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Abstract: Accurate prediction of algal biofuel yield will require empirical determination of 
physiological responses to the environment, particularly light and temperature. One strain 
of interest, Nannochloropsis salina, was subjected to ranges of light intensity  
(5–850 μmol m−2 s−1) and temperature (13–40 °C) and its exponential growth rate, total 
fatty acids (TFA) and fatty acid composition were measured. The maximum acclimated 
growth rate was 1.3 day−1 at 23 °C and 250 μmol m−2 s−1. Fatty acids were detected by gas 
chromatography with flame ionization detection (GC-FID) after transesterification to 
corresponding fatty acid methyl esters (FAMEs). A sharp increase in TFA containing 
elevated palmitic acid (C16:0) and palmitoleic acid (C16:1) during exponential growth at 
high light was observed, indicating likely triacylglycerol accumulation due to  
photo-oxidative stress. Lower light resulted in increases in the relative abundance of 
unsaturated fatty acids; in thin cultures, increases were observed in palmitoleic and 
eicosapentaenoic acids (C20:5ω3). As cultures aged and the effective light intensity per 
cell converged to very low levels, fatty acid profiles became more similar and there was a 
notable increase of oleic acid (C18:1ω9). The amount of unsaturated fatty acids was 
inversely proportional to temperature, demonstrating physiological adaptations to increase 
membrane fluidity. These data will improve prediction of fatty acid characteristics and 
yields relevant to biofuel production. 
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1. Introduction 

Interest in using microalgae biofuels as drop-in replacements for fossil fuels has inspired efforts to 
increase the rate of lipid production in microalgal cultures [1–3] . Each strain of microalgae has unique 
properties, therefore new species are continuously being isolated and characterized, while known 
strains are being genetically modified in an attempt to obtain the best commercial strains [4]. There are 
two ways to increase areal lipid productivity (mass of lipids per unit of area per unit of time): either 
increase the rate of biomass accumulation, or increase the proportion of the biomass that contains a 
useful lipid. To achieve this objective, numerous strategies including nutrient starvation, bioprocess 
optimization and genetic modification can be used [5]. However, whatever strategy is used, the 
maximum achievable yield will be determined by the response of the alga to its environment. 

Water temperature and light are two environmental parameters that are most impractical to 
manipulate in outdoor pond culture systems. Temperature can be regulated somewhat by designing 
variable-depth cultivation systems [6], but adding any heating or cooling processes to the system will 
severely compromise energy efficiency. Furthermore, for open raceway cultivation, algae will 
experience sunlight that varies both diurnally and seasonally. Therefore, the potential lipid productivity 
of a commercial algae cultivation facility will depend on light and temperature, which are obviously 
determined by location. Current state of the art predictions of maximum algal biofuel production 
potential depend on assumptions of how algal cultures will respond to variations in incident light and 
water temperature [7]. However, lipid productivity is a strain-specific function of physiological 
responses to many factors, including incident light intensity and cultivation temperature [8]. Therefore, 
strains of commercial interest should be characterized in terms of their responses to light intensity and 
temperature. Screening many species of algae based on this principle will enable rational decision 
making about which strain of algae to cultivate in a given location during a given season. Presented 
here is a characterization of one particular strain of interest, Nannochloropsis salina CCMP 1776 
under constant illumination and nutrient replete conditions.  

2. Results and Discussion 

2.1. Light Effects 

As light can be a limiting factor, the exponential growth rate (μ) of algae cultures in response to 
increasing irradiance (I) fits a typical “P-I” (photosynthesis vs. irradiance) curve, a linear increase 
followed by an asymptote as light becomes saturating. By making repeated measurements of 
acclimated, non-self-shading cultures [9] in Roux bottle photobioreactors, at various light intensities, 
the relationship between μ and I was found to be best approximated by a Monod-type function [10], 
with μmax = 1.3 day−1 and KI = 37 μmol m−2 s−1 photon flux density (PFD). No photoinhibition was 
observed at 850 μmol m−2 s−1, the maximum light intensity tested, and light saturation occurred above 
250 μmol m−2 s−1. 
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After determining the exponential growth rate, the cultures were allowed to continue growing under 
nutrient-replete, pH and temperature controlled conditions. Cultures grew exponentially for five to ten 
days (Figure 1), followed by linear growth at sustained rates (r2 > 0.99 for biomass vs. time plots) for 
at least three weeks (Table 1). Although maximum biomass productivity was obtained at the highest 
light intensity, the most efficient light to biomass conversion (i.e., unit biomass formed per unit light 
supplied) [11] was obtained when incident light intensities were between 26 and 55 μmol m−2 s−1. Note 
that less than 5% of the incident light was transmitted through the bottle during linear growth, so that 
light supplied is a good approximation of light absorbed. Although algal cultures are able to absorb all 
the photons, the enzymes of the dark reactions limit photosynthetic efficiency at higher light intensities 
and excess energy must by dissipated as fluorescence or heat [10]. For this reason a photobioreactor 
design that increases surface area and decreases the intensity of light incident to the surface could 
increase areal productivity [12]. As the data in Table 1 indicate, the most effective photon utilization 
occurs in low-light cultures, which also have a lower culture density. Therefore, the tradeoff between 
biomass yield per photon and the cost of harvesting biomass must also be considered in any  
techno-economic assessment [12].  

Figure 1. Biomass concentration (OD750) as a function of time in photobioreactor cultures 
operated at six different light intensity set points. (Note logarithmic scale, dry weight 
correlation was: AFDW (g/L) = 0.185 × OD750, r2 > 0.98). 

 

In addition to affecting the growth rate, light intensity is expected to alter the fatty acid content and 
composition. In batch cultures with different incident light, fatty acid content and composition were a 
function of both incident light and the density of the culture (Figures 2 and 3). The highest fatty acid 
content occurred in low-density (exponentially growing) cultures, which received light above the 
saturating light intensity. The increased fatty acid content corresponded to increases in the  
proportion of palmitic and palmitoleic acids [Figure 3(a)]. This is consistent with known models of  
photo-oxidative stress [5]. As Sukenik [13] demonstrated, the C16 fatty acids are the main components 
of triacylglycerols (TAGs) of Nannochloropsis sp. and TAGs are known to increase and become richer 
in C16 fatty acids with high light. Since biomass harvest is most efficient in high-density cultures, 
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condition changes from Figure 3(a) to 3(b)]. As the fraction of EPA among lipid classes changes little 
with illumination according to Sukenik [13], the relative increase in EPA was likely a result of the 
decrease in TAG, which contains little EPA. As cultures reached high densities and all cells were 
exposed to similar low average light intensities, the fatty acid composition converged in all 
bioreactors, as oleic acid became more prevalent than EPA [Figure 3(c)]. The latter is a precursor for 
the former [14] indicating potential down-regulation of the fatty acid saturation and elongation 
pathway as a response to energy limitation. An increase in oleic acid is indicative of an  
increasing proportion of phospholipids (e.g., phosatidylcholine) at the expense of galactolipids (e.g., 
monogalactosyldiacylglycerol) according to previous reports of fatty acid distribution in lipid  
classes [15–17]. The proportion of oleic acid detected here (~20%) exceeds all previously reported 
values (Khozin-Goldberg [18] found 13% in some cases). This is likely due to the extended duration of 
culture, which was longer than in any known reports on cultivation of Nannochloropsis. 

Figure 3. Fatty acid composition as a function of incident light intensity in Roux bottle 
photobioreactors in (a) exponential (b) early linear (c) late linear growth phases. 

 

2.2. Temperature Effects  

Temperature impacts physiology by changing the rate of chemical reactions and the stability of 
cellular components [19] . Most microbes respond to increases in temperature with increased 
exponential growth rates until reaching their optimum temperature, after which point loss of structural 
integrity tends to lead to sharp declines in growth rates [20]. Dilute N. salina cultures grown in sparged 
Erlenmeyer flasks reached their maximum specific growth rates at 26 °C, with no growth seen  
above 35 °C [Figure 4(a)]. 

To maintain structural integrity, many organisms self regulate lipid composition to maintain 
membrane fluidity at different temperatures [21]. N. salina maintains membrane stability by increasing 
the ratio of palmitic acid to palmitoleic acid at higher temperatures (Figure 5). As cultures became  
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photons m−2 s−1. Cells were cryopreserved in medium supplemented with 10% dimethyl sulfoxide and 
stored in liquid nitrogen until being thawed prior to each experiment [9,23]. Growth was monitored via 
optical density at 750 nm (OD750). Ash free dry weight (AFDW) was measured by filtering onto 
Whatman GF/F filters, drying at 100 °C overnight and combusting at 520 °C for 4 h [24]. Dry weight 
was measured by dividing the weight of freeze-dried algal pellets by the culture volume used to 
generate the pellet.  

3.2. Thermal Gradient Culture 

A thermal gradient incubator (TGI) was constructed from two slabs of aluminum with a heating 
element and machined channels for the circulation of coolant on opposite ends [25]. The TGI was 
designed to contain eight separate water temperature zones in triplicate 100 mL cultures in 125 mL 
Erlenmeyer flasks. Thermal stability was maintained by using a feedback loop controlled by a Stanford 
Instruments PCT10 temperature controller. Fluorescent tubes provided light with an intensity (photon 
flux) of at least 150 μmol m−2 s−1. A gaseous mixture of 0.5% carbon dioxide in air was bubbled 
through the system and pH of 7.5 was maintained by increasing the flow rate to ensure that mass 
transfer of CO2 was not limiting. A shaker table was used for mixing. 

3.3. Light Effect Determination 

Light intensities of 5, 25, 50, 100, 250 and 850 μmol m−2 s−1 were achieved by using high intensity 
fluorescent bulbs modulated by neutral density filters. Roux bottles (1 L) were mixed with magnetic 
stir bars and sparged with CO2-enriched air as described above. The bottles were placed in a 
temperature controlled glass water bath to maintain temperature at 23 °C. Nitrate concentration was 
monitored using test paper (EMD Chemicals 10020-1) and nitrate and phosphate stocks were added at 
their original ratio to ensure these chemicals were never limiting. 

3.4. Growth Rate Calculation 

The exponential growth rate (μ) was measured during semi-continuous batch culture, maintained 
until an acclimated μ could be determined from the slope of a semi-log plot [9]. After establishing a 
linear correlation between OD750 and AFDW (g/L) (AFDW = 0.185 × OD750, r2 > 0.98) the following 
formula was used to determine growth rate: 

μ = ln(Bf/B0)/t (1)

where Bf and B0 are the biomass concentration (as converted from OD) at two time points and t is the 
intervening time. The growth rate could also be determined from the slope of a semi-log plot of 
biomass vs. time. 

3.5. Fatty Acid Quantification  

Transesterification was performed by adding 2.5% sulfuric acid in methanol to freeze dried biomass 
and after one hour anaerobic incubation at 90 °C, fatty acid methyl esters (FAMEs) were extracted in 
hexane [26]. FAMEs were separated by gas chromatography in a capillary column (60 m, 0.25 mm) 
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with flame ionization detection (GC-FID). Helium was used as the carrier gas with an injector and FID 
temperature of 250 °C, with the oven ramping from 50 °C to 250 °C at a rate of 5 °C min−1. 
Quantification was performed relative to a marine oil FAME mix (Restek) standard and yield was 
calculated from the ratio of surrogate (C21) to internal standard (C17). All measurements are results of 
individual biological replicates. Recovery rate for surrogate C21 fatty acids was greater than 80% for 
all data used. 

4. Conclusions 

This study determined the effects of temperature and light on the growth and fatty acid profile of 
Nannochloropsis salina. The optimal tested growth temperature was 26.3 °C, with the specific growth 
rate declining to less than 30% of this maximum rate at 32.5 and 13.6 °C, respectively. The linear 
growth rate increased with light, although photon conversion efficiency decreased for light intensities 
above 55 μmol m−2 s−1. Total fatty acid content can be increased by exposing the species to  
photo-oxidative stress, or by slowing the growth rate by exposing the culture to extreme (i.e., high or 
low) temperatures. As Griffiths [8] points out, previous research on algae lipid productivity is 
fragmentary, with different measurements carried out for different purposes, so comparison among 
studies is difficult. However, once a species has been identified as promising, the methods described 
here may be applied to better predict its biofuel production potential at various combinations of time of 
year and location.  
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