Next Article in Journal
Next Article in Special Issue
Previous Article in Journal
Previous Article in Special Issue
Energies 2012, 5(7), 2197-2213; doi:10.3390/en5072197
Article

The Characteristics of the Exergy Reference Environment and Its Implications for Sustainability-Based Decision-Making

1,* , 2
 and 1
Received: 4 May 2012; in revised form: 25 June 2012 / Accepted: 3 July 2012 / Published: 5 July 2012
(This article belongs to the Special Issue Exergy Analysis of Energy Systems)
Download PDF [285 KB, uploaded 5 July 2012]
Abstract: In the energy realm there is a pressing need to make decisions in a complex world characterized by biophysical limits. Exergy has been promoted as a preferred means of characterizing the impacts of resource consumption and waste production for the purpose of improving decision-making. This paper provides a unique and critical analysis of universal and comprehensive formulations of the chemical exergy reference environment, for the purpose of better understanding how exergy can inform decision-making. Four related insights emerged from the analysis, notably: (1) standard and universal chemical exergy reference environments necessarily encounter internal inconsistencies and even contradictions in their very formulations; (2) these inconsistencies are a result of incompatibility between the exergy reference environment and natural environment, and the desire to model the exergy reference environment after the natural environment so as to maintain analytical relevance; (3) the topics for which exergy is most appropriate as an analytical tool are not well served by comprehensive reference environments, and (4) the inconsistencies point to a need for deeper reflection of whether it is appropriate to adopt a thermodynamic frame of analysis for situations whose relevant characteristics are non-thermodynamic (e.g., to characterize scarcity). The use of comprehensive reference environments may lead to incorrect recommendations and ultimately reduce its appeal for informing decision-making. Exergy may better inform decision-making by returning to process dependent reference states that model specific processes and situations for the purpose of engineering optimization.
Keywords: exergy; resource value; waste impact; sustainability assessment exergy; resource value; waste impact; sustainability assessment
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Gaudreau, K.; Fraser, R.A.; Murphy, S. The Characteristics of the Exergy Reference Environment and Its Implications for Sustainability-Based Decision-Making. Energies 2012, 5, 2197-2213.

AMA Style

Gaudreau K, Fraser RA, Murphy S. The Characteristics of the Exergy Reference Environment and Its Implications for Sustainability-Based Decision-Making. Energies. 2012; 5(7):2197-2213.

Chicago/Turabian Style

Gaudreau, Kyrke; Fraser, Roydon A.; Murphy, Stephen. 2012. "The Characteristics of the Exergy Reference Environment and Its Implications for Sustainability-Based Decision-Making." Energies 5, no. 7: 2197-2213.


Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert