculating the friction 

losses by traditional correlations. The piping was considered adiabatic; the total pressure loss is 

converted into an entropy generation, and the exergy destruction is calculated consequently [15]: 

genD STE 
0  (8)  

A closed-system balance was used to evaluate the total exergy CARE  stored in the compressed air 

reservoir (vessels). Only physical exergy was considered, neglecting kinetic and potential 

contributions; air vessels were assumed, at the end of the charge, at a temperature of 25 °C (same  

as environment).  

The specific physical exergy is: 

     00000 ssTvvpuuePH   (9)  

In the case of an ideal gas with constant specific heat ratio, the specific physical exergy can be 

expressed as: 
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(10)  

From the assumptions made, air temperature is constant at ambient value, hence: 

















 1ln 0
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0
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p
RTePH  

(11)  

Note that in this case, the assumption of constant k is no longer necessary. 

ECAR over one operating cycle can be calculated by the difference between exergy stored at 125 bar 

and 77 bar, simply as: 

PHPH
CAR EEE 77125   (12)  

The exergy loss corresponding to heat release to the environment in order to cool the water in the 

CWR at the end of the cycle can be estimated using the difference between two exergy levels, 

calculated by a closed system balance: 
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   000, SSTUUE WWWCWR   (13)  

   000, SSTUUE CCCCWR   (14)  

where WCWRE ,  and CCWRE ,  are respectively the exergies of the CWR at the final (47 °C) and the initial 

temperatures (20 °C). The exergy loss can then be estimated as 
CCWRWCWR EE ,,  . 

3.2. Thermo-Economic Analysis 

Exergo-economics [15] is the branch of engineering that combines exergy analysis and economic 

principles to provide the system designer or operator with information not available through 

conventional energy analysis and economic evaluations, but crucial to the design and operation of a 

cost-effective system involving transformation of energy. 

In the present case, we are dealing with a system transforming electricity (off-peak) into electricity 

(peak-load) having a higher economic value. Considering this, a simple input-output analysis could be 

performed arriving to similar overall results. However, the exergo-economic analysis allows: 

a. to examine in detail the contribution of very different components (work-transfer components, 

that is, compressors and turbines; and heat recovery components, that is, intercoolers and 

heaters) on the basis of a common parameter, that is, the component exergy destruction 

b. to examine separately and with exergy as guiding principle the share of the costs of exergy 

destruction and of capital investment for each component. Indeed, some of the components used 

(e.g., vessels) require a very high capital investment and this modifies to an appreciable 

extent— as is shown in the conclusions—the results of a thermodynamic-only analysis. 

At the base of an exergo-economic analysis there is an economic analysis in order to detect and 

define each cost relative to the system. The system was modeled considering a sequence of steady 

states; all relevant entering and exiting material streams, as well as both heat and work interactions 

with the surroundings, were included. Associated with these transfers of matter and energy are exergy 

transfers into and out of the system, and exergy destructions caused by the irreversibilities within the 

system. Since exergy measures the true thermodynamic value of such effects, and costs should only be 

assigned to commodities of value, it is meaningful to use exergy as a basis for assigning costs in 

thermal systems. 

The cost balance applied to the k-th system component can be generally written as: 

    k

i

kiikqkqkkw

e

kee ZEcEcWcEc    ,,,  (15)  

In the specific case of compressors, for each stage: 

kwkikikeke ZWcEcEc   ,,,,  (16)  

No auxiliary relation is needed for compressor stages [15]. In the first compressor stage 1,ic  was 

considered equal to zero (ambient air); in the other stages, kic ,  is equal to the cost stream exiting the 

preceding cooler. wc  was considered equal to 38 €/MWh, corresponding to use of off-peak electricity. 
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Each heat exchanger was evaluated referring to the component model shown in Figure 6, using the 

following relation: 

kZEcEcEcEc   33114422  (17)  

Figure 6. Schematic of heat exchanger.  

3
Q= 0

1 2

4

Hot

Cold

 

The additional exergoeconomic equation was set according to the purpose of the heat exchanger 

(cooling of heating) [15].  

The expander thermo-economic balance is similar to that of the compressor, considering now the 

work stream as an outlet: 

kkikikkwkeke ZEcWcEc   ,,,,,  (18)  

The auxiliary relation in this case is [15]: kike cc ,,  .  

For the storage (CAR) reservoir (a component in which the capital cost is expected to be very high), 

the thermo-economic relation is applied over the complete lifetime considering the overall scheduled 

operating time in charge/discharge modes, and it reads: 

CAR

i

chiCARiCARi

e

discheCAReCARe ZtEctEc  ,,,,,,
  

(19)  

The operating time in the different states of charge/discharge is considered in Equation (19); the 

cost of the storage vessels is directly presented in €.  

4. Results  

4.1. Charge and Discharge Time 

The application of the compressor characteristic curve to the ACAES plant allowed to calculate the 

charge curve; even accounting for the variation of compressor efficiency under off-design, the pressure 

in the compressed air reservoir (CAR) increases linearly with time from 75 to 125 bar: a theoretical 

time of 8.1 hours is needed to fill completely the air storage vessels with a volume of 6,340 m
3
.  

Also during the discharge process, the expander unit was simulated according to its characteristic 

curve with variable Inlet Guide Vanes setting. Again, as the CAR pressure varies in a limited range 

(125–75 bar), the discharge function results approximately linear. The complete discharge time is 3.77 h. 

4.2. Results—Exergy Analysis 

The exergy balance was divided into CAES plant sections: compressors, intercoolers, expanders,  

re-heaters. As an example, for the case pCAR = 125 bar, the overall exergy destruction in compressors 

amounts to 1.3 MW (for an absorbed power of 7.5 MW). The distribution of exergy destruction over 
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the 7 compressor phases is shown in Figure 7. The largest contributions are given by phases 1 and 3; 

this is a combined result of power rating of the impellers, and of the calculated stage efficiency. 

Figure 7. Relative distribution of compressors’ exergy destruction (pCAR = 125 bar).  
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The overall IC exergy destruction amounts to 517 kW, and its distribution is shown in Figure 8. 

Intercooler 3 has the largest heat duty (1800 kW, Table 2) and it is not surprising that it gives the 

largest contribution to exergy destruction among all similar components (29%); the second largest 

contribution (21%) is produced by IC1, even if its heat duty is not among the largest (1414 kW, Table 2); 

this can be explained by the distribution of pressure rise among the seven compression phases.  

Figure 8. Relative distribution of IC exergy destruction (pCAR = 125 bar).  
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The overall RH exergy destruction amounts to 625 kW, and its distribution is shown in Figure 9.  

Figure 9. Relative distribution of RH exergy destruction (pCAR = 125 bar).  

32%

14%

11%

13%

11%

19%

YdHeater
Heater 1

Heater 2

Heater 3

Heater 4

Heater 5

Heater 6

 

The largest contributions are provided by Heater 1 (heat rate 2,700 kW, Table 2) and 6. The piping 

exergy destruction was very low (18 kW for all the IC connection pipes). The overall expander exergy 
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destruction amounts to 1,654 kW, and its distribution among the different stages is shown in Figure 10. 

The distribution is quite uniform and reflects similar values of expander efficiency and correct 

pressure staging. 

Figure 10. Relative distribution of expander exergy destruction (pCAR = 125 bar).  
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In practice, the operating conditions are continuously varying in time, as the delivery pressure in the 

CAR is increased from 75 to 125 bar. As an example, the trend of exergy destruction in time for the 

compressor train is shown in Figure 11.  

DE was calculated for every compressor stage in each off-design condition considered (the 

minimum exergy destruction is achieved very close to the nominal design conditions). Interpolating 

the values with a polynomial function allows to define an approximate trend line, which was integrated 

in time to give the overall expected value over one charge cycle, 1.10DE MWh. 

Figure 11. Time history of calculated compressor exergy destruction.  

 

A Sankey diagram showing the exergy destructions and losses during the charge and discharge 

phases is shown in Figure 12. 
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Figure 12. Sankey diagram of exergy flow. (a) Charging; (b) Discharging.  

 

(a) 

 

(b) 

The cumulated exergy efficiency of the process (calculated through a time-resolved integration of 

the sequence of system operating conditions, along a complete charging/discharging cycle) is about 

52%. This result is clearly lower than those typically achieved by Pumped Hydro Storage, but 

significantly higher than 40% claimed for thermoelectric storage in [3]. 

5. Results—Exergo-economic Analysis  

Detailed results about exergy analysis have been shown in Section 4, consequently the conclusions 

here reported represent only a synthesis of this case study. Referring to maximum pressure (125 bar), 

the power production distribution among the 6 expander stages is shown in Figure 13, and the cost of 

electricity produced by each stage, according to the thermo-economic analysis of the plant, is 

summarized in Figure 14.  

Figure 13. Power produced by each expander stage (pCAR = 125 bar).  

 

Figure 14. Electricity production cost for each expander stage (pCAR = 125 bar).  
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The power-averaged cost of the electricity produced was calculated at 70 €/MWh, which 

corresponds to a marginal cost of (70–38) = 32 €/MWh of the equivalent stored electrical energy; in 

practice, an 84% increase with respect to the base-load cost of electricity assumed (38 €/MWh). This is 

considered as a promising result for proposing ground-built ACAES systems as storage devices for the 

near future. The distribution of the marginal cost buildup among the main plant components, in terms 

of cost of exergy destruction and capital +O&M costs, is shown in Figure 15. 

Figure 15. Relative distribution of the marginal costs among ACAES plant components. 

Exergy destruction and Capital + O&M costs (pCAR = 125 bar).  

  

It can be noticed that the work input amounts to 31% of the expenses; exergy destruction during 

plant operation (storage and production modes) represents 29% of the marginal cost; about 40% can be 

accounted to capital expenses, with the largest share due to the pressure vessels (24%). A comparison 

with Figure 12 shows that the exergy destruction terms represent 37% in terms of exergy, but they 

reduce to 29% in terms of marginal contribution to cost buildup. 

6. Conclusions  

An ACAES (Adiabatic Compressed Air Energy Storage) pilot installation, designed with current 

technology for compressors/expanders/intercoolers/re-heaters, using standard pressure vessels and 

hot/cold water tanks in a closed loop was presented and the results of a system model were presented. 

The analysis included off-design performance of the machinery and was completed by an exergy 

balance and by the application of thermo-economics to calculate the final cost of electricity. 

The exergy analysis demonstrated that the largest exergy destructions occur in the compressors, 

expanders, and in the compressor intercoolers. To a smaller extent, the exergy losses connected to 

waste flows (―cold‖ water and expander exit flow rate) were also contributing to the overall exergy 

efficiency, which scored about 52%. The system is operated with electricity input and output. 

Applying exergo-economics with real costs of equipment (pressure vessels, turbo-machinery, heat 

exchangers and electrical equipment) modifies to a large extent the results of the exergy analysis, in 

terms of economic performance. The capital cost of the pressure vessel system and the cost of 

electricity for operating the compressors represent the major contributions to the cost buildup. On the 

whole, the proposed system is able to provide peak load electricity with a cost increase of  

about 84% with respect to the base-load cost (which is assumed for operating the compressors). This  

performance—even if improvable by design modifications—is considered appealing in the current 

status of the electricity market. 
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