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Abstract: In this paper, we analyze the Network and System Management (NSM) 

requirements and NSM data objects for the intrusion detection of power systems; NSM is 

an IEC 62351-7 standard. We analyze a SYN flood attack and a buffer overflow attack to 

cause the Denial of Service (DoS) attack described in NSM. After mounting the attack in 

our attack testbed, we collect a data set, which is based on attributes for the attack. We then 

run several data mining methods with the data set using the Waikato Environment for 

Knowledge Analysis (WEKA). In the results, we select the decision tree algorithms with 

high detection rates, and choose key attributes in high level components of the trees. When 

we run several data mining methods again with the data set of chosen key attributes, the 

detection rates of most data mining methods are higher than before. We prove that our 

selected attack attributes, and the proposed detection process, are efficient and suitable for 

intrusion detection in the smart grid environment. 

Keywords: Denial of Service (DoS) attack; intrusion detection; Network and System 

Management (NSM); smart grid; data mining 
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1. Introduction 

The promotion and industrial development of smart grid technology is accelerating worldwide. 

However, service construction and research on intrusion detection, one of the most important security 

considerations in the smart grid, is lacking. Moreover, generality and security by applying standards  

is required. 

The smart grid industry, which is a fusion between traditional industries and emerging industries 

continues to grow with other technologies. At this time, the security of data transmission and 

application of standard technology is an indispensable element. In addition, compared to the existing 

power grids, the smart grid environment is a new business platform fused with information and 

communication technology. Security problems in information technology still exist in smart grids, and 

without guarantee of security the impacts are more serious than in the existing information technology. 

Cyber vulnerabilities and violations are actually increasing, and causing cases of damage. In particular, 

various types of attacks including physical attacks continue to increase, and intrusion detection 

methods for this are needed. 

IEC 62351-7 [1] is a developing standard in International Electrotechnical Commission (IEC) 

Technical Committee (TC) 57 on security that is focused on developing standardized Network and 

System Management (NSM) object definitions for monitoring and controlling the information 

infrastructure. What is needed is the promotion of generality, extendibility and security through NSM, 

so that these international standards are applied to the smart grid intrusion detection service. 

In this paper, we analyze the security requirements of NSM data objects, which are defined by  

IEC 62351-7 for intrusion detection, and analyze detection of SYN flood attacks and buffer overflow 

attacks as a Denial of Service (DoS) attack. For this, we construct a smart grid environment, and select 

attributes for analysis of those attacks. We then collect data of each attribute actually used in the trial 

attack. Subsequently, we make a comparative analysis of the data mining algorithms, to detect the 

attack efficiency. We prove that our selected attack attributes and the proposed detection process are 

efficient. The overall detection rate is enhanced after selection of key attributes. The rest of this paper 

is organized as follows: Section 2 presents the network and system management. Section 3 presents the 

attack method. Section 4 illustrates the system environment, and presents the proposed modeling and 

detection process. Section 5 analyzes the experimental results, to evaluate the effectiveness of our 

scheme. Finally, we conclude this paper in Section 6. 

2. Network and System Management 

The IEC smart grid standardization roadmap is based on the recent work of IEC SG3.  

IEC 62351 [2] addresses power systems management and associated information exchange—data and 

communication security. The scope of IEC 62351-7 focuses on network and system management 

(NSM) of the information infrastructure. The goal of this standard is to provide a service related to 

security requirements, of confidentiality, integrity, availability, and non-repudiation. As a protocol 

approach, it provides a security service in terms of two aspects. First, it protects information, using 

encryption from the origin point to the target point, or a secure electronic communication system by 

means of a protected power distribution system. Second, it provides end-to-end security. 



Energies 2012, 5 4093 

 

 

2.1. Denial of Service Attack 

The NSM requirements in IEC 62351-7 deal with detecting resource exhaustion as a DoS attack, for 

example, a SYN flood attack and a buffer overflow attack. 

2.1.1. SYN Flood Attack 

A SYN flood is a form of DoS attack, in which an attacker sends a succession of SYN requests to a 

target’s system, in an attempt to consume enough server resources to make the system unresponsive to 

legitimate traffic [3]. 

The passive intrusion detection system (IDS) can detect rapidly increasing SYN flooding, based upon 

time and/or bandwidth consumption. The NSM is required to detect resource exhaustion attacks [1]: 

- Exceeding the maximum number of connection permitted over the network; 

- Count of number of connections actually in place over the network; 

- Exceeding the maximum number of connections which can be in use simultaneously; 

- Count of the number of connections in use simultaneously; 

- Exceeding minimum/maximum idle time; 

- Actual idle time over a specified time period; 

- Exceeding CPU load limits; 

- Exceeding memory usage limits; 

- Below low level battery power limits or too high rate of change. 

2.1.2. Buffer Overflow Attack 

A buffer overflow is an anomaly where a program, while writing data to a buffer, overruns the 

buffer’s boundary and overwrites adjacent memory [4]. The passive IDS is not intrinsically able to 

determine whether a buffer overflow attack is underway. This is especially true for IEC 61850 [5] and 

IEC 60870-6 TASE.2 [6] where the application buffer size is negotiated at runtime. However, the 

application/communication stack could be aware of such overruns [1]. The NSM is required to detect 

buffer overflow attacks: 

- Number of buffer over runs; 

- Number of buffer under runs; 

- Audit ability to detect which source caused the buffer overflow/underflow. 

3. Attack Method 

In recent smart grid attack trends, the false data injection attack [7] proposed in 2009 has taken 

center stage as a new type of attack, and relevant work to respond to this treat is being proposed 

continuously [8–10]. 

Other attack papers are as follows. Chen et al. [11] investigate the use of Petri nets for modeling 

coordinated cyber-physical attacks on the smart grid. Yuan et al. [12] propose a Smart Grids 

Distributed Intrusion Detection System (SGDIDS), by developing and deploying an intelligent 

module—the Analyzing Module (AM)—in the multiple layers of smart grids. Xie et al. [13] are the 
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first ones attempting to formalize the economic impact of malicious data attacks on real-time market 

operations. Mohsenian-Rad and Leon-Garcia [14] propose a cost-efficient load protection strategy, 

which minimizes the cost of the load protection. Lu et al. [15] use experiments to quantitatively 

evaluate the impact of DoS attacks on a power substation network with a distributed network protocol 

(DNP3). They prove that long DNP3 packets are more vulnerable to DoS attacks than are short DNP3 

packets, and that the performance of the power network does not degrade gradually with the increase 

of the DoS attack intensity. Kundur et al. [16] propose an impact analysis framework, based on a 

graph-theoretic dynamical systems approach, for modeling the cyber-physical interactions. Little 

research exists on the topic of DoS attacks on smart grids. In particular, research of a similar type to a 

SYN flood attack and a buffer overflow attack has not been conducted. 

4. Intrusion Detection 

This section covers the system environment for our experiments, and the modeling and detection 

process to find an efficient detection rate. 

4.1. System Environment 

We try a SYN flood attack and a buffer overflow attack to cause a DoS attack on a smart grid 

environment, and experiment to find an efficient data mining mechanism for intrusion detection. The 

attack test bed is as shown in Figure 1. Our attack test bed consists of the substation and local area 

network. The substation originally divides into three levels: process level including the I/O devices, 

intelligent sensors and actuators, bay level including the protection and control IEDs, and station level 

including the substation computer, operators desk, and the interfaces with outside the substation [15,17,18]. 

However, we depict only two levels: bay level and station level because our attack experiments only 

need two levels. We use a personal computer (PC) that is similar to an intelligent electronic device 

(IED)—CPU: 550 MHz, Memory: 256 MB—that is a target, and transmit an attack message using a 

general object oriented substation event (GOOSE) [19] data format. 

Figure 1. Attack test bed. 
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An IED is a microprocessor-based controller of power system equipment. IEDs receive data from 

sensors and power equipment, and can issue control commands, such a tripping circuit breakers if they 

sense voltage, current, or frequency anomalies, or raise/lower voltage levels in order to maintain the 

desired level. 

IEC 61850-7-2 [19] is a standard for communication between IEDs, and defines GOOSE 

communication stacks. GOOSE transmits trip commands and interlocking information with high 

priority frames, and ensures that these frames are handled with priority within all participating IEDs [20]. 

Figure 2 depicts a GOOSE communication stack. 

Figure 2. GOOSE communication stacks [20] (Copyright ABB). 

 

An attacker tries a SYN flood attack and a buffer overflow attack using a GOOSE message through a 

router. We use a publish/subscribe communication model as a routing mechanism in this test system. The 

publish/subscribe communication model is designed for serving this special GOOSE communication 

requirements of the IEC 61850 standard. The publish/subscribe communication model is basically an 

added feature to the normal TCP/IP client/server model, any GOOSE message can be multicast by the 

sender (so called publisher) to the receiver(s) [so called subscriber(s)]. The main difference is that multicast 

group addresses are used instead of IP addresses [21]. The attacker tries a SYN flood attack and a buffer 

overflow attack by simultaneously sending a number of point to point GOOSE message through a router. 

We analyze those attacks, and select data attributes for the use of data mining methods, and then 

collect data based on these attributes. Next, we run several data mining methods with collected data, 

using the Waikato Environment for Knowledge Analysis (WEKA) [22], and derive data mining methods 

showing the highest detection rate. 

4.2. Modeling and Detection Process 

We therefore implement a possible DoS attack in a smart grid environment, to experiment to find data 

mining methods with a better detection rate. Figure 3 depicts the experimental process. 

4.2.1. Data Attribute Selection 

We analyze attacks, and select data attributes for collection and detection. In this experiment, we 

analyze a SYN flood attack and a buffer overflow attack, and select data attributes for better detection 

of the SYN flood attack. First, we analyze the NSM requirements for each attack and select data 

attributes. After that, we monitor each attack with our monitoring tool during each attack experiment 

and select additional data attributes. 
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4.2.2. Attack Trial 

We construct an attack test bed as shown in Figure 3, run a SYN flood attack and a buffer overflow 

attack, and then collect data related to data attributes. 

4.2.3. Data Gathering 

Before the attack attempts, we collect data related to data attributes in the normal status. After the 

attack attempts, we create a data set collected by the relevant data attributes. 

4.2.4. Data Mining 

The normal state data and attack state data are input into the WEKA program, all of the mining 

algorithms that are automatically selected are run, and the results are compared with the detection rate. 

Figure 3. Experimental process. 
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4.2.5. Mining Algorithm Selection 

After all mining algorithms in the previous step are compared and analyzed, decision tree algorithms 

with the best detection rate are selected. 

4.2.6. Key Attribute Selection 

Selected decision tree algorithms in the previous step show the decision tree with attributes as a result. 

We select key attributes in the top levels of the tree. 

4.2.7. Data Mining 

All mining algorithms are run with selected key attributes. After that, we compare and analyze between 

results, with key attributes, and results with all attributes. 

5. Experimental Results 

In this section, the proposed experiments and the results of this experiment about two attacks show 

respectively depending on the process. 

5.1. SYN Flood Attack 

The SYN flood attack is a classic means of DoS attack. The SYN flood attack exploits the TCP’s 

three-way handshake mechanism and its limitation in maintaining half-open connections. When a server 

receives a SYN request, it returns a SYN/ACK packet to the client. Until the SYN/ACK packet is 

acknowledged by the client, the connection remains in a half-open state for a period of up to the TCP 

connection timeout, which is typically set to 75 s. If a SYN request is spoofed, the victim server will never 

receive the final ACK packet to complete the three-way handshake. Flooding spoofed SYN requests can 

easily exhaust the victim server’s backlog queue, causing all incoming SYN requests to be dropped [3]. 

5.1.1. Data Attribute Selection 

Table 1 details the selected attributes after analysis of the SYN flood attack. 

Table 1. SYN flood attack—attributes. 

Attribute Description 

Traffic count all count of packets during communication 
Time of round trip (s) the time that the traffic spent 
Average packets/s average count of packets per second 
Average packets size average packets size 
Total transmission packets (bytes) all count of bytes during communication 
Average B/s average count of byte per second 
Average Mbit/s average count of megabit per second  
40–79 packets count the count of packets which packet length is between 40 and 79 

40–79 rate 
average count of packets per ms (1 s = 103 ms); the packet length is between 
40 and 79 
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Table 1. Cont. 

Attribute Description 

40–79 percent the percentage that the packet occupied ; the packet length between 40 and 79 
320–639 packets count the count of packets which packet length is between 320 and 639 
320–639 rate average count of packets per ms; the packet length is between 320 and 639 
320–639 percent the percentage that the packet occupied ; the packet length between 320 and 639 
CPU percent the usage of CPU when traffic stopped 
Memory used (kB)  the memory used when traffic stopped 
Buffer size (kB)  the buffer used when traffic stopped 

5.1.2. Attack Trial and Data Gathering 

The attacker tries 100 times to attack the victim IED. The attacker continually transmits a SYN packet 

to the victim IED. When the attack trial starts, the data relevant attributes are captured three times, once 

every minute, so a total of 300 data are collected. Normal data is also captured once every minute, so  

300 normal data are captured. As a result, 300 normal state data and 300 attack state data are collected. 

5.1.3. Data Mining 

The 300 normal data and 300 attack data generated in the previous step are input into the WEKA, 

and then the available data mining algorithms are run to obtain the detection rate. The results are show 

in Table 2. 

Table 2. SYN flood attack—data mining results. 

Detection rate Mining algorithms 

99.833% 

bayes.BayesNet, bayes.NaiveBayesUpdateable, bayes.NaiveBayes, lazy.KStar, 
functions.SimpleLogistic, functions.RBFNetwork, functions.SMO, functions.Spegasos, 

lazy.LWL, lazy.IB1, lazy.IBk, meta.AdaBoostM1, meta.AttributeSelectedClassifier, 
rules.DTNB, meta.FilteredClassifier, meta.RandomCommitte, meta.RotationForest, 

meta.RandomSubSpace, meta.MultiBoostAB, meta.Bagging, rules.DecisionTable, tree.NBTree, 
tree.LADTree, tree.RandomForest, rules.Ridor, tree.DecisionSutmp, tree.ADTree (30) 

99.667% 
meta.OrdinalClassClassifier, tree.RandomTree, meta.nestedDataNearBalancedND, 

meta.nestedDichotomies.DataNearBalancedND, meta.ClassificationViaClustering, meta.END, 
rules.PART, meta.nestedDichotomies.ND, rules.Jrip, tree.J48graft, tree.J48 (11) 

99.5% misc.VFI, rules.ConjunctiveRule, misc.Decorate, meta.ThresholdSelector (4) 

99.333% meta.MultiClassClassifier, functions.Logistic, meta.Dagging (3) 

98.833% functions.VotedPerceptron (1) 

98% rules.NNge (1) 

96.833% tree.REPTree (1) 

96.333% misc.HyperPipes (1) 

95.5% meta.ClassificationViaRegression, rules.OneR (2) 

54.833% tree.BFTree, tree.SimpleCart (2) 

50% 
meta.CVParameterSelection, meta.MultiScheme, meta.RacedIncrementalLogitBoost, 

meta.Grading, meta.Stacking, meta.StackingC, meta.Vote, rules.ZeroR (8) 
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A total of 64 mining algorithms are performed and 30 algorithms including a tree. NBTree shows a 

99.833% detection rate, followed by 11 algorithms that show a detection rate of 99.667%, four algorithms 

show 99.5%, three algorithms show 99.333%, one algorithm shows 98.833%, one algorithm shows 98%, 

one algorithm shows 96.833%, one algorithm shows 96.333%, two algorithms show 95.5%, thus  

54 mining algorithms show a good detection rate. However, tree.SimpleCart and tree.BFTree show 

54.833%, and eight algorithms including rules. ZeroR show the lowest detection rate of 50%. Figure 4 

depicts all detection rates of the SYN flood attack. 

Figure 4. SYN flood attack—detection rate (all). 

 

WEKA classifies the data mining algorithms as follows. 

- Bayes: bayes classifier; 

- Functions: neural network and support vector machines (SVM); 

- Lazy: instance based classifier; 

- Meta: combing algorithm; 

- Misc: miscellaneous classifier including hyperpipes and voting feature intervals (VFI); 

- Rules: rule-based classifier; 

- Tree: decision tree classifier; 

5.1.4. Mining Algorithm Selection and Key Attribute Selection 

The Decision tree algorithms with the best detection rate in the above procedure are selected, and 

those algorithms show the decision tree as a result. Tree.ADTree and tree.LADTree are chosen. 

An alternating decision tree (ADTree) [23] is a machine learning method for classification. It is a class 

for generating an alternating decision tree. The underlying learning algorithm for ADTrees is AdaBoost. 

LADTree [24] is a class for generating a multi-class decision tree, using LogitBoost strategy. 

Traffic count, memory used, time of round trip (s), average packets size, average B/s, average 

packets/s are chosen as key attributes, as shown in Figure 5. When LADTree is performed, traffic count, 
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average packets/s, memory used, 40–79 packets count, time of round trip (s), 320–639 percent, and 

average B/s are chosen as key attributes. Figure 6 depicts the results of LADTree. 

Figure 5. A result of ADTree. 

 

Figure 6. A result of LADTree. 

 

5.1.5. Data Mining 

All possible mining algorithms are performed with selected key attributes, using ADTree in the previous 

procedure. The results are as shown in Table 3. Three algorithms show a 100% detection rate, 29 

algorithms show 99.833%, 10 algorithms show 99.667%, two algorithms show 99.5%, one algorithm 

shows 99.333%. The overall detection rate is better than before. 

Table 3. SYN flood attack—mining results with ADTree selection attributes. 

Detection rate Mining algorithms 

100% functions.RBFNetwork, lazy.IBk, lazy.IB1 (3) 

99.833% 

bayes.BayesNet, bayes.NaiveBayesUpdateable, bayes.NaiveBayes, lazy.LWL, 
functions.SimpleLogistic, functions.SMO, functions.Spegasos, meta.AdaBoostM1, 

lazy.KStar, meta.Bagging, meta.AttributeSelectedClassifier, meta.Dagging, 
meta.ClassificationViaClustering, meta.FilteredClassifier, meta.RotationForest, 

meta.MultiBoostAB, meta.RandomCommitte, meta.RandomSubSpace, rules.Jrip, 
rules.DecisionTable, tree,ADTree, tree.DecisionSutmp, tree.RandomForest, tree.LADTree, 

tree.NBTree, tree.LMT, tree.FT, rules.DTNB (29) 
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Table 3. Cont. 

Detection rate Mining algorithms 

99.667% 
meta.OrdinalClassClassifier, meta.nestedDichotomies.ClassBalancedND, meta.END, 

meta.nestedDichotomies.DataNearBalancedND, meta.nestedDichotomies.ND, 
meta.Decorate, rules.PART, rules.Ridor, tree.J48graft, tree.J48 (10) 

99.5% misc.VFI, rules.ConjunctiveRule (2) 

99.333% meta.ThresholdSelector (1) 

99.167% functions.Logistic, meta.MultiClassClassifier (2) 

98.5% tree.RandomTree (1) 

98% rules.NNge (1) 

96.833% tree.REPTree (1) 

96.5% misc.HyperPipes (1) 

95.5% meta.ClassificationViaRegression, rules.OneR (2) 

86.333% functions.VotedPerceptron (1) 

54.833% tree.BFTree, tree.SimpleCart (2) 

50% 
meta.CVParameterSelection, meta.RacedIncrementalLogitBoost, meta.Grading, 
meta.Stacking, meta.StackingC, meta.Vote, meta.MultiScheme, rules.ZeroR (8) 

Figure 7 depicts the result after key attributes selection using ADTree. 

Figure 7. SYN flood attack—detection rate (after ADTree). 

 

Next, all possible mining algorithms are performed with selected key attributes, using LADTree in the 

previous procedure; traffic count, average packets/s, memory used, 40–79 packets count, time of round 

trip (s), 320–639 percent, and average byte/s. 

As Figure 8 shows, the results are similar to the results of ADTree. Three algorithms show a 100% 

detection rate, 29 algorithms show 99.833%, 11 algorithms show 99.667%, two algorithms show 99.5%, 

two algorithms show 99.167%, one algorithm shows 98.833%, one algorithm shows 98%, one algorithm 

shows 96.833%, one algorithm shows 96.5%, one algorithm shows 95.5%, and one algorithm shows 
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87.333%. The overall detection rate is better than before. The results of two algorithms are 54.833%, and 

the results of eight algorithms are 50%. The results of 10 algorithms are significantly low. 

Figure 8. SYN flood attack—detection rate (after LADTree). 

 

5.2. Buffer Overflow Attack 

A buffer overflow is an attack that could be used by a cracker to overruns the buffers boundary and 

overwrites adjacent memory while writing data to a buffer. Buffer overflow attacks can be triggered by 

inputs that are designed to execute code, or alter the way the program operates. This may result in the 

DoS to undermine the availability, including a modification of data to compromise the integrity and 

confidentiality. In this experiment, we focus on the denial of service attack causing the buffer 

overflow. An attacker transmits a malicious code to a target intelligent electronic device (IED) system 

that randomly writes oversize data due to insufficient bounds checking. We collect the data necessary 

for the detection of attacks. 

5.2.1. Data Attribute Selection 

The following details the selected attributes after we analyze the buffer overflow attack. 

- Traffic count, Time of round trip(s), Average packets/s, Average packets size, Total transmission 

packets (bytes), Average B/s, Average Mbit/s, 40–79 packets count, 40–79 rate,  

40–79 percent, 320–639 packets count, 320–639 rate, 320–639 percent, CPU percent, 

Memory used (kB), Buffer used (kB), Transmission payload size (bytes). 

Two kinds of attributes, buffer used (kB) and transmission payload size (bytes), are added when 

compared with the SYN flood attack. 

5.2.2. Attack Trial and Data Gathering 

The attacker tries 100 times to attack the victim IED. The attacker transmits a malicious code to the 

victim IED that randomly writes oversize data due to insufficient bounds checking, and run the malicious 
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code. When the attack trial starts, the data relevant attributes are captured one time, once every minute, and 

thus a total of 100 data are collected. Normal data is also captured once every minute, and thus 100 normal 

data are captured. As a result, 100 normal state data and 100 attack state data are collected. 

5.2.3. Data Mining 

The 100 normal data and 100 attack data generated in the previous step are input into the WEKA, 

and then the available data mining algorithms are run to obtain the detection rate. The results are show 

in Table 4. 

A total of 70 mining algorithms are performed and 40 algorithms including a tree. RandomForest 

show a 100% detection rate, followed by four algorithms that show a detection rate of 99.5%, two 

algorithms show 99%, two algorithms show 98.85%, three algorithms show 97.5%, three algorithms 

show 97%, five algorithms show 96.5%, one algorithm shows 96%, one algorithm shows 90%, thus 61 

mining algorithms show a good detection rate. However, nine algorithms including rules.ZeroR show 

the lowest detection rate of 50%. Figure 9 depicts all detection rates of the buffer overflow attack. 

Table 4. Buffer overflow attack—data mining results. 

Detection rate Mining algorithms 

100% 

tree.RandomForest, tree.LADTree, tree.FT, tree.LMT, tree.J48, tree.ADTree, tree.J48graft, 
tree.DecisionStump, tree.REPTree, tree.BFTree, tree.SimpleCart, rules.DecisionTable, 
rules.Jrip, rules.DTNB, rules.Ridor, rules.PART, rules.NNge, rules.ConjunctiveRule, 

rules.OneR, misc.VFI, meta.AttributeSelectedClassifier, meta.Bagging, meta.AdaBoostM1, 
meta.ClassificationViaRegression, meta.END, meta.nestedDichotomies.ClassBalancedND, 

meta.RandomCommitte, meta.LogitBoost, meta.OrdinalClassClassifier, 
metalnestedDichotomies.ND, meta.RandomSubSpace, 

meta.MultiBoostAB,meta.nestedDichomies.DataNearBalancedND, meta.RotationForest, 
meta.FilteredClassifier, functions.SMO, functions.Spegasos, functions.SimpleLogistic, 

functions.MultilayerPerceptron, lazy.LWL (40) 

99.5% meta.MulticlassClassifier, lazy.IB1, lazy.IBk, functions.Logistic (4) 

99% tree.NBTree, tree.RandomTree (2) 

98.85% misc.HyperPipes, functions.RBFNetwork (2) 

97.5% meta.Cecorate, lazy.KStar, bayes.BayerNet (3) 

97% meta.Dagging, bayes.NaiveBayesUpdateable, bayses.NaiveBayes (3) 

96.5% 
bayes.BayesianLogisticRegression, bayes.NaiveBayesMultinomialUpdateable, 

bayes.ComplementNaiveBayes, bayes.NaiveBayesmultinomial, 
meta.ClassificationViaClustering (5) 

96% functions.VotedPerceptron (1) 

90% meta.ThresholdSelector (1) 

50% 
rules.ZeroR, meta.CVParameterSelection, meta.Grading, meta.MultiScheme, meta.Stacking, 

meta.RacedIncrementalLogitBoost, meta.Vote, meta.StackingC, bayes.DMNBtext (9) 
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Figure 9. Buffer overflow attack—detection rate (all). 

 

5.2.4. Mining Algorithm Selection and Key Attribute Selection 

The Decision tree algorithms with the best detection rate in the above procedure are selected, and 

those algorithms show the decision tree as a result. Tree.ADTree, tree.RamdomTree, tree.REPTree, 

tree.J48, tree.J48graft, and tree.LADTree are chosen. 

RandomTree [25] is a class for constructing a tree that considers K randomly chosen attributes at each 

node. REPTree [26] is a fast decision tree learner. It builds a decision/regression tree using information 

gain/variance and prunes it using reduced-error pruning (with backfitting). J48 [27] is a class for generating 

a pruned or unpruned C4.5 decision tree. C4.5 is an extension of Quinlan’s earlier ID3 algorithm. The 

decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred 

to as a statistical classifier. J48graft [28] is a class for generating a grafted (pruned or unpruned) C4.5 

decision tree. 

Figure 10 depicts the result after key attributes selection—average packets size—using ADTree, 

RandomTree, and REPTree. Figure 11 depicts the result after key attributes selection—total transmission 

packets—using J48 and J48graft. The key attributes of LADTree are selected with average packets size 

and total transmission packets. The result is as shown in Figure 12. 

Figure 10. A result of ADTree. 
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Figure 11. A result of J48. 

 

Figure 12. A result of LADTree. 

 

5.2.5. Data Mining 

All possible mining algorithms are performed with average packets size, selected key attributes, using 

ADTree, RandomTree, and REPTree in the previous procedure. The results are as shown in Table 5.  

57 algorithms show a 100% detection rate, 14 algorithms show 50%. The overall detection rate is better 

than before. 

Table 5. Buffer overflow attack—mining results with ADTree, RandomTree, REPTree 

selection attributes. 

Detection rate Mining algorithms 

100% 

tree.RandomForest, tree.LADTree, tree.FT, tree.LMT, tree.J48, tree.ADTree, tree.J48graft, 
tree.REPTree, tree.SimpleCart, tree.BFTree, tree.NBTree, tree.RandomTree, rules.DTNB, 
tree.DecisionStump, rules.DecisionTable, rules.Ridor, rules.Jrip, misc.VFI, rules.PART, 

rules.ConjunctiveRule, rules.NNge, rules.OneR, misc.HyperPipes, meta.OrdinalClassClassifier, 
meta.AdaBoostM1, meta.Decorate, meta.END, meta.AttributeSelectedClassifier, 

meta.Bagging, functions.SMO, meta.ClassificationViaRegression, meta.FilteredClassifier, 
meta.MultiBoostAB, meta.ClassficationViaClustering, meta.multiClassClassifier, 

meta.RandomCommitte, meta.nestedDichotomies.ClassBalancedND, meta.LogitBoost, 
meta.RandomSubSpace, meta.nestedDichotomies.ND, meta.Dagging, meta.ThresholdSelector, 

functions.Logistic, meta.nestedDichotomies.DataNearBalancedND, meta.RotationForest, 
bayes.BayesNet, functions.MultilayerPerceptron, functions.SimpleLogistic, functions.Spegasos, 

functions.RBFNetwork, bayes.NaiveBayes, lazy.IBk, bayes.NaiveBayesUpdateable, 
lazy.KStar, lazy.LWL, bayes.NaiveBayesSimple (57) 

50% 

meta.MultiScheme, meta.CVParameterSelection, meta.Grading, meta.Vote, 
bayes.BayesianLogisticRegression, functions.VotedPerceptron, meta.StackingC, 

bayes.ComplementNaiveBayes, meta.RacedIncrementalLogitBoost, meta.Stacking, 
bayes.NaiveBayesmultinomialUpdateable, bayes.NaiveBayesMultinomial, rules.ZeroR, 

bayes.DMNBtext (14) 
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After selection of key attributes bayes.NaiveBayesSimple is run in addition. Figure 13 depicts the 

results of this execution. Next, all possible mining algorithms are performed with total transmission 

packet, selected key attributes, using J48, J48graft the previous procedure. The results are as shown in 

Table 5. Fifty seven algorithms show a 100% detection rate, 14 algorithms show 50%. The overall 

detection rate is better than before. Finally, all possible mining algorithms are executed with average 

packet size and total transmission packet size. The results are similar to those in Table 5. 

Figure 13. Buffer overflow attack—detection rate (after ADTree, RandomTree, REPTree). 

 

5.3. Discussion for Scalability Issue 

This paper’s main contribution is to propose a way to make a detection model using two mining 

algorithms to improve the efficiency and performance. The first algorithm selects key attributes among 

candidate attributes. Next, the second algorithm actually makes the detection model with data for 

selected key attributes outputting from the first algorithm. The final detection model improves detection 

performance because it is made with data for only a few key attributes, and modeling time reduces 

through modeling with data for a few key attributes. After that, detection can be performed through 

detection model in real time. 

In our methodology also, the scalability issue is related. The more attacks that are considered to be 

detected, the more candidate attributes are input in the first algorithm. However, as shown in the 

experimental results, our methodology can reduce modeling time that can take a lot of time, through 

selecting a few key attributes among candidate attributes. As experimental results, the average three 

key attributes of the average 16 candidate attribute was selected. Moreover, this modeling is irrelevant 

to the detection time because of performing in the offline. If the detection model is made, the detection 

is performed in real time. As a result, our proposed methodology is not strongly influenced by 

scalability problem. 
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6. Conclusions 

This work analyzed Network and System Management (NSM) requirements and NSM data objects 

for intrusion detection in power systems. We analyzed a SYN flood attack and a buffer overflow attack 

to cause a DoS attack, as described in NSM. We proposed the data attributes for the SYN flood attack 

and the buffer overflow attack, and the detection process to find efficient data mining methods for those 

attacks. In our experiments, several data mining methods showed good detection rates. Moreover, after 

key attributes selection, the overall detection rate is better than before. 

In case of SYN flood attack, a total of 64 mining algorithms are executed with the selected key 

attributes. Thirty algorithms show 99.833% detection rate and 54 algorithms show more than 90% 

detection rate. Next, the decision tree algorithms with the best detection rate are selected, and those 

algorithms show the decision tree as a result. Sixty four algorithms are performed with selected key 

attributes using result of decision tree. Three algorithms show a 100% detection rate, 29 algorithms 

show 99.833%. 

As similar with SYN flood attack, a total of 70 algorithms are executed with selected key attributes, 

and 40 algorithms show 100% detection rate. Sixty one algorithms show more than 90% detection rates. 

Again, the decision tree algorithms with the best detection rate are selected, and key attributes also 

selected as a result. A total of 71 algorithms are performed, and 57 algorithms show 100% detection rate, 

14 algorithms show 50%, the overall detection rate is enhanced after selection of key attributes. We 

prove that our selected attack attributes and the proposed detection process are efficient, and suitable 

for intrusion detection in smart grid environments. 
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