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Abstract: Operation of wind power generation in a large farm is quite challenging in a 

smart grid owing to uncertain weather conditions. Consequently, operators must accurately 

forecast wind speed/power in the dispatch center to carry out unit commitment, real power 

scheduling and economic dispatch. This work presents a novel method based on the 

integration of empirical mode decomposition (EMD) with artificial neural networks (ANN) 

to forecast the short-term (1 h ahead) wind speed/power. First, significant parameters for 

training the ANN are identified using the correlation coefficients. These significant 

parameters serve as inputs of the ANN. Owing to the volatile and intermittent wind 

speed/power, the historical time series of wind speed/power is decomposed into several 

intrinsic mode functions (IMFs) and a residual function through EMD. Each IMF becomes 

less volatile and therefore increases the accuracy of the neural network. The final 

forecasting results are achieved by aggregating all individual forecasting results from all 

IMFs and their corresponding residual functions. Real data related to the wind speed and 

wind power measured at a wind-turbine generator in Taiwan are used for simulation. The 

wind speed forecasting and wind power forecasting for the four seasons are studied. 

Comparative studies between the proposed method and traditional methods (i.e., artificial 

neural network without EMD, autoregressive integrated moving average (ARIMA), and 

persistence method) are also introduced. 

Keywords: wind power; empirical mode decomposition; intrinsic mode function; artificial 

neural network 
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1. Introduction 

Many countries have recently established roadmaps to implement their visions of smart grids. One 

of the principal characteristics of a smart grid is that a smart grid should accommodate all generation 

and storage options. “All generation options” covers environmentally friendly sources, including wind 

and solar photovoltaic farms [1]. Advantages of the renewable energy sources consist of reduction of 

traditional fossil-based generation expansion and mitigation of greenhouse gas emissions. However, an 

increase of renewable penetration in transmission or distribution systems may incur in new operation 

problems, e.g., protective relay setting and unit commitment. More specifically, the differential relay 

may malfunction due to a change in the line flow direction; reserves of traditional fossil-based 

generation may be inadequate because of inaccurate renewable power generation forecasting. This 

paper addresses short term (i.e., one hour ahead) wind speed/power forecasting which provides a 

valuable infrastructure for power system operation-related studies. 

Forecasting problems have received considerable attention for several decades. Among all, load 

forecasting methods are well-developed [2–6]. Related applications include load management in 

microgrids [2], planning and operational decision making of utility companies [3–5], and energy 

efficiency improvement in buildings [6]. A recent work addressed how short-term solar irradiance 

forecasting focuses on account of great significance for the optimal operation and power predication of 

grid-connected photovoltaic (PV) plants [7]. However, wind speed and power forecasting is more 

difficult than system load and solar irradiance forecasting [8]. Wind power forecasting methods can be 

categorized as long-term (i.e., more than six hours ahead) [9–11] or short-term (i.e., from several 

minutes up to six hours ahead) [12–17]. In particular, Anastasiades and McSharry developed quantile 

regression models to generate short-term probabilistic forecasts from 15 min up to six hours ahead [12]. 

Zhang et al. [13] integrated univariate least squares support vector machine (LS-SVM), hybrid models 

by using auto-regressive moving average (ARMA) and LS-SVM and multivariate LS-SVM models to 

obtain the short-term (hourly) forecasting using the fuzzy aggregation and defuzzification procedure. 

Catalão et al. [14] extracted detailed/coarse components from the wind power time series by the 

wavelet multilevel decomposition/reconstruction procedure and then applied adaptive-network-based fuzzy 

inference system (ANFIS) to conduct short-term (3 h ahead) forecasting. Potter and Negnevitsky [15] also 

used ANFIS to perform very short-term (2.5 min ahead) wind power forecasting through the wind 

speed and direction. Amjady [16] used an irrelevancy filter and a redundancy filter to identify features 

for neural networks trained by particle swarm optimization to forecast hourly wind power.  

Khosravi et al. [17] investigated two neural network-based methods for direct and rapid construction 

of prediction intervals (PIs) for short-term (5, 10, 15 and 30 min ahead) forecasting of power 

generation in wind farms. Li et al. [18] presented a method to combine three forecasted results 

obtained by three different neural networks, namely, adaptive linear element network (ADALINE), 

backpropagation (BP) network, and radial basis function (RBF) network using Bayesian combination 

algorithm. Amjady et al. [19] used mutual information criteria to identify essential candidate inputs 

first and then used a ridgelet neural network trained by differential evolution algorithms. Liu et al. [20] 

took advantage of the wavelet transform to decompose the wind power time series and used ARIMA to 

be a forecaster. Jursa and Rohrig [21] used the mean output of the neural network model and the 

nearest neighbor search to conduct hourly wind speed/power forecasting. Zhou et al. [22] implemented 
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three different support vector machine (SVM) kernels, namely linear, Gaussian, and polynomial 

kernels, to perform hourly wind speed/power forecasting. The above description reveals that previous 

works can be further improved: 

(i) Complex forecasters, in which the sophisticated neural network, fuzzy reasoning and 

population-based optimization were used, were developed in order to attain the  

results [12–15,18,19,21,22]; 

(ii) Essential parameters were not identified first in order to carry out  

forecasting [12–15,17,18,20–22]; 

(iii) Very short term forecasting studies were conducted in [15,17]. Actually, the traditional 

simple persistence method competes with these complex methods [15,17] while very short 

term forecasting is studied; 

(iv) Mother wavelets must be implemented by a trial-and-error method in [14,20]. The number 

of multiple resolutions needs to be determined heuristically, too; and 

(v) Complex data preprocessing using the irrelevancy filter and redundancy filter [16] or mutual 

information criterion [19] was performed. 

Based on the above discussion, this paper proposes a novel method that integrates the correlation 

coefficient, empirical mode decomposition (EMD) [23] and back-propagation-based (BP-based) neural 

network to conduct the short-term (one hour ahead) wind speed and power forecasting. The correlation 

coefficient is adopted since short-term forecasting is of concern rather than a long-term investigation. 

EMD can extract symmetry-like low-order and smooth high-order intrinsic mode functions (IMF) from 

the original signal. In contrast to multi-resolution analysis in [14], EMD does not need the mother 

wavelet and can decompose the signal (time-series) with a pre-specified tolerance. Because the 

attribute of IMF is well-behaved, the forecasting is performed using the relatively simple BP-based 

neural network rather than the sophisticated neural networks used in [13–15,19,22]. 

The rest of this paper is organized as follows: Section 2 describes the proposed method for 

forecasting short-term wind power and speed. Section 3 then summarizes the simulation results 

obtained using real data measured in a wind farm. Conclusions are finally drawn in Section 4. 

2. Proposed Method 

As described in Section 1, this paper presents a back-propagation-based artificial neural network 

(BP-based ANN) integrated with empirical mode decomposition (EMD) to forecast short-term (hour 

ahead) wind speed/power in a wind farm. The wind speed/power time series is decomposed by EMD 

to produce intrinsic mode functions (IMFs) and a residual function. Mother wavelet and determination 

of number of scales, which are essential in the multi-resolution analysis of the wavelet transform  

in [14], are unnecessary. Vital parameters are identified to forecast the hour-ahead wind speed/power 

by using the correlation coefficients. Then individual BP-based ANNs are trained using individual 

IMFs and the residual function. The individual results are achieved by aggregating all forecasted IMFs. 
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2.1. Correlation Coefficient 

An individual commercial wind turbine has its well-defined power curve which presents the power 

output versus the wind speed impinging on its rotor. However, this power curve cannot be used 

directly for the power output of a wind turbine in a wind farm because of: (i) the layout of multiple 

wind turbines in a wind farm; (ii) different rotor speed control techniques resulting in various tip-speed 

ratios; (iii) height of the anemometer; (iv) cut-in/cut-off wind speeds; and (v) turbulence in a wind 

farm. Consequently, this paper considers the most essential factor (i.e., wind speed) to correlate the 

power output of a wind turbine in a wind farm. This section describes how to evaluate the correlation 

between the wind speeds and wind powers at different times. Because the short-term forecasting is 

concerned, the correlation coefficient in statistics is adopted herein. More specifically, assume that

nxxxx  ...,,, , 321  and nyyyy  ...,,, , 321  are two sets of sampling data. Let their mean values be x  and y , 

respectively. Their standard deviations are denoted as Sx and Sy. The correlation coefficient is then 

defined as follows: 
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Equation (1) expresses the correlation between these two samples. The values of Rxy are within [−1, 1]. 

If |Rxy| < 0.4, the correlation of these two samples is low. Generally, if 0.7 ≤ |Rxy| < 1, these two sets of 

samples are correlated with each other. For most applications, an absolute value of Rxy greater than 0.8 

is requested to ensure that two sample sets are highly correlated with each other. 

2.2. Empirical Mode Decomposition 

As described in Section 1, the wind speed and wind power are nonlinear and non-stationary time 

series. Thus, an efficient signal processing technique is required to analyze these time series. Rather 

than the wavelet transform which needs a mother wavelet, this paper adopts Hilbert-Huang transform 

(HHT) [23]. HHT is a time-frequency analysis method applicable to non-linear and non-stationary 

signals. HHT comprises Hilbert spectral analysis (HSA) and empirical mode decomposition (EMD). 

HHT employs the EMD method to decompose a signal into so-called intrinsic mode function (IMF), 

and uses the HSA method to obtain instantaneous frequency data. In contrast to the wavelet transform, 

HHT does not require a priori knowledge of mother wavelet before signal processing. 

A signal (time series) can be decomposed into many IMFs through the EMD. Each IMF comprises 

parts of vital features of the signal. Each IMF has two properties [23]: 

1. The numbers of zero-crossing points, local maxima and minima must be identical or differ 

from each other at most by one in the whole sampled points; 

2. The mean of the envelopes defined by the local maxima and minima must equal zero at any 

point of the signal. 
  



Energies 2013, 5 6141 

 

 

Figure 1 shows the definitions of a signal f(t) and its corresponding mean, upper envelope and lower 

envelope. Each IMF can have varying amplitudes and frequencies along the t (or time) axis, unlike the 

traditional Fourier series with individual fixed amplitude and frequency in a harmonic component. 

Each IMF represents a simple oscillatory mode. 

Figure 1. A signal f(t) and its mean, upper and lower envelopes. 

 

Extracting an IMF from a signal f(t) is referred to as sifting. EMD can be performed by two iterative 

loops. Let i and j denote the outer and inner iteration indices, respectively. The outer loop is designed 

to find the i-th intrinsic mode function. The inner loop includes iterations to evaluate an intrinsic mode 

function. First, all local maxima and minima of the signal fij(t) are located and then these maxima and 

minima are interpolated to attain the upper and lower envelopes, respectively, by the cubic spline curve 

fitting. If a predefined convergence criterion is met, then an IMF is attained by calculating  

IMFi(t) = fij(t) − mij(t) where mij(t) is the mean of the upper and lower envelopes. In the meanwhile, a 

residual function ri(t) is gained by computing fi1(t) − IMFi(t). If the convergence criterion is not 

fulfilled, then new local maxima, minima and mean of fij(t) − mij(t) are calculated. The outer loop stops 

if ri(t) satisfies a predefined termination criterion. 

Thus, the signal f(t) can be decomposed and expressed by Equation (2). Restated, a time-series 

function f(t) can be expressed in terms of the sum of Nc IMFs and one residue rNc(t): 
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(2)

In this paper, f(t) signifies the wind speed or power time-series. Each time series is decomposed into 

some IMFi(t) where i = 1, 2, 3, …, Nc, plus a residue rNc(t). The term Nc is the number of IMFs.  

The value of Nc is determined by the termination criterion. 

Nc plus one ANNs are needed to conduct the short-term wind speed/power forecasting by taking the 

Nc IMFs wind speed/power time series and their residual functions into account. However, there are 

two reasons for one not to utilize the entire Nc IMFs and residual function as follows: (i) the 



Energies 2013, 5 6142 

 

 

computational complexity should be reduced and (ii) high-order IMFs are smooth. Thus, the following 

decomposition is considered: 
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where N equals round(Nc/2) + 1 and the symbol “round(•)” refers to round-off. The new residual 

function can be evaluated as follows: 
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Alternatively, the maximum number of outer iterations can be set to N and rN(t) can be gained once the 

algorithm process stops. Figure 2 illustrates a function g(t) = sin(150t) + 0.5 × sin(20t) + 2.5 × exp(−5t) 

that can be decomposed into IMF1, IMF2 and a residual function r2(t). 

Figure 2. A function g(t) and its intrinsic mode functions (IMF1 and IMF2) and residual 

function (r2). 

 

Thus, the number of ANNs to forecast the wind power/speed is significantly reduced from Nc to N. 

Simulation results indicate that the accuracy of the proposed method still remains. Notably, no heuristic 

setting or a priori assumption is required, e.g., given the mother wavelet in the wavelet transform. 

2.3. Back-Propagation-Based Neural Network 

The purpose of ANN serves as a block box that is used to correlate the forecasted “intrinsic wind 

speed” and “intrinsic wind power” to the preceding “intrinsic wind speed” and “intrinsic wind power”. 

The numbers of preceding “intrinsic wind speed” and “intrinsic wind power” are determined by the 

correlation coefficients in Section 2.1. BP-based ANN rather than complex ANNs are used in this 

work for the following reasons: 

1. The studied wind power (speed) time-series has been decomposed into N IMFs and one 

residual function. Each IMF becomes less nonlinear and non-stationary. 

2. The numbers of input and output neurons are not large, i.e., 20 (maximum) and 1, respectively. 
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Let η and κ denote the seasons (spring, summer, autumn and winter) and targets (speed or power) 

indices, respectively. For example, a BP-based ANN is used to forecast pi(t) using pi(t − 1), pi(t − 2), 

pi(t − 3), …, pi(t − T1(η,κ)) and si(t − 1), si(t − 2), si(t − 3), …si(t − T2(η,κ)), where pi(t) and si(t) 

denote the “intrinsic wind power” and “intrinsic wind speed” expressed by the IMF for the wind power 

and speed, respectively. T1(η,κ)and T2(η,κ) are determined by the correlation coefficient. In total, 
there are (  = = +4

1
2

1 8),(η κ κηN ) BP-based ANNs for the studied wind speed and power data. 

Independent calculation and forecasting are carried out by each BP-based ANN. 

2.4. Algorithmic Stages 

The proposed method can be categorized into four stages: (I) data prescreening; (II) EMD for wind 

speed and power in four seasons; and (III) ANN training; and (IV) ANN testing. 

The data prescreening stage evaluates the correlation coefficients of the wind speed and power in 

the same season. The essential parameters serving as inputs for an ANN are identified. Restated, 

Equation (1) is applied to evaluate the correlation coefficients of the original wind speed/power  

time-series in order to determine the number of inputs pi(t − 1), pi(t − 2), pi(t − 3), …, pi(t − T1(η,κ)) 

and that of si(t − 1), si(t − 2), si(t − 3), …, si(t − T2(η,κ)) to forecast pi(t) and si(t) where the symbol i is 

the index of the intrinsic mode function. 

In the EMD stage, eight sets of wind power and speed in four seasons are studied. In total, 

 = =
4

1
2

1 ),(η κ κηN  IMFs and eight residual functions are attained. 

The ANN training stage deals with eight sets of (N(η,κ) + 1) BP-based ANNs independently. The 

input-output pairs obtained from each IMF or the residual function are randomly used to train its 

corresponding ANN. Two-thirds of the whole data are utilized in this stage. 

The ANN testing stage takes advantage of trained BP-based ANNs to forecast the wind speed or 

power in a season. Again, eight sets of (N(η,κ) + 1) BP-based ANNs are studied independently. The 

final result in a season are achieved by aggregating the individual results obtained by the (N(η,κ) + 1) 

BP-based ANNs. The remaining one third of the whole data are utilized in this stage. 

Figure 3 schematically depicts the ANN testing stage. More specifically, assume that the wind 

power forecasting and a certain season are considered. For simplification, assume that the identified 

parameters are pi(t − 1), si(t − 1) and si(t − 2) for use in forecasting pi(t) in Figure 3. That is, T1(η,κ) = 1 

and T2(η,κ) = 2. The numbers of input and output neurons of the BP-based ANN are 3 and 1, 

respectively. The final forecasted wind power in this season is gained by adding all forecasted pi(t) and 

rN(t), where i = 1, 2, …, N. 
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Figure 3. pi(t) forecasting using identified parameters at times t-1 and t-2 as inputs in the 

ANN testing stage. 

 

3. Results and Discussion 

This paper incorporates the use of hour-based measurements including wind power generation from 

a wind farm and the wind speed from an anemometer. With both taken at the same site in Penghu, 

Taiwan, these measurements are used to demonstrate the applicability of the proposed method.  

The wind farm has eight wind generators with an individual capacity size of 600 kW. A set of  

24 × 365 data (1 December 2003, through 30 November 2004) is employed in the studies. 

3.1. Identification of Critical Parameters Using Correlation Coefficients 

A large correlation coefficient Rxy, e.g., 0.8, implies a high correlation between the two studied data 

sets. As shown in Table 1, the numbers of P(t − n), n = 1, 2, 3, … highly related to P(t) are 5, 8, 10 

(maximum) and 4 for spring, summer, autumn and winter, respectively. Furthermore, the numbers of 
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S(t − n), n = 1, 2, 3, … highly related to P(t) are 4, 6, 10 and 1 for the spring, summer, autumn and 

winter, respectively (see Table 2). Thus, the numbers of input neurons of the BP-based ANNs for these 

four seasons are 9, 14, 20 and 5, respectively. 

Table 1. Correlation coefficients between two wind power time series (t is the index for hours). 

Relations 
Correlation coefficients 

Spring Summer Autumn Winter 

P(t − 1) to P(t) 0.96 0.95 0.98 0.93 

P(t − 2) to P(t) 0.92 0.92 0.96 0.88 

P(t − 3) to P(t) 0.88 0.89 0.95 0.85 

P(t − 4) to P(t) 0.85 0.86 0.93 0.82 

P(t − 5) to P(t) 0.82 0.84 0.92 0.79 

P(t − 6) to P(t) 0.80 0.83 0.91 0.77 

P(t − 7) to P(t) 0.77 0.81 0.90 0.74 

P(t − 8) to P(t) 0.74 0.80 0.89 0.72 

P(t − 9) to P(t) 0.72 0.79 0.88 0.71 

P(t − 10) to P(t) 0.69 0.78 0.870 0.68 

Table 2. Correlation coefficients between wind power and speed time-series (t is the index for hours). 

Relations 
Correlation coefficients 

Spring Summer Autumn Winter 

S(t − 1) to P(t) 0.91 0.90 0.88 0.81 

S(t − 2) to P(t) 0.88 0.88 0.88 0.78 

S(t − 3) to P(t) 0.85 0.85 0.87 0.76 

S(t − 4) to P(t) 0.82 0.83 0.86 0.74 

S(t − 5) to P(t) 0.80 0.82 0.85 0.73 

S(t − 6) to P(t) 0.77 0.80 0.84 0.71 

S(t − 7) to P(t) 0.75 0.79 0.83 0.70 

S(t − 8) to P(t) 0.73 0.78 0.83 0.69 

S(t − 9) to P(t) 0.70 0.77 0.82 0.68 

S(t − 10) to P(t) 0.68 0.76 0.81 0.66 

3.2. Empirical Mode Decomposition and Residual Functions 

Figure 4 shows the EMD of wind speed during the spring, including eight IMFs and one residual 

function (r8). The original wind speed is volatile which is non-stationary and inappropriate for use of 

ANN to explore. Based on Figure 4, we can infer the following: 

(i) Although the wind speeds are positive, the values of IMFs may be negative; 

(ii) The values of IMF1~IMF3 oscillate with high frequencies and are nearly symmetrical. Owing 

to this phenomenon, a BP-based ANN can forecast the future LMPs properly; 

(iii) The values of IMF4~IMF6 vary slowly and still remain approximately symmetrical. Based on 

this condition, a BP-based ANN is able to work easily; and 
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(iv) The values of IMF7, IMF8 and r8 alter gradually and smoothly. A BP-based ANN again 

functions without any difficulty under this circumstance. 

Figure 4. Empirical mode decomposition of wind speed in the spring. 

 

As mentioned earlier in Section 2, the signal does not need to be extracted into many IMFs. In this 

case, Nc = 8. This proposed method suggests that the number of essential IMFs is around (8/2)+1,  

i.e., 5. Therefore, the wind speed time-series during the spring is expressed by: 
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The new residual function can be evaluated as follows: 
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Alternatively, the outer iteration can be performed five times and the remaining function is r5(t). 

Whether or not the values of new residual function still vary slowly and smoothly should be examined. 

If the new residual function is no more volatile, the simple BP-based ANN can definitely work 

perfectly. Figure 5 shows the new residual functions of wind speeds (m/s) during the four seasons. 

These new residual functions reveal that the “residual” wind speeds do not significantly vary and the 

simple BP-based ANN may be applied. Similarly, Figure 6 illustrates new residual functions of wind 

power (kW) during the four seasons. The same inference for the wind power can be made. Table 3 

shows the number (Nc) of IMFs extracted from the original wind speed and power time series. 
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Figure 5. New residual functions of wind speeds (m/s) during the four seasons: (a) spring; 

(b) summer; (c) autumn; and (d) winter. 

 

Figure 6. New residual functions of wind powers (kW) during the four seasons: (a) spring; 

(b) summer; (c) autumn; and (d) winter. 

 

Table 3. Numbers of IMFs extracted from the wind power and speed time series during the 

four seasons. 

Seasons 
Number of IMFs 

Wind power Wind speed 

Spring 8 8 
Summer 10 8 
Autumn 11 9 
Winter 10 10 

3.3. Comparative Studies 

The proposed method is achieved by four algorithmic stages presented in Section 2.4. Section 3.1 

determines the numbers of input neurons of the BP-based ANNs serving as wind speed/power 

forecasters during the four seasons (Stage I). Section 3.2 describes the numbers of IMFs, as shown in 
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Table 3, extracted from the wind speed/power time series (Stage II). In Stage III, eight sets of  

(N(η,κ) + 1) BP-based ANNs are trained independently, as described in Section 2.4. A schematic 

diagram, as shown in Figure 3, illustrates the method to aggregate the hour-ahead forecasted wind 

power at time t in Stage IV. A moving data window with a fixed number determined in Stage I is 

applied to the wind speed/power time series in the forms of IMF or residual function to produce the 

forecasted wind speed/power at time t. 

This section investigates the comparative studies using the proposed method (Nc and N IMFs), 

traditional BP-based ANN (without EMD), autoregressive integrated moving average (ARIMA) and 

traditional persistence method. The ARIMA model fits the non-stationary time series data to predict 

future points in the series (i.e., forecasting). The model is generally referred to as an ARIMA(p,d,q) 

model where parameters p, d, and q are non-negative integers that refer to the order of the 

autoregressive, integrated, and moving average parts of the model, respectively. The traditional 

persistence method assumes that the conditions at the time of the forecast won’t change. The mean 

absolute error (MAE) and root-mean-squared error (RMSE) act as the performance indices among 

these five methods. Tables 4–7 show the MAE and RMSE of forecasted wind speed/power obtained by 

different methods. Based on these tables, the following comments are made: 

(i) Both MAE and RMSE indicate that the proposed methods with Nc and N IMFs lead to almost 

the same performance. Thus, N IMFs are sufficient; the computational burden with N IMFs 

may significantly reduced due to N < Nc; 

(ii) The proposed method nearly has the best performance among these methods while studying 

eight cases in these seasons; 

(iii) For most of the cases, ARIMA and the persistence method perform better than traditional 

ANN without EMD. 

Table 4. MAE of forecasted wind speed (m/s) obtained by various methods. 

Methods Spring Summer Autumn Winter 

ANN & EMD with Nc IMFs 0.59 0.41 0.46 0.90 
ANN & EMD with N IMFs 0.58 0.41 0.46 0.90 

ANN without EMD 1.25 0.83 0.91 1.02 
ARIMA 0.97 0.78 0.81 1.07 

Persistence method 0.93 0.79 0.80 0.97 

Table 5. MAE of forecasted wind power (kW) obtained by various methods. 

Methods Spring Summer Autumn Winter 

ANN & EMD with Nc IMFs 27.02 27.50 25.06 36.57 
ANN & EMD with N IMFs 27.05 27.47 25.03 36.59 

ANN without EMD 34.70 43.71 37.06 36.45 
ARIMA 34.87 34.54 26.87 37.30 

Persistence method 31.27 35.06 25.00 31.22 
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Table 6. RMSE of forecasted wind speed (m/s) obtained by various methods. 

Methods Spring Summer Autumn Winter 

ANN & EMD with Nc IMFs 1.01 0.66 0.67 2.13 
ANN & EMD with N IMFs 1.01 0.66 0.67 2.13 

ANN without EMD 2.73 1.31 1.62 2.06 
ARIMA 1.62 1.16 1.14 2.10 

Persistence method 1.49 1.16 1.17 2.18 

Table 7. RMSE of forecasted wind power (kW) obtained by various methods. 

Methods Spring Summer Autumn Winter 

ANN & EMD with Nc IMFs 51.01 47.13 41.55 69.87 
ANN & EMD with N IMFs 51.03 47.10 41.53 69.86 

ANN without EMD 75.35 88.20 66.07 82.72 
ARIMA 73.56 60.53 54.99 78.88 

Persistence method 68.67 64.75 56.11 81.37 

Figures 7–10 show the actual/forecasted wind speeds/powers and errors in four seasons using the 

proposed method. These figures reveal that the accuracy of wind speed forecasting is indeed very 

good. The main errors in the wind power forecasting occur when the power generation increases or 

declines rapidly in the wind-turbine. 

Due to activation (transfer) functions in the output neurons of the BP-based ANN, few forecasted 

results of the wind speeds/powers are negative in Figure 7. To prevent this phenomenon, the activation 

function may be changed from linear functions to variants of the sigmoid function with positive values. 

However, the convergence performance of BP-based ANN may become poor. These impractical 

values are still shown in Figure 7 because MAE and RMSE are evaluated. The negative forecasted 

value may be modified to be zero and remarked for engineers. 

Figure 7. Actual/forecasted wind speeds/powers and errors during the spring: (a) S(t); (b) P(t). 

(a) (b) 
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Figure 8. Actual/forecasted wind speeds/powers and errors during the summer: (a) S(t); (b) P(t). 

(a) (b) 

Figure 9. Actual/forecasted wind speeds/powers and errors during the autumn: (a) S(t); (b) P(t). 

(a) (b) 

Figure 10. Actual/forecasted wind speeds/powers and errors during the winter: (a) S(t); (b) P(t). 

(a) (b) 

4. Conclusions 

A novel short-term wind speed and power forecasting method is proposed in this paper. The less 

nonlinear and non-stationary time series (i.e., intrinsic mode functions) can be extracted through the 
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empirical mode decomposition from the highly volatile wind speed and power. These intrinsic mode 

functions and its residue are used to train the back-propagation-based artificial neural networks, which 

serve as a forecaster. Additionally, the concept of residual function is utilized to encompass smooth 

high-order intrinsic mode functions in order to mitigate the number of artificial neural networks. 

Complex neural networks are unnecessary since less nonlinear and non-stationary intrinsic mode 

functions are gained. The individual results are aggregated to achieve the final outcome. A set of 

realistic measurement, including wind speed and power in one year, are used to validate the accuracy 

of the proposed method. Simulation results demonstrate that the proposed method performs better than 

those attained by the conventional neural network, ARIMA and persistence method. 

The historical data may be probabilistic or stochastic forms. Thus, a decision making process 

relying on the forecast may require a probabilistic forecast rather than a deterministic forecast as 

discussed here. The proposed method can be extended by considering the mean values and standard 

deviations as two time series. In addition to the mean-value time series, the EMD is also applied to the 

standard-deviation time series. The numbers of both input and output neurons are doubled. 
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