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Abstract: When evaluating residential energy systems like co-generation systems, hot 

water and electricity demand profiles are critical. In this paper, the authors aim to extract 

basic time-series demand patterns from two kinds of measured demand (electricity and 

domestic hot water), and also aim to reveal effective demand patterns for primary  

energy saving. Time-series demand data are categorized with a hierarchical clustering  

method using a statistical pseudo-distance, which is represented by the generalized  

Kullback-Leibler divergence of two Gaussian mixture distributions. The classified demand 

patterns are built using hierarchical clustering and then a comparison is made between the 

optimal operation of a polymer electrolyte membrane fuel cell co-generation system and 

the operation of a reference system (a conventional combination of a condensing gas boiler 

and electricity purchased from the grid) using the appropriately built demand profiles. Our 

results show that basic demand patterns are extracted by the proposed method, and the 

heat-to-power ratio of demand, the amount of daily demand, and demand patterns affect 

the primary energy saving of the co-generation system. 

Keywords: co-generation; demand pattern; Gaussian mixture model; hierarchical 

clustering; KL-divergence; optimal operation 
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Nomenclature: 

 specific heat of water 

 conversion factor 

 distance measure 

 distance matrix 

,  electricity 

,  a probability density function 

,  Gaussian probability density 

function 

,  gas consumption 

 heating value 

 primary energy consumption, 

MJ/day 

 discretized index 

 number of discrete value 

, , ,  Gaussian mixture distribution 

 amount of heat 

Q DHW demand 

 heat-to-power ratio 

 discretized time index 

 number of time index 

 vector of continuous variables 

 tank capacity 

 vector of binary variables 

Greek Symbols 

 slope 

 intercept 

 contribution ratio, % 

 sampling period, hour 

 efficiency, % 

 temperature, °C 

 unknown parameters 

 mean vector 

 mixing coefficient 

 water density 

 covariance matrix 

φ primary energy reduction ratio, % 

Subscripts and Superscripts 

a,b component index of the 

Gaussian mixture distribution 

AUXS auxiliary 

B boiler 

buy buying 

C controller 

day daytime 

dem demand 

ELE non-HVAC electricity demand 

e electricity 

, , ,  a probability density function 

P1,P2,P3 pump 

FC fuel cell 

g Gaussian distribution 

gas gas 

gen generalized 

gm Gaussian mixture distribution 

H electric heater 

HW hot water demand 

HWT thermal storage tank 

 start-up term 

in inlet 

KL KL divergence 

night nighttime 

out outlet 

q thermal 

rate1, rate2 piecewise-linear term 

R radiator fan 

RS reference system 

symm symmetrized 

up start-up 

W water 

X each device 
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1. Introduction 

A variety of water heaters are commercially available in Japan. Condensing gas boilers and heat 

pump water heaters, which operate with CO2 as a working fluid, and co-generation systems (CGS), 

which have polymer electrolyte fuel cells, are available. Residential energy consumption has been 

increasing slowly but surely in Japan [1], and accounted for 63.3% of all residential energy 

consumption from domestic hot water (DHW) and electricity (excluding heating, ventilation and air 

conditioning (HVAC)) demands in 2001 [2]. Energy consumption in Japan for cooling accounts for 

only 2.4% of annual demand per household [2]. On the other hand, energy consumption for heating 

accounts for 29.3% of annual demand [2]. Residential energy demand varies widely in terms of  

time-series behaviors, amounts consumed between households, and even within one household. 

Residential energy demand profiles have a high degree of uncertainty in their essentials because of the 

occupant-driven load. When evaluating residential energy systems, demand profiles are critical. In 

order to reduce the primary energy consumption when introducing an energy supply system, we need 

rational energy system selection guidelines and rational operation strategies that consider a variety of 

demand profiles. Hence, it is important to clarify the matches between the characteristics of energy 

systems and the characteristics of demand profiles. 

Co-generation systems with energy buffers have a lot of operational flexibility, therefore, it is 

difficult to judge the best operation for the energy saving. Mathematical programming is useful to 

know their optimal operation strategies for the energy saving. The optimal operational planning for a 

gas engine co-generation system with thermal storage was proposed by many researchers, such as 

Yokoyama et al. [3] using a Mixed Integer Linear Programming (MILP) method. Wakui et al. [4] 

compared optimal operations of heat-led and power-led using this method for a solid oxide fuel cell 

co-generation system. Basically, this study adapts those frameworks for leading optimal operations of 

a co-generation system. Hashimoto et al. [5] carried out a comparative evaluation on both a CO2  

heat-pump system and two kinds of polymer electrolyte membrane fuel cell co-generation systems 

(PEFC-CGS). At that time, because there were no commercial PEFC-CGSs, they estimated the model 

parameters with assumptions based on an ideal physics model, and these systems operated on the basis 

of twelve demand patterns of monthly representative days, unlike our study using the data of an 

available CGS. A number of researchers have addressed the problems, which are represented with 

mathematical models of co-generation systems using a lot of measured demand data; for example, an 

early study developed simulation models of residential-scale co-generation from prototypes, and 

revealed their energy saving potential in Annex 42 of the International Energy Agency [6]. In another 

early study, the above methodology framework was applied to an evaluation of condensing gas boiler 

and heat pump technologies with various loads [7]. 

In our previous study [8], the daily optimal operations of the PEFC-CGS and the CO2 heat-pump 

system were analyzed using data from systems in operation and from measured demand. It showed that 

primary energy consumption is reduced when an energy system is introduced with characteristics 

matching the characteristics of the demand profiles. Thus, one of the selection criteria when 

introducing an energy system is the amount and the heat-to-power ratio of daily demand. The primary 

energy consumption of the PEFC-CGS shows large differences in spite of the similarity in the amount 

of daily demand and the similarity of the heat-to-power ratio of non-HVAC electricity and DHW 
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demand. We guess that other factors affect the primary energy consumption of each system. Here we 

hypothesize that demand patterns have an effect on the primary energy consumption. We can not find 

the study, which reveal the effect of time-series demand patterns for the operation of the CGSs, 

therefore, make an analysis of the demand patterns. In this paper, main objectives are: 

1. To extract basic time-series demand patterns from the data of a system in operation and 

26307 days of data for two kinds of demand (non-HVAC electricity and DHW), and 

2. To reveal effective demand patterns for the primary energy reduction of the PEFC-CGS.  

Figure 1 shows the analysis framework of this paper.  

Figure 1. Analysis framework. 

 

Demand time-series data are categorized by means of a kind of "unsupervised" learning [9], which 

is a hierarchical clustering method using a statistical pseudo-distance. The statistical pseudo-distance is 

represented by the generalized Kullback-Leibler (KL) divergence [10] of two Gaussian Mixture 

Distributions (GMDs) fitted to the time-series demand data. The unsupervised learning method for 

electricity consumption was proposed by Shen et al. [11]; This paper extend the scope of its 

application not only for electricity but also for a combination of electricity and DHW demand in order 

to evaluate the co-generation system. A previous report [12] did clustering analysis directly using the 

energy consumption data, unlike our approach using model-based clustering. Clustering analysis, 

which is listed in detail, has been reported by Liao [13]. Our classified clusters are evaluated by the 

optimal operation of the PEFC-CGS. The main consideration is the relationship between the clustered 

time-series demand data and the primary energy consumption of one PEFC-CGS. The PEFC-CGS is 

compared to a reference system (R-S): a combination of a condensing gas boiler and electricity 
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purchased from the grid, because the PEFC-CGS competes with the R-S when installing appliances for 

a new house. 

This paper evaluates the energy saving potential of the PEFC-CGS, by using model of a state-of-art, 

available performance data, and the relationship with demand patterns using clustering techniques on a 

combination of electricity and DHW demand. 

2. Hot Water and Non-HVAC Electricity Demand 

Figure 2 shows demand maps measured in 40 households in detached houses and 32 households in 

residential apartment buildings. The energy consumption data is for a total of 26,307 days, which 

include days of leap years, and were measured by Tsuji et al. [14] in Kinki region around Osaka with a 

sampling interval of 30 minutes. The data was decomposed to specified usages. The usages represent 

electricity and gas consumption, for space cooling, space heating, cooking, hot water, and other, 

respectively [14]. Those were multiplied the equipment efficiencies by applications, and were 

reclassified to five different kinds of demand: space cooling, space heating, cooking, DHW, and  

non-HVAC electricity. The numbers of occupants are between three and six. The Kinki region is 

located near the left-of-center of the main island in Japan, therefore, it seems to represent average 

houses in Japan. As shown in Figure 2a, the annual non-HVAC electricity demand is 15.49 GJ/year 

(about 11.79 kWh/day), and the annual DHW demand is 13.05 GJ/year (about 9.93 kWh/day), on 

average, for the 72 households.  

Figure 2. Measured demand. (a) annual; (b) daily. 

 

As shown in Figure 2(b), the modal value of the daily non-HVAC electricity demand, , is around  

8 kWh/day, and the modal value of daily DHW demand, , is around 4 kWh/day. Daily demand varies 

widely with DHW demand reaching over 60 kWh/day in some cases, which is 15 times the modal 

value. The PEFC-CGS, which is discussed later in Section 4, has a thermal storage tank, which has 

about 10 kWh capacity. Thermal-load leveling by the thermal storage tank seems to have the effect for 

only few days at the most, because daily averaged DHW demand is the same level of the capacity of 

the thermal storage tank. Since the operational strategy might be implemented in co-generation 

systems on a daily time scale, time-series data should be analyzed on the same scale. In order to reveal 
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the energy saving potential of the solely PEFC-CGS, this paper targets non-HVAC electricity and 

DHW demand, and uses only time-series demand data of all 72 households for the extraction of 

demand patterns. Demographic data is not used so that it could be focus on the effect of demand 

patterns. When revealing the energy saving potential in each household, this paper represents a method 

to evaluate the collection of one-day demand patterns as the characteristics of a household. 

As shown in Figure 2(b), measured demand data are separated from the daily heat-to-power 

ratio,  , and DHW demand,  , by red lines. For descriptive purposes as shown in Table 1, the 

26,307 days are divided into six sets of groups, defined by each zone of heat-to-power ratio, . The 

measured demand data are separated based on information obtained from our earlier study [8]: the fuel 

cell unit is inefficient when underused; the PEFC-CGS increases primary energy consumption 

compared with the R-S in the zone under  = 6 kWh/day. We do a clustering analysis for each group. 

Table 1. Demand groups. 

Group name Number of elements, days DHW demand , kWh/day Heat-to-power ratio  

A 9807  6.0 --- 
B 971 6.0   0.5 
C 6958 6.0  0.5  1.0 
D 4920 6.0  1.0  1.5 
E 1926 6.0  1.5  2.0 
F 1725 6.0  2.0 ∞ 

3. Clustering Model 

Time-series demand data are categorized by a hierarchical clustering method using a statistical 

pseudo-distance. A statistical pseudo-distance is the distance between two points in a pseudo-metric, 

which is defined by the identity of indiscernibles, symmetry and triangle inequality. The statistical 

pseudo-distance is calculated from the generalized KL divergence with the GMD fitted to the  

time-series demand data. Actually, this process fits the GMD to some peaks of the daily non-HVAC 

electricity and DHW demands. The GMD is represented by three parameters: the mean, the 

covariance, and the coefficient in the linear combination. 48-dimensional vectors, which are 48 terms 

accumulated every 30 minutes through a day, are translated to vectors with up to 12 dimensions. The 

time-series demand data are categorized by the hierarchical clustering method using the distance, 

which is calculated with information per day represented by vectors with up to 12 dimensions. The KL 

divergence, which represents the dissimilarity measure between two distributions, is often used for 

cluster analyses. The Bregman divergence [15] is a pseudo-distance for measuring the discrepancy 

between two functions. The generalized KL divergence is extended by the framework of the Bregman 

divergence, and can handle distributions and others. In this paper, the generalized KL divergence 

between two biased distributions, which represents the dissimilarity measure of the histogram of daily 

time-series demand data, is used as the pseudo-distance of the clustering. Readers are referred to  

Shen et al. [11] for details. 
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3.1. Gaussian Mixture Model 

For a -dimensional vector , … ,  of continuous variables, the Gaussian distribution 

(GD) is defined by 

| ,
1

2

1

| |
exp

1
2

 
(1)  

where  is a -dimensional mean vector, and  is a  covariance matrix. A superposition of  

Gaussian densities of the form: 

| Σ | ,  (2)  

is called a mixture of Gaussians. The  parameters are called mixing coefficients. If we integrate both 

sides of Equation (2) with respect to , and note that both  and the individual Gaussian 

components are normalized, we obtain: 

Σ 1 (3)  

The form of the GMD is governed by the parameters , … , , , … , ,
, … , . Here, the unknown parameters  are defined by:  

, ,  (4)  

The unknown parameters  in the GMD are determined by maximizing the likelihood function. The 

maximum likelihood solution for the parameters does not have a closed-form analytical solution. 

Using the Expectation-Maximization (EM) algorithm [16], to estimate the parameters of the Gaussian 

mixture model. The EM algorithm is a method of approximating inference.  

We utilized the Mclust function [17] with mclust packages in R language, which is an open source 

programming language and software environment for statistical computing. The numbers of the 

Gaussian mixture elements are chosen by the Bayesian Information Criterion (BIC) [18] from one to 

four. In other words, the GMD fits the demand patterns, which might have up to four peaks in a day, at 

morning, noon, evening and midnight. In this process, 48-dimensional daily demand vectors are 

represented by a maximum of 3 4 12-dimensional vectors of the GMD, because the GMD is 

represented the three parameters, namely the mean, the covariance, and the coefficient in the  

linear combination.  

Figure 3 shows a sample fitting of the Gaussian mixture model for time-series demand data. In 

Figure 3(a), the bar charts represent the hot water demand of a sample day, and the solid curves 

represent the Gaussian mixture density. There are three major peaks and one minor peak, 

corresponding to the four GDs. Similarly, as shown in Figure 3(b), the non-HVAC electricity demand 

of this sample day has four peaks. 
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Figure 3. A sample fitting of the Gaussian mixture model. (a) Hot water demand;  

(b) electricity demand. 

 

3.2. Kullback-Leibler Divergence 

Statistical pseudo-distances between all days are represented by the KL divergence, which is known 

as the “relative entropy”. The KL divergence between two probability density functions,  and 

, is given by: 

KL , ln  (5)  

The KL divergence between T-dimensional GDs  and  is given by: 

,
1
2

log Tr   (6)  

The KL divergence between two mixtures of Gaussian |  and |  is approximated by: 

, Σ log
Σ exp ,

Σ exp ,
 (7)  

where Gaussian, , is the  component of the GMD | . Specifically, in this context,  

represents the measured demand of a day, |  represents the characteristics of one day of the 

waveform regarding time-series demand data as a histogram, and  represents the characteristics 

of a peak fitted to the GD.  represents the characteristic of the wave form of the other day. Up to 

this point, we have considered the KL divergence as the difference between the shapes of the 

histograms of the daily time-series demand data. In this paper, it is important to consider both the daily 

total demand and the time-series behaviors, because the balance of electricity and heat demand is 

critical for CGS performance. Here, we consider a biased GMD,  for one day and  for the 
other day, which are multiplied by the daily total non-HVAC electricity demand, ,  kWh/day. The 

KL divergence of non-HVAC electricity demand is explained in the following context: 
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1000
 (8) 

1000
 (9)  

For calculating the KL divergence from the biased GMD, (8), the generalized KL divergence, , 

which is extended by the framework of the Bregman divergence, is given by:  

, log    

1000
,

1000
log

1000 1000
 

(10) 

The KL divergence is not a symmetrical quantity, that is to say , , . In order 

to use the KL divergence for a distance measure in cluster analysis, we adopt the symmetrized KL 
divergence, ELE , given by: 

ELE ,
, ,

2
 (11) 

The distance matrix, ELE , for the clustering is composed of the symmetrized KL divergences. 

The symmetrized KL divergence for DHW demand HW , and the distance matrix HW  are also 

calculated in the same manner. 

3.3. Hierarchical Clustering 

The hierarchical clustering analysis uses a distance matrix, , with the KL divergence of both  

non-HVAC electricity and DHW demands as the distance measure between clusters from Ward’s 
method [19]. Because both distance matrices, ELE  and HW , are calculated independently to this 

point, they are normalized by dividing by the median of each ELE  and HW  in order to compute 

the sum of the two distance matrices. The distance matrix, , which sums the two kinds of 

symmetrized KL divergence, is given by:  

ELE

Median ELE

HW

Median HW  (12) 

where “Median” represents the median of the matrix. Demand is classified into 16 clusters for each 

group using the hierarchical clustering method. The reason for 16 clusters is because we assume DHW 

demand patterns vary widely while non-HVAC electricity demand patterns do not. In other words,  

24 = 16 clusters represent the combination of the four existing or non-existing DHW demand peaks, 

which are morning, noon, evening and midnight. 
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4. Polymer Electrolyte Membrane Fuel Cell Co-Generation System Model 

The clusters, which are classified in the previous section, are evaluated relative to the optimal 

operation of the PEFC-CGS. Again, the main consideration is the relationship between the clustered 

time-series demand data and the primary energy consumption of the PEFC-CGS. The PEFC-CGS is 

compared to the R-S. Schematic diagrams with the specifications [8] of the PEFC-CGS, and the R-S 

are shown below. The parameters in the model are taken from public information [20]. This problem is 

formulated as a MILP problem. The models were coded by the algebraic modeling language AMPL 

version 12.1 [21] as the conventional MILP, and were solved by the general optimization solver 

CPLEX version 12.1 [22]. 

4.1. Objective Function 

The objective function to be minimized is the daily primary energy consumption calculated from 

the summation of purchased electricity, , and gas consumption, , multiplied by each primary 

energy conversion factor. In particular, the primary energy consumption of purchased gas is converted 
using the higher heating value of , 45 MJ/m3 [23]. The primary energy conversion factors of 

electricity mean all of the conversion efficiencies from power plants to end users. In other words, they 

include transmission losses, the efficiency of power plants and so on. The primary energy conversion 
factor of purchased electricity in the daytime is , 9.97 MJ/kWh [24], and the primary energy 

conversion factor of purchased electricity in the nighttime is , 9.28 MJ/kWh [24]. The objective 

function , which is the daily operating cost from the viewpoint of the primary energy consumption, is 

given by: 

Σ  (13) 

where 1, … ,  represents the time index.  is the number of time periods. The sampling period, , 

is 0.5 hours. One day is discretized to 48 terms. We stack the optimal solutions and operations for 

each day to evaluate the characteristics of the PEFC-CGS.  

4.2. Constraints 

The X kinds of -dimensional continuous non-negative decision variables vectors, electricity 

consumption X X 1 , … , X , gas consumption X X 1 , … , X , and amount of 

heat X X 1 , … , X  represent the energy flows; the X kinds of -dimensional vectors 
X X 1 , … , X  of binary 0–1 decision variables represent the on-off status of each device in 

each term. The superscript X represents the index of each component in the PEFC-CGS. This MILP 

problem frames 1728 variables (28 kinds of linear variables × 48 terms + 8 kinds binary variables × 48 

terms) and 2021 constraints. In order to check inner states and energy flows, we add some variables for 

the problem, which is composed the requisite minimum number of variables, therefore the problem has 

some redundant variables. As shown in Figure 4, the PEFC-CGS consists of four main parts: the 

polymer electrolyte membrane fuel cell (PEFC) unit, the thermal storage tank with a capacity HWT of 

200 liters, in which perfect mixing hot water inside, the auxiliary boiler with an 83% conversion 
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efficiency B  (based on lower heating value of the fuel: LHV), and the electric heater (H) with a 95% 

conversion efficiency H  to hot water. Electricity demand is supplied from the grid and the PEFC unit. 

Because reverse flow of electricity from a CGS to the grid is not allowed in Japan, the surplus 

electricity produced by the CGS is supplied to the electric heater to prevent this. The rated hot water 

output of the PEFC unit is 1.0 kW (100% load). The DHW demand is supplied from the auxiliary 

boiler, in case the PEFC unit and the thermal storage tank cannot meet demand.  

Figure 4. PEFC-CGS. 

 

The relationship between the output of the PEFC unit and gas consumption is identified as a 

piecewise-linear function based on the measured data, as shown in Figure 5. Table 2 shows the partial 

load efficiency of the PEFC unit; the rated efficiency is the catalog value [20]. The rated electricity 

output is 0.7 kW. At the rated load, the total system efficiency is 50.0 + 35.0 = 85.0%, and the  

heat-to-power ratio at the rated output is 50.0/35.0 = 1.43. The minimum electricity output is 0.25 kW 

(35.7% load), and the heat-to-power ratio of the output is 30.0/30.0 = 1.0.  

Table 2. Partial load performance of PEFC unit. 

Load factor % 35.7 71.4 100 

Electricity power output kW 0.25 0.50 0.70 
Electricity power efficiency (LHV) % 30.0 34.0 35.0 

Thermal efficiency (LHV) % 30.0 45.0 50.0 

Figure 5. Partial load characteristics of PEFC unit. 
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Table 3 shows the specifications of devices except the PEFC unit. The gas consumption of the 

PEFC unit FC has the following constraints: 

FC FC FC FC FC  (14) 

FC FC FC FC FC  (15) 

FC FC FC  
(16) 

FC FC FC  
(17) 

FC 1: electricity output of the PEFC unit is between 0.25 and 0.50 kW in  term
0: otherwise

 
(18) 

FC 1: electricity output of the PEFC unit is between 0.50 and 0.70 kW in  term
0: otherwise

 
(19) 

where FC  represents start-up status of the PEFC-CGS, FC and 
FC

 represent the lower and upper 

limit of the gas consumption in each rate. Therefore, electricity output FC and hot water output FC 

are given by: 

FC FC FC FC FC  (20) 

FC FC FC FC FC  
(21) 

where ,  , , and  represent the slope and intercept of electricity and hot water output in each 

rate, respectively.  

Table 3. PEFC-CGS specifications. 

Specification  Value 

Auxiliary boiler efficiency % B  83.0 

Controller electricity consumption W C 10.0 

Coefficient of thermal loss %/h HWT 1.3 

Electric heater efficiency % H 95.0 

Electricity consumption of pump for cyclic water W P  10.0 

Electricity consumption of pump for heat circulation W P  50.0 

Electricity consumption of pump for hot water W P  70.0 

Electricity consumption of radiator fan W R 15.0 

Electricity consumption of start-up in first term Wh/30min ,
FC  300.0 

Electricity consumption of start-up in second term Wh/30min ,
FC  200.0 

Gas consumption of start-up in first term Nm3/30min ,
FC  0.016 

Gas consumption of start-up in second term Nm3/30min ,
FC  0.024 

Hot water outlet temperature from the PEFC unit °C FC 60.0 

Minimum ratio of thermal storage tank %  10.0 

Thermal storage tank capacity L HWT 200.0 
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Hot water is stored by the thermal storage tank: 

HWT 1 1
HWT

100
HWT HWT HWT

HWT 1
HWT

100
HWT 1 HWT 1 HWT 1  

 
for 1

 
for otherwise

 (22) 

where HWT represents the amount of heat in the thermal storage tank, HWT represents the amount of 

heat supplied for demand from the thermal storage tank, HWT represents the amount of heat supplied 

for the thermal storage. The maximum amount of heat of the thermal storage tank is given by: 
HWT HWT FC W  (23) 

where  represents water density,  represents specific heat of water, FC represents hot water outlet 

temperature from the PEFC unit. W represents feed-water temperature, and is measured data in each 

term. In case of oversupplying hot water, the radiator fan promote heat loss . The status of the 

radiator fan, R, has the following constraints: 

R
R

HWT

HWT FC W  (24) 

where  represents a large number, which is so-called “Big-M”. Therefore, energy balance around the 

thermal storage tank is given by: 
FC H HWT R  (25) 

H
H

100
H  (26) 

where H  and H  represent the amount of heat and electricity consumption of the electric heater, 

respectively. The amount of heat B , which is supplied from the auxiliary boiler to demand, is given by: 

B
B

100
B  (27) 

where  represents the LHV of the fuel, and B  represents the gas consumption of the auxiliary boiler. 

Therefore, hot water demand  in each term is satisfied with following equation: 

HWT B  (28) 

When starting up, the PEFC-CGS has the following three warming-up requirements: 60 minutes,  

0.5 kWh of electricity, and 0.04 Nm3 of gas consumption. The start-up formulations are shown below: 
FC FC 1 ,

FC 1  (29) 

,
FC 1 ,

FC

(30) 

where ,
FC  is the first start-up term, and ,

FC  is the second start-up term. Gas consumption for  

start-up, FC, and electricity consumption for start-up, FC, are defined by:  
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FC
,

FC
,

FC  (31) 

FC
,

FC
,

FC

(32) 

where 1,2  represents the start-up term. 

The electricity demand  for each term as well as gas consumption balance are satisfied with 

following equation: 

FC H FC AUXS  (33) 

FC B FC  
(34) 

where AUXS represents the electricity consumption of the auxiliary machines, in particular:  

AUXS C P FC P B P HW R R  (35) 

B
B (36) 

HW 1: there is DHW demand in term
0: otherwise

 
(37) 

where B represents the on-off status of the auxiliary boiler. 

4.3. Reference System (R-S) 

Figure 6 shows the reference system: a condensing gas boiler, which has a 92% conversion 

efficiency (LHV), with electricity from the grid. DHW demand is supplied from the boiler on a  

just-in-time basis. Electricity demand is supplied from the grid only. Electricity consumption for the 

controller is 5 W, and for pump, 70 W. The best operation can be easily identified because the R-S has 

no energy buffers. 

Figure 6. R-S. 

 

5. Numerical Results 

5.1. Optimal Operation 

An index, , representing the primary energy reduction ratio is introduced: 

RS FC

RS
100 (38) 
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where RS represents the primary energy consumption of the R-S. Figure 7 shows the distribution of 

the daily primary energy reduction ratio. The average of all 26307 days of the primary energy 

reduction ratio is 5.64%, and the annual primary energy reduction ratios of each household, which are 

shown in Figure 7(a), are between −0.33% and 12.08%. It was found that an increase in annual 

demand is associated with a reduction in annual primary energy use. 

Figure 7. Distribution of primary energy reduction ratio in optimal operation. (a) annual; 

(b) daily; (c) DHW demand vs. daily primary reduction ratio with contribution ratio;  

(d) frequency of primary energy reduction ratio. 

 

The daily primary energy reduction ratios, which are shown in Figure 7(b), are between −11.71% 

and 20.34%. Reddish points, which indicate good performance with the PEFC-CGS, are scattered 

around an electricity demand of 15 kWh/day and a DHW demand of 20 kWh/day. It is found that, 

from the viewpoint of daily demand, the PEFC-CGS performs well around the rated output through a 

day; the electricity output is 16.8 kWh/day ( 0.7 kW 24 hour ), and the thermal output is  

24 kWh/day ( 1.0 kW 24 hour). From Figure 7(c), it can be seen that there is a peak in the primary 

energy reduction ratio around a DHW demand of 20 kWh/day. One of the dominant factors, the 

negative primary energy reduction ratio, is the case of hot water supplied by the auxiliary boiler on the 

PEFC-CGS. This is because the efficiency of the auxiliary boiler of the PEFC-CGS is inferior to that 
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of the condensing gas boiler of the R-S. There are two possible cases: the PEFC-CGS operation is 

inefficient because of too low DHW demand in the case of under the lower part load capacity of the 

PEFC-CGS, or too high DHW demand when shortage of heat supply was covered by the auxiliary boiler. 

Here we introduce the contribution ratio, γ, of the PEFC unit: 

γ Σ
FC

FC B H 100 (39) 

Whenever the PEFC unit is not used throughout a day, the contribution ratio is 0%, which is shown 

with purple points in Figure 7c. In these cases, the characteristics of the PEFC-CGS don’t match the 

demand, because of lower DHW demand for the operations of the PEFC-CGS over an entire day. 

When using the PEFC unit at a low level of daily DHW demand, the primary energy reduction ratios 

are distributed throughout the negative values in Figures 7(c,d). 

Due to space limitations, when comparing the differences among houses, we pick two houses, both 

of whom have the same level of annual demand. Table 4 shows the details of the household’s 

characteristics. Figure 8 shows the scattered points of daily demand with the primary reduction ratios. 

Figure 8. Daily primary energy reduction ratio. (a) House A; (b) House B. 

 

The distribution of daily demand varies even though the families have the same level of annual 

demand. The DHW demand of House B is normally around 2 kWh/day; on the other hand, the 

maximum DHW demand is up to around 50 kWh/day. 

Table 4. Characteristics of the two houses. 

 (a) House A (b) House B 

Annual electricity demand GJ/year 18.83 19.06 
Annual DHW demand GJ/year 21.20 21.06 

Residential type Detached house Apartment 
Age of householder 40’s 50’s 

Number of occupants 4 4 
Annual primary energy reduction ratio % 10.32 7.73 

Range of daily primary energy reduction ratio % −4.50~16.03 −4.35~19.60 
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Furthermore, it shows a difference in the primary energy reduction ratio even when daily demand is 

the same, House B has more reddish points than House A around an electricity demand of 15 kWh/day 

and DHW demand of 20 kWh/day. It seems effected by demand patterns. 

5.2. Extraction of Demand Patterns 

Six sets of groups of demand were defined by the heat-to-power ratio and the daily DHW demand. 

Group-A does not show a significant difference because this proposed method, fitted GMDs for 

demand patterns, is difficult to adapt to low demand situations, including 0 kWh/day. This is a 

disadvantage of this method; in short, it is necessary to exclude days which have a low level of 

demand, including 0 kWh/day, before the data are used for statistical processing. Hence Figures 9  

to 13 show the demand patterns clustered in 16 groups for Groups B to F. The green bar charts 

represent the average electricity demand of each term in each cluster; the red cityscapes represent the 

average DHW demand, the black and red dotted lines represent the electricity and DHW  

demand ± standard deviation on average of each term. The rightmost pictures in Figures 9 to 13 are 

dendrograms which represent hierarchical structures. If trying to decrease the number of clusters, 

concatenate the adjacent clusters. It is confirmed that the basic demand patterns are extracted by the 

hierarchical clustering with the generalized KL divergence, and reveal the demand pattern’s structures. 

Figure 14 shows cluster histograms labeled with a monthly perspective; the vertical axis label shows 

“Group name—Cluster number”. For example, in Figure 14(a) the bar labeled “C-5” is the modal 

class, “C-5” means this bar belongs to Cluster 5 in Group C. Summer days, which are shown with 

bluish bars, are mostly in Group C. In House B, the spring days are found many in Group A.  

In House B, the day marked 19.60% of the highest primary energy reduction ratio is grouped in  

“D-11”, the day marked 18.78% of the second highest primary energy reduction ratio is grouped in 

“D-1”, and the next is grouped in “D-5”. It is confirmed that there are clusters which are distributed 

among the higher primary energy reduction ratios in Figure 11, “D-11”, “D-1”, and “D-5”. We 

compare these clusters to “D-2”, which is the modal class of House A in Group D, “D-2” has no peak 

in the morning. Comparing all clusters in Figure 11 from the same viewpoint, the primary energy 

reduction ratios of “D-3”, “D-9”, “D-10”, “D-13”, and “D-14” are distributed over a wide range, and 

these patterns do not have large peaks in the morning. Similarly, demand patterns having several gentle 

slopes perform well with the PEFC-CGS, as, for example, “E-1”, “E-11”, “E-12”, “E-15”, and “E-16” 

in Figure 12. Hence, it is found that demand patterns having several gentle slopes shows better primary 

energy reduction ratios. 
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Figure 9. Clusters in Group B. (a) primary energy reduction ratio; (b) demand patterns;  

(c) dendrogram. 
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Figure 10. Clusters in Group C. (a) primary energy reduction ratio; (b) demand patterns; 

(c) dendrogram. 
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Figure 11. Clusters in Group D. (a) primary energy reduction ratio; (b) demand patterns; 

(c) dendrogram. 
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Figure 12. Clusters in Group E. (a) primary energy reduction ratio; (b) demand patterns; 

(c) dendrogram. 
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Figure 13. Clusters in Group F. (a) primary energy reduction ratio; (b) demand patterns; 

(c) dendrogram. 
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Figure 14. Cluster histograms labeled from a monthly perspective. (a) House A; (b) House B. 
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In Figure 14, House A has many similar demand patterns, which do not have a large peak in the 

morning, without little effect of the seasons, for example “C-1”, “C-3”, “C-5”, “C-6”, “D-2”, and  

“D-3”. On the other hand, demand patterns of House B are scattered on many clusters, which mean 

having many life patterns. Thus, it is found that the demand characteristics for each house have 

different features; one house shows a weak association between DHW demand and seasons, and the 

other shows a strong association between them. 

The result of this paper revealed that the level of demand and the heat-to-power ratio were the most 

important for screening the matching between the demand profiles and the energy saving potential of 

the PEFC-CGS, while demand patterns took second place. In the future, householders will estimate 

their demand characteristics with access to an increasing number of residential demand patterns 

measured using the Home Energy Management System and such. Such demand patterns are capable of 

denoting a relationship to demographic data, such as the number of people in the household, their life 

patterns, age composition and so on. In that case, they will get to be able to select an energy supply 

system which matches the characteristics of the system and the characteristics of their demands. 

6. Conclusions 

Time-series demand data are categorized by means of a hierarchical clustering method using a 

statistical pseudo-distance. The statistical pseudo-distance is represented by the generalized KL 

divergence of two GMDs fitted to the time-series demand data of non-HVAC electricity and DHW 

demand from 26,307 days of data, measured in Japan. We formulated an analytical framework of the 

characteristics of the energy systems, and of the characteristics of the demand profiles. The following 

main results were obtained: 

1. Basic demand patterns are extracted from 72 households 26,307 days of data by the  

proposed method. 

2. The factors which are at least associated with the primary energy reduction ratio of the  

PEFC-CGS, are heat-to-power ratio, the amount of daily demand, and the demand patterns. 

3. By installing the PEFC-CGS, the annual primary energy reduction ratio is about 12% maximum, 

and an increase in annual demand is associated with a reduction in annual primary energy use. 

4. By installing the PEFC-CGS, daily primary energy reduction ratio is about 20% maximum near 

a DHW demand of 20 kWh/day, which is operated with the rated power output throughout  

a day. 

5. Daily reduction ratios are different between one day and another even if the amount of daily 

demand is the same. 

6. Demand patterns having several gentle slopes show better primary energy reduction ratios. 

7. Demand characteristics in different houses have different features. One house shows a weak 

association between DHW demand and seasons; another shows a strong association  

between them. 
  



Energies 2013, 6 398 

 

 

Acknowledgments 

The authors acknowledge Haoyang Shen and Hideitsu Hino of the Murata Laboratory of Waseda 

University for technical suggestions about implementation using the R language. Part of this work is 

supported by a Strategic Research Foundation Grant-aided Project for Private Universities grant from 

MEXT (2010). The authors would like to acknowledge the support of the “Distributed Autonomous 

Urban Energy Systems for Mitigating Environmental Impact” project of Osaka University. This 

research was conducted under Optimal Planning of Energy Supply Systems for Various Buildings, 

09P05 at RISE, Waseda University. 

References  

1. EDMC Handbook of Energy & Economic Statistics in JAPAN 2012; The Institute of Energy 

Economics: Tokyo, Japan, 2012; pp. 88–109. 

2. Nakagami, H.; Murakoshi, C.; Iwafune, Y. International Comparison of Household Energy 

Consumption and Its Indicator. In Proceedings of the 2008 ACEEE Summer Study on Energy 

Efficiency in Buildings, Pacific Grove, CA, USA, 17–22 August 2008; pp. 214–224. 

3. Yokoyama, R.; Ito, K. Optimal operational planning of cogeneration systems with thermal storage 

by the decomposition method. J. Energy Resour. Technol. 1995, 117, 337–342. 

4. Wakui, T.; Yokoyama, R.; Shimizu, K. Suitable operational strategy for power interchange 

operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems. Energy 

2010, 35, 740–750. 

5. Hashimoto, K.; Takahashi, T.; Yoshiha, T.; Saikawa, M.; Hamamatsu, T. Evaluation of Energy 

Saving and Environment Potential about New Domestic Energy Systems—Comparison of Hot 

Water Supplying and Air-Conditioning Electric Heat Pumps, and of PEFC Co-Generation, with 

Consideration to Daily and Yearly Estimated Demand Curve; Central Research Institute of 

Electric Power Industry: Kanagawa, Japan, 2001. 

6. Arndt, U.; Beausoleil-morrison, I.; Brouwer, J.; Viktor, D.; Ferguson, A.; Griffith, B.; Kelly, N.; 

Klobut, K.; Knight, I.; Lie, B.; et al. An Experimental and Simulation-Based Investigation of the 

Performance of Small-Scale Fuel Cell and Combustion-Based Cogeneration Devices Serving 

Residential Buildings; Natural Resource Canada: Ontario, Canada, 2008. 

7. Dorer, V.; Weber, A. Energy and CO2 emissions performance assessment of residential  

micro-cogeneration systems with dynamic whole-building simulation programs. Energy Convers. 

Manag. 2009, 50, 648–657. 

8. Yoshida, A.; Inagaki, K.; Amano, Y.; Ito, K.; Hashizume, T. Comparative evaluation of 

residential energy systems to reduce CO2 emissions. In Proceedings of World Engineers 

Convention 2011, Geneva, Switzerland, 4–9 September 2011; pp. 2–9.  

9. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. 

10. Hershey, R.J.; Olsen, A.P. Approximating the Kullback Leibler divergence between Gaussian 

mixture models. In Proceedings of the International Conference on Acoustics, Speech, and Signal 

Processing 2007, Glasgow, Scotland, 24–28 June 2007; pp. 317–320. 



Energies 2013, 6 399 

 

 

11. Shen, H.; Hino, H.; Murata, N.; Wakao, S. Extraction of basic patterns of household energy 

consumption. In Proceedings of the Tenth International Conference on Machine Learning and 

Applications; Honolulu, HI, USA, 18–21 December 2011; pp. 275–280. 

12. Kosmelj, K.; Batagelj, V. Cross-sectional approach for clustering time varying data. J. Classif. 

1990, 7, 99–109. 

13. Liao, W.T. Clustering of time series data—a survey. Pattern Recognit. 2005, 38, 1857–1874. 

14. Tsuji Laboratory. Monitored Energy Data for Residential Houses in Kansai Region 1998–2005; 

Osaka University, Osaka, Japan, 2007. 

15. Banerjee, A.; Merugu, S.; Dhillon, I.S.; Ghosh, J. Clustering with Bregman divergences. J. Mach. 

Learn. Res. 2005, 6, 1705–1749. 

16. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM 

algorithm. J. R. Stat. Soc. 1977, 39, 1–38. 

17. Fraley, C.; Raftery, A.E. MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based 

Clustering; Technical Report, University of Washington, Washington, WA, USA, 2006; pp. 1–57.  

18. Schwarz, G. Estimating the dimension of a model. Annu. Stat. 1978, 6, 461–464. 

19. Ward, H.J. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 

236–244. 

20. Toshiba Fuel Cell Power Systems Co. Available online: http://www.toshiba.co.jp/ 

product/fc/products/pdf/catalog6.pdf (accessed on 1 November 2012).  

21. Fourer, R.; Gay, M.D.; Kernighan, W.B. AMPL: A Modeling Language for Mathematical 

Programming, 2nd ed.; Thomson/Brooks/Cole Publishing Company: Pacific Grove, CA, USA, 

2003. 

22. IBM ILOG CPLEX Optimizer. Available online: http://www-01.ibm.com/software/integration/ 

optimization/cplex-optimizer/ (accessed on 1 August 2012). 

23. Osaka Gas Co. Available online: http://www.osakagas.co.jp/kankyo/gas/03.html (accessed on 1 

August 2012). 

24. Law Concerning the Rational Use of Energy in Japan. Available online: http://law.e-

gov.go.jp/htmldata/S54/S54F03801000074.html (accessed on 1 August 2012). 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


