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Abstract: Although there have been some severe nuclear accidents such as Three Mile 

Island (USA), Chernobyl (Ukraine) and Fukushima (Japan), nuclear fission energy is still a 

source of clean energy that can substitute for fossil fuels in a centralized way and in a great 

amount with commercial availability and economic competitiveness. Since the pressurized 

water reactor (PWR) is the most widely used nuclear fission reactor, its safe, stable and 

efficient operation is meaningful to the current rebirth of the nuclear fission energy 

industry. Power-level regulation is an important technique which can deeply affect the 

operation stability and efficiency of PWRs. Compared with the classical power-level 

controllers, the advanced power-level regulators could strengthen both the closed-loop 

stability and control performance by feeding back the internal state-variables. However, 

not all of the internal state variables of a PWR can be obtained directly by measurements. 

To implement advanced PWR power-level control law, it is necessary to develop a  

state-observer to reconstruct the unmeasurable state-variables. Since a PWR is naturally a 

complex nonlinear system with parameters varying with power-level, fuel burnup, xenon 

isotope production, control rod worth and etc., it is meaningful to design a nonlinear 

observer for the PWR with adaptability to system uncertainties. Due to this and the strong 

learning capability of the multi-layer perceptron (MLP) neural network, an MLP-based 

nonlinear adaptive observer is given for PWRs. Based upon Lyapunov stability theory, it is 

proved theoretically that this newly-built observer can provide bounded and convergent  

state-observation. This observer is then applied to the state-observation of a special PWR, 

i.e., the nuclear heating reactor (NHR), and numerical simulation results not only verify  

its feasibility but also give the relationship between the observation performance and 

observer parameters. 
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1. Introduction 

The growing requirements for electricity and the pollution caused by burning fossil fuels has led to  

a renaissance of nuclear energy industry, even if there have been some severe accidents such as Three 

Mile Island (USA), Chernobyl (Ukraine) and Fukushima (Japan). Since power-level control is a quite 

crucial technique which guarantees operation stability and efficiency for nuclear reactors, developing 

high performance power-level regulators is quite meaningful for the current rebirth of nuclear energy 

industry. Compared with the classical static output feedback power-level control laws, the advanced 

power regulation strategies have the potential of strengthening both the closed-loop stability and 

control performance by feeding back the internal system state-variables. Due to the absence of 

adequate sensors, some state-variables associated with the dynamics of a nuclear reactor are not 

available for measurement. In order to implement the advanced power-level control strategies for 

stronger dynamic performance, some observation structure should be used to reconstruct the  

state-variables that cannot be obtained directly through measurement. In this case, the simpler solution is 

to utilize the linear observers such as the Luenberger observer [1] and Kalman filter [2,3]. However,  

the dynamic behavior of a given nuclear reactor exhibits strong nonlinearity and it depends on many 

factors such as power-level, fuel burnup, etc. The linear observers can only provide satisfactory 

performance in a small neighborhood near an operating point. Thus, if large variations of the system 

state variables are required, especially in the case of load following, the previous option is not effective 

anymore, and nonlinear observers should be developed. Shtessel gave a sliding mode observer to 

construct a dynamic output feedback loop with a static state-feedback sliding mode controller for 

regulating the power-level of space nuclear reactor TOPAZ II [4]. Etchepareborda applied the high 

gain observer to design a nonlinear model predictive power-level control for a pressurized water 

reactor (PWR)-like research reactor [5]. Dong proposed the dissipation-based high gain filter (DHGF) 

for the state-observation of PWRs [6], and then applied the DHGF to build the dynamic output-feedback 

power-level control laws [7,8]. However, the precondition of applying these nonlinear observers is to 

know the accurate lump-parameter dynamic model of a given nuclear reactor. Although some schemes 

have been introduced to strengthen the adaptation performance of nonlinear observers to system 

uncertainties, there are strong constraints on the form of system uncertainties [9]. Therefore, more 

advanced schemes should be given to further improve the adaptability of nonlinear observation. 

Artificial neural networks (ANNs), inspired by biological neural networks, are composed of simple 

processing elements called neurons normally arranged in layers and interconnected to each other by 

some weighted connections. This architecture along with a learning algorithm for adjusting the 

connection weights, exhibits some interesting properties such as learning, approximation and parallel 

distributed processing capability. The radial basis function (RBF) network and multi-layer perceptron 

(MLP) network are two widely utilized ANNs. It has been proven theoretically that both the  

RBF [10,11] and MLP [12–14] networks can approximate a wide range of nonlinear functions to any 

desired degree of accuracy under certain conditions. In recent years, ANNs have also been applied to 
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nuclear engineering, particularly, for reactor control. Ku, Lee and Edwards applied the diagonal recurrent 

neural network (DRNN) to a nuclear reactor model to improve its temperature response, and here the 

DRNNs must be trained offline by a linearized reactor model and a pre-designed optimal temperature 

control [15]. Arab-Alibeik and Setayeshi designed a neural adaptive inverse controller for regulating 

the power-level of a PWR, and here the ANN was also trained offline by a reactor model [16]. From 

the above works in applying ANN in nuclear engineering, it was shown that the identification must be 

sufficiently accurate before control action is initiated. However, in practical control applications, it is 

desirable to have systematic method of ensuring the stability and robustness of the overall system.  

In the past few years, several ANN-based control laws for nonlinear systems have been proposed 

based upon Lyapunov stability theory. One main advantage of these schemes is that the adaptive laws 

were derived based on the Lyapunov synthesis method and thus can provide the closed-loop stability.  

Ge et al. proposed an adaptive state-feedback control law for a large class of nonlinear systems based 

on the RBF network, and the regulating error was proved to converge to a small neighborhood of the 

origin by using Lyapunov stability theory [17]. Moreover, state-feedback control design methods 

based on the MLP network were also studied for nonlinear systems in Brunovksy, pure-feedback and  

lower-triangular forms by using Lyapunov stability theory and techniques of feedback linearization 

and backstepping [18–22]. It is clear that designing a satisfactory state-observer is the precondition of 

implementing advanced state-feedback control laws. Since there usually exist system dynamics 

uncertainties the adaptive observer design method based upon ANNs is another hot topic nowadays. 

Vargas and Hemerly proposed an adaptive observer for unknown general nonlinear systems based 

upon both RBF networks and Lyapunov stability theory, and the adaption laws of the weights provide 

the bounded-error performance [23]. By the use of the adaptive bounding technique, Stepanyan and 

Hovakimyan gave a RBF-based adaptive observer which could provide asymptotically convergent 

state estimation for a class of uncertain nonlinear systems [24]. Very recently, Yang et al. also 

designed a stable RBF-based observer to build a model referenced adaptive controller (MRAC) for an 

electrohydraulic system [25]. Since the MLP network is nonlinear in its parameters and can be applied 

to many systems with arbitrary degrees of nonlinearity and complexity, it has already been used to 

design adaptive observers. Abdollahi et al. gave an MLP-based observer for nonlinear systems by 

Lyapunov direct method, and then applied it to the state-estimation of flexible-joint manipulators [26]. 

Pérez-Cruz and Poznyak gave a stable observer for estimating the precursor power and internal 

reactivity of a nuclear reactor by combining the MLP network and sliding mode technique [27].  

Talebi et al. designed a recurrent neural-network-based state-observer for sensor and actuator fault 

detection of the satellite’s attitude control subsystem [28]. 

Since a nuclear fission reactor is by nature a complex nonlinear system with its parameters varying 

with time as a function of power-level, fuel burnup, xenon isotope production, control rod worth, etc.,  

it is very necessary to design nonlinear observers for nuclear reactors with the adaptability to those 

parameter uncertainties. In this paper, a nonlinear adaptive observer is developed to PWRs by the use 

of MLP network. Based upon Lyapunov stability theory, both the boundness and convergence property 

of the observation error is first proved. Then, this observer is applied to the state-observation of a 

nuclear heating reactor (NHR) which is a special type of PWR with some properties such as natural 

circulation and self-pressurization. Numerical simulation results not only verify the feasibility of this 

newly-built observer but also show the relationship between its parameters and performance. 
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2. Problem Formulation 

2.1. Dynamic Model for Observer Design 

The reactor model for observer design in this paper is the point kinetics with one equivalent delayed 

neutron group and temperature feedback from both the fuel and coolant temperature, which is given as 

follows [6–8,29]: 

dnr

dt
= ρr − β

Λ
nr + β

Λ
cr + nr

Λ
α f Tf − Tf,m( ) + α c Tcav − Tcav,m( ) 

dcr

dt
= λ nr − cr( )

dTf

dt
= − Ω

μf

Tf − Tcav( ) + P0

μf

nr

dTcav

dt
= Ω

μc

Tf − Tcav( ) + 2M

μc

Tcav − Tcin( )
dρr

dt
= Grzr



















  

(1)

where nr is the relative nuclear power, cr is the relative concentration of delayed neutron precursor, β is 

the fraction of delayed neutrons, Λ is the effective prompt neutron lifetime, λ is the decay constant of 

delayed neutron precursor, αf and αc are respectively the temperature reactivity feedback coefficients 

of the fuel and the coolant, Tf is the fuel temperature, Tcav and Tcin are respectively the average and 

inlet coolant temperatures of the reactor core, Tf,m and Tcav,m are respectively the initial equilibrium 

values of Tf and Tcav, Ω is the heat transfer coefficient between fuel and coolant, M is the mass flow 

rate times the heat capacity of the coolant, P0 is the rated thermal power, ρr is the reactivity induced by 

the control rods, μf is the total heat capacity of the fuel elements, μc is the total heat capacity of the 

reactor coolant, Gr is the total reactivity worth of control rods, and zr is the control input, i.e., the speed 

signal of control rods. 

Suppose that nr0, cr0, Tf0, Tcav0, Tcin0 and ρr0 are respectively the steady values of nr, cr, Tf, Tcav, Tcin 

and ρr, which satisfies:  

r0 r0 f0 cav0 cin0 r0 0n c T T T ρ= = = = = =      (2)

Define the deviations between the actual and the steady values of nr, cr, Tf, Tcav, Tcin and ρr as: 

r r r0

r r r0

f f f0

cav cav cav0

cin cin cin0

r r r0

δ

δ

δ

δ

δ =

δ

n n n

c c c

T T T

T T T

T T T

ρ ρ ρ

= −
 = −
 = −
 = −
 −


= −  

(3)

Moreover, let: 

x = δn
r

δc
r

δT
f

δT
cav







T

 (4)

ξ = δρ
r (5)
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and: 

u = G
r
z

r
 (6)

Based on Equations (1) and (2), the nonlinear state-space model for observer design can be written as: 

 (7)

where: 

f x( ) =

− β
Λ

x
1
− x

2( ) +
n

r0
+ x

1

Λ
α

f
x

3
+ α

c
x

4( )
λ x

1
− x

2( )
− Ω

μ
f

x
3

− x
4( ) +

P
0

μ
f

x
1

Ω
μ

c

x
3

− x
4( ) − 2M

μ
c

x
4































 (8)

g x( ) =
n

r0
+ x

1

Λ
0 0 0













T

(9)

 
(10)

and the bounded vector θ ∈ R4 denotes other modeling uncertainty. 

2.2. Approximating System Uncertainty by MLP Network 

The MLP network with one hidden layer can be expressed as: 

( ) ( )T T
MLP =G z W S V z  (11)

where z ∈ Rn is the input vector, both V ∈ Rn×l and W ∈ Rl×n are the first-to-second layer and second-to-third 

layer interconnection matrices respectively, l is the number of neutrons in the hidden layer, and: 

S V Tz( ) = s v
1
Tz( ) s v

2
Tz( )  s v

l
Tz( )





T

 (12)

Here, vector vi (i = 1, …, l) is the ith column of interconnection matrix V, and activation function s 

is chosen as the continuous and differentiable nonlinear sigmoidal function, i.e.,: 

s v( ) = 1

1+ e−v  (13)

It has been proved in [12] that if the node number l of the hidden layer is large enough, then MLP 

network Equation (11) can approximate any continuous function to arbitrary accuracy on a compact 

set, from which we can see that there must exist proper weight matrices W and V such that: 

( )e MLP= −d UG x σ  (14)

and: 
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d
e 2

< ε  (15)

where ε is a bounded positive scalar, U is a given positive definite matrix and vector σ is defined by 

Equation (10). Usually in practical engineering, σ is norm-bounded system uncertainty given by 

Equation (10), and then it is not loss of generality to assume that: 

W
F

≤ w
m
 (16)

and: 

V
F

≤ v
m

 (17)

where, for a matrix A = (aij) ∈ Rm×n, the Frobenius norm 
F
is defined as: 

A
F

= aij
2

j=1

n


i=1

m

 = tr AT A( )  (18)

2.3. Theoretic Problem Formulation 

Usually, δnr and δTcav can be obtained directly from measurement, and the output of system 

Equation (7) can be defined as: 

y = δn
r

δT
cav







T

= x
1

x
4







T

= Cx  (19)

where: 

C = 1 0 0 0
0 0 0 1









  (20)

Choose the state-observer of system Equation (7) as: 

( ) ( ) ( )
( )

O O MNN

O r0 1 1

ˆ ˆˆ ˆ ˆ ˆ

ˆ k n x e uξ

ξ

ξ

 = + + +


= − + +

x f x g x K e UG x

  
(21)

where x̂ ∈R4and ξ̂ ∈R are respectively the estimation of x and ξ, vector-valued functions f and g are 

determined by Equations (8) and (9), respectively: 

e
O

= e
1

e
4







T

= x̂
1
− x

1
x̂

4
− x

4






T

 (22)

( ) ( )T T
MLP

ˆ ˆˆ ˆ=G x W S V x
 (23)

Ŵ and V̂ are weighting matrices of MLP network Ĝ MLP, and both KO and kOξ are observer gains. Then, 

the theoretic problem to be solved in this paper is summarized as follows. 

Problem 1. How to design observer gains KO and kOξ and the learning algorithms of weighting matrices 

Ŵ  and V̂  of Ĝ MLP so that nonlinear adaptive observer Equation (21) is bounded and convergent? 

3. Observer Design 

It is clear that solving Problem 1 is equivalent to giving the tuning approach for both feedback gains 

KO and kOξ and weighting matrices Ŵ  and V̂  of Ĝ MLP. In this section, this tuning approach, which 
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provides bounded and convergent observation, will be given based on Lyapunov stability theory. 

Before giving the main result of this paper, a useful lemma is firstly introduced as follows. 

Lemma 1. The approximation error of Ĝ MLP to GMLP defined by: 

( ) ( )MLP MLP MLP
ˆ ˆδ = −G G x G x  (24)

satisfies: 

( ) ( ) ( )T T T T T T T T
MLP r

ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆδ ′ ′= − = − + +G W S V x W S V x W S S V x W S V x d   (25)

where: 

Ŝ = S V̂ T x̂( ) (26)

   

ˆ ′S = diag ′s v̂
1
T x̂( ) ′s v̂

2
T x̂( )  ′s v̂

l
T x̂( )





T




  (27)

′s v̂
i
T x̂( ) =

ds v( )
dv

v=v̂i
T x̂

i = 1,, l( )
 

(28)

and dr is the residual term. Moreover, dr satisfies: 

d
r 2

≤ c
0

+ c
1

x
2

+ c
2

e
2

+ c
3
W

F
x

2
+ e

2( ) (29)

where ci (i = 0,1,2,3) are certain positive scalars. 

Proof: It is easy to see that the Taylor expansion of S(VTx) about V̂ T x̂  can be written as: 

S V T x( ) = S V̂ T x̂( ) − ˆ′S V̂ T x̂ −V T x( ) + O e
r( ) (30)

where: 

e
r

= V̂ T x̂ −V T x  (31)

and O e
r( )denotes the sum of the high order terms in the Taylor series expansion. Based on Equation (30), 

we can derive that: 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )

T T T T
MLP

T T T T
r

T T T T
r

T T T T
r

ˆ ˆ ˆδ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆˆ ˆ

O

O

= −

 ′= + − − − + 

′= + − − −

′ ′= − + +

G W S V x W S V x

W W S W S S V x V x e

W S W W S V x V x W e

W S S V x W S V x d



 

   

(32)

where: 

d
r

= W T ˆ′S V T x +Ŵ T ˆ′S V Te −W TO e
r( )  (33)

W = Ŵ −W (34)
V = V̂ −V  (35)

and: 

e = x̂ − x  (36)
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Then, we can clearly see from Equation (32) that Equation (25) is well satisfied. 

Moreover, since we have assumed that activation function s takes the form as Equation (13), it is 

clear that: 

Ŝ − S V T x( )
2

≤ l  (37)

and we can also derive that: 

′s v( ) = ds

dv
= e−v

1+ e−v( )2
 (38)

From Equation (38), it is easy to check that for ∀v ∈R : 

0 ≤ ′s v( ) ≤ 0.25 (39)

and: 

v ′s v( ) ≤ 0.2239  (40)

Based on Inequalities (39) and (40), we have: 

ˆ ′S V̂ T x̂
2

≤ v̂
i
T x̂ ′s v̂

i
T x̂( )

i=1

l

 ≤ 0.2239l  (41)

and: 

S
F

≤ ′s v̂
i
T x̂( ) ≤ 0.25l

i=1

l

  (42)

Moreover, from Taylor expansion Equation (30), we can know that: 

O e
r( )

2
≤ ˆ′S V̂ T x̂

2
+ ˆ′S V T x

2
+ Ŝ − S V Tx( )

2

≤ ˆ′S V̂ T x̂
2

+ ˆ′S
F

V
F

x
2

+ Ŝ − S V T x( )
2
 

(43)

Then, based on Assumption (17) and Inequalities (37) and (41)–(43), we have: 

O e
r( )

2
≤ 1.2239l + 0.25v

m
l x

2
 (44)

By Equation (33), it can be seen that: 

( ) ( )

( )
( ) ( )

( )

TT T T T
r r2 22 2

T T
m m m m r2 2 2 2F FF F F

T
m m m m2 2 2 2F

m m m m m2 2 2 2

ˆ ˆ

ˆ ˆ ˆ

1.2239 0.25

1.2239 0.25

O

v v w w O

v l w l w l v l

w l w v l w l v l

′ ′≤ + + +

′ ′ ′≤ + + +

≤ + + + +

≤ + + + +

d W S V x W W S V e W e

W S x W S e S e e

W x e e x

x e x e

 

 

  (45)

By choosing: 
0 m

1 m m

2 m

3 m

1.2239

0.25

c w l

c w v l

c w l

c v l

=
 =
 =
 =  

(46)

We can see that Inequality (29) certainly holds. This completes the proof of Lemma 1. 
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Remark 1. From Lemma 1, the norm of residual term dr is influenced by the norms of systems  

state x, observation error e and approximation error of weighting matrix W . 

The following Theorem 1, which is the main result of this paper, proposes the design of nonlinear 

adaptive state-observer based on the MLP neural network. 

Theorem 1. Consider state observer Equation (21) of PWR dynamics Equation (7), and suppose 

that observer gains kOξ is positive and system state-vector x is bounded. Let observer gain matrix KO 

take the form as: 

KO =
−kON −

α f x̂3 + α c x̂4 + ξ̂
Λ

2λ
P0

μ
f

kOF nr0 + x1( ) −1 
α f P0

α
c
μ

c

kOF nr0 + x1( )

0 0
2Ω
μf

−kOC





















T

 (47)

where observer gains kON, kOF and kOC are all positive. Furthermore, choose the learning algorithms of 

weighting matrices Ŵ  and V̂  of multilayer network Ĝ MNN as: 

( )T T T T
W O δ W

ˆ ˆˆ ˆ ˆˆ δ ′= − − + W Γ S S V x e H N Σ W  (48)

and: 

( )T T T T
V O δ V

ˆˆ ˆ ˆˆ δ′= − +V Γ xe H N ΣW S V  (49)

respectively, where both ΓW and ΓV are diagonal positive-definite matrices, both scalars δW and δV  

are positive: 

 (50)

 (51)

Nδ = δ I + HC( )−1

(52)

δ is a positive scalar and matrix C is defined by Equation (20). Then observation errors e and eξ 

defined by: 

ˆ= −e x x  (53)

and: 

eξ = ξ̂ − ξ  (54)

are convergent and bounded. 

Proof: From Equations (7), (21), (47), (53) and (54), the dynamics of observation error e satisfies: 

( ) ( ) ( )
( )

1 T T T T
e e

O r0 1 1

ˆ ˆ ˆ,e

e k n x e

ξ

ξ ξ

−  = + − −  
= − +

e f e U W S V x W S V x d



ϒ

 
(55)

where: 
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 (56)

   

f
e

e,eξ( ) =

−β e
1
− e

2( ) + n
r0

+ x
1( ) α

f
e

3
+ α

c
e

4
+ eξ( ) − Λk

ON
e

1

β e
1
− e

2( ) − 2βe
2

k
OF

P
0

n
r0

+ x
1( )e

1
− Ω e

3
− e

4( ) − 2Ωe
4

Ω e
3

− e
4( ) − 2Me

4
− μ

c
k

OC
e

4
+

α
c

α
f

k
OF

P
0

n
r0

+ x
1( )e

1



























 
(57)

and approximation error de is defined by Equation (14). 

Moreover, from Equations (19) and (22): 

e
O

= Ce  (58)

from which we have: 

e = Nδ He
O

+ δ e( ) (59)

Choose the Lyapunov function of the observation error dynamics Equation (55) as: 

   
V

e
e,eξ( ) = V

e1
e,eξ( ) + 1

2
tr W TΓ

W
−1 W{ } + 1

2
tr V TΓ

V
−1 V{ }  (60)

where: 

 (61)

Differentiate Ve1 along the trajectory given by Equation (55): 

(62)

where matrix Σ given by Equation (50) is still a diagonal and positive-definite. 

Moreover, from Equation (59), we can derive that: 

( ) ( ) ( )
( )

( )

TT T T T T T T T
O δ

T T T T T T T T T T T T
O δ δ O δ

T T T T
δ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ ˆ

δ

δ

δ

   ′ ′ ′ ′− + = + − +   

′ ′ ′= − + + +

′−

e Σ W S S V x W S Vx He e N Σ W S S V x W S Vx

e H N ΣW S S V x e N ΣW S Vx e H N ΣW S Vx

e N ΣW S S V x

   

  

  

(63)

Further, since: 

 
(64)

and: 
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(65)

from Equation (63), we have: 

( ) ( ) ( )

( ) ( ) { }

{ }
( ){ }

T T T T T T T T T T T T T
O δ O δ 1 2

T
2 T 1 T T T

δ 1 δ

2 T 1 T T T
δ 2 δ

T T T T T T
O δ

1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ
2

1 ˆ ˆ ˆ ˆˆ ˆˆ ˆ tr
2
1 ˆ ˆˆ ˆˆ ˆtr
2

ˆ ˆ ˆ ˆ ˆtr tr

δ

δ

−

−

 ′ ′ ′ ′− + ≤ − + + + + 

′ ′− − +

′ ′

′= − +

e Σ W S S V x W S Vx e H N Σ S S V x e H N ΣW S e Γ Γ e

S S V x ΣN Γ N Σ S S V x WW

x S WΣN Γ N ΣW S x VV

W S S V x e H N Σ V xe

 

 

 

 { }
( ) ( ) { }

{ } ( )

T T T T
O δ

T
2 T 1 T T T

δ 1 δ

2 T 1 T T T T
δ 2 δ 1 2

ˆˆ

1 ˆ ˆ ˆ ˆˆ ˆˆ ˆ tr
2
1 1ˆ ˆˆ ˆˆ ˆtr
2 2

δ

δ

−

−

′ +

′ ′− − +

′ ′ + +

H N ΣW S

S S V x ΣN Γ N Σ S S V x WW

x S WΣN Γ N ΣW S x VV e Γ Γ e

 

   

(66)

Substitute Inequality (66) to Equation (62): 
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(67)

where: 

 (68)

 
(69)

d = d
e

+ d
r (70)

and: 

 (71)

Then, differentiate Ve along the trajectory given by observation error dynamics Equation (55): 

 

(72)

From Inequality (72), if we choose the learning algorithms of the weighting matrices as Equations (48) 

and (49), then it is clear that: 
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where: 
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(75)

υW =
δ W

2
−γ W (76)

and: 

υV =
δ V

2
− γ V  (77)

Here, scalars δW and δV should be chosen so that both υW and υV are positive. 

Based on the assumption about the boundness of system state x and Inequalities (15)–(17) and (29), 

it is clear from Inequality (73) that the observation errors e and eξ are convergent and bounded. This 

completes the proof of Theorem 1. 

Remark 2. The MLP-based nonlinear adaptive observer determined by Equations (21) and (47)–(49) 

does not need any matching condition of system uncertainty σ. However, the existing adaptive 

observers for nuclear reactors such as the observer presented in [9] still needs some matching 

condition on the system uncertainty. This means that the neural observer given in this paper is able to 

deal with general bounded system uncertainties, which is the key advanced feature of this novel neural 

observer design technique. Moreover, from Equations (21), (48) and (49), x̂ , Ŵ  and V̂  are updated 

simultaneously. If the perceptron number of the hidden layer is not large, the simultaneous updating  

of state-estimation x̂  and weighting matrices Ŵ  and V̂  cannot affect the real-time performance of  

the algorithm. 

4. Simulation Results with Discussions 

To verify the feasibility of this newly-built neural observer, it is applied to the state-observation of a 

NHR which is a small PWR developed by Institute of Nuclear and New Energy Technology (INET) at 

Tsinghua University in this section. The NHR has many advanced safety features such as integrated 

arrangement, natural circulation at any power-levels, self-pressurization, hydraulic control rod driving, 

and passive residual heat removing [30–32], and it can be applied to the fields such as district heating, 

seawater desalination and electricity production. The structure of the NHR is illustrated in Figure 1. 

Since NHR dynamics has both strong nonlinearity and high uncertainty, in order to implement 
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advanced power-level controllers for higher operation performance, it is very meaningful to realize the 

adaptive state-observation for the NHR. 

Figure 1. Structure and cross section of the NHR: (1) Primary heating exchanger; (2) Riser;  

(3) Biological shield; (4) Containment; (5) Pressure vessel; (6) Core; (7) Fuel elements and 

(8) Control rods. 

4.1. Description of the Numerical Simulation 

The simulation model of the NHR is composed of the point kinetics model with six delayed neutron 

groups and lumped dynamic model of the reactor thermal-hydraulics, primary heat exchanger, U-tube 

steam generator (UTSG), feedwater pump of the UTSG and necessary pipe or volume cells [33].  

The parameters of the NHR at the middle of the fuel cycle in 100% power-level are shown in Table 1. 

The output-feedback-dissipation power-level control strategy given in [34] is adopted here. Moreover,  

in this simulation, we choose l = 4, kON = kOC = 0.0001, kOF = 10.0, kOξ = 1.0: 

δ
w

= δ
v

= δ
wv  (78)

U = diag 0.1 0.1 r
p

r
p







T



  (79)

where both δwv and rp are given positive scalars. The initial values of interconnection matrices Ŵ  and 

V̂ , i.e., 0Ŵ  and 0̂V  are set to be 0
ˆ =W O  and 0̂ =V O , respectively. 
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Table 1. NHR Parameters at the Middle of the Fuel Cycle in 100% Power-Level. 

Symbol Quantity Symbol Quantity 

β 0.0069 αf −2.48 × 10−5 (1/°C) 
Λ 4.18 × 10−5 (s) αc −2.71 × 10−4 (1/°C) 
λ 0.08 (1/s) M 4.29 (kW/°C) 
μf 5.01 (MWs/°C) Ω 1.06 (MW/°C) 
μc 69.23 (MWs/°C) P0 200 (MW) 

Case A (large load increase): The load signal changes linearly from 20% to 100% in a minute. 

1. δwv = 0.01, and different rp is adopted in the simulation. 

2. rp = 1.0, and different δwv is adopted. 

Case B (large load decrease): The power demand decreases linearly from 100% to 20% in a minute. 

1. δwv = 0.01, and different rp is adopted in the simulation. 

2. rp = 1.0, and different δwv is adopted. 

4.2. Simulation Results 

In this numerical simulation, the following two case studies are done to show the state-observing 

performance of MNN-based nonlinear adaptive observer determined by Equations (21) and (47)–(49). 

4.2.1. Large Load Increase 

This verification represents a hard operation for the NHR. In this case, the power demand increases 

linearly from 20% to 100% in 60 s. 

The observation errors of variations of the relative nuclear power, the relative precursor 

concentration, and the average temperatures of the fuel and coolant, i.e., the observation errors of  

state-variables δnr, δcr, δTf and δTcav with constant δwv and different rp are all illustrated in Figure 2. 

Furthermore, the observation errors of these state-variables with different δwv and constant rp are 

shown in Figure 3. 

Figure 2. Observation errors of (a) δnr; (b) δcr; (c) δTf and (d) δTcav in case of A1. 
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Figure 3. Observation errors of (a) δnr; (b) δcr; (c) δTf and (d) δTcav in case of A2. 
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4.2.2. Large Load Decrease 

This case also represents a stressed operation for the NHR. The load signal changes linearly from 

100% to 20% in a minute. The observation errors of state-variables δnr, δcr, δTf and δTcav with constant 

δwv and different rp are all shown in Figure 4, and the responses of these observation errors with 

different δwv and constant rp are given in Figure 5. 



Energies 2013, 6 5397 

 

 

Figure 4. Observation errors of (a) δnr; (b) δcr; (c) δTf and (d) δTcav in case of B1. 
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Figure 5. Observation errors of (a) δnr; (b) δcr; (c) δTf and (d) δTcav in case of B2. 
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4.3. Discussion 

In the procedure of load lift, the load increases rapidly from 20% to 100% in 60 s. Since the actual 

power level cannot vary so quickly, δnr becomes smaller, which indicates that the actual power level of 

the NHR is smaller than the load set by the operator in the initial phase of the process. Due to the 

function of power level controller, δnr becomes larger and larger, and finally equals zero. The 

difference of the power level causes the variations of the precursor concentration and average 

temperatures of the fuel and coolant inside the reactor core. Similarly, in the case of a load decrease 

from 100% to 20% in a minute, the actual power level also cannot change so fast, and therefore δnr 

become larger, which indicates that the actual power level of the NHR is higher than the load in the 

initial stage. Then the power-level becomes lower and lower due to the function of power controller, 

and finally reaches the full power-level. 

From Figures 2–5, the MLP-based state-observer developed in this paper can provide bounded and 

convergent state-observations. The load variation leads to the variation of the state variables, which 

causes the variation of system output. The variation of system output then drives both the observer and 

learning algorithms of the MLP connection weights to generate a convergent state-observation. It is 

also clear from these figures that the variation of observer parameters cannot change the boundness 

and convergence of the state-observation. Further, from Figures 2 and 4, if positive scalar rp is larger, 

then the observation performance is higher. Actually, from Equation (79), scalar rp is larger,  

the influence of eO to the weighting connections that correspond to the state-observation of the 

thermal-hydraulic loop is stronger, which leads to higher observation performance of δTcav. From both 

Equations (55) and (57), since e4, i.e., the observation error of δTcav can affect the state-observation of 

neutron kinetics, higher observation performance of δTcav is positive to improve the observation quality 

of neutron kinetics. Moreover, from Figures 3 and 5, it is easy to see that if positive scalar δwv is larger, 

the observation performance of δTcav is worse. However, there is a little improvement to  

the observation performance of δcr and δTf. Based upon the above discussion, MLP-based nonlinear 

state-observer composed of Equations (21), (47)–(49) provides both bounded and convergent 

observation of system state-variables, and the parameters of this observer should be properly adjusted. 

From the curves plotted in Figures 2–5, both the overshoots and settling periods of the estimation 

errors of unmeasurable state δcr and δTf can be reduced to acceptable limits with properly selected 

scalars rp and δwv, which leads to practical feasibility of this newly-built observer. Usually, rp should 

be larger, and δwv should be selected based upon the trade-off between the observation performance of 

δTcav and that of δcr and δTf. Moreover, with comparison to the sliding mode observer [4], high gain 

observer [5] and DHGF [6], the main virtue of MLP-based nonlinear observer proposed in this paper is 

its high adaptation capability to system uncertainties. That is to say that this new observer has the 

adaptation performance that other observers for nuclear reactors do not have. 

Finally, due to the widely utilization of those advanced digital control system platforms, there is no 

difficulty in realizing the MLP-based observer presented in this paper. Furthermore, since there have 

been some mature MLP network programs, it is easy for the engineers to implement both observer 

Equation (21) and learning Algorithms (48) and (49) as a software running on a digital platform. 
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5. Conclusions 

Power-level control is an important technique that guarantees the operation stability and efficiency 

of the pressurized water reactor which is the most widely utilized nuclear fission reactor. Compared 

with classical static output feedback power-level control, advanced power-level regulators have the 

potential of improving closed-loop stability and dynamic performance by feeding back the internal 

state-variables. However, since not all of these internal states can be measured directly, it is necessary 

to develop state-observers to reconstruct those unmeasurable state-variables for the implementation of 

the advanced power-level controllers. It is well known that each PWR is naturally a complex nonlinear 

dynamic system with parameters varying with the power-level, fuel burnup, xenon isotope production, 

control rod worth, etc., which leads to the necessity of designing a nonlinear observer for the PWR  

with adaptability to the system uncertainties. Motivated by this, an MLP-based nonlinear adaptive 

observer is proposed for the PWR. Based upon Lyapunov stability theory, it is proved theoretically 

that this new observer can provide bounded and convergent state-observation. Numerical simulation 

results not only verify its feasibility, but also show the relationship between observation performance 

and tuning parameters. 
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