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Abstract: To accurately predict reservoir porosity, a method based on bi-directional long short-term
memory with attention mechanism (BiLSTM-AM) optimized by the improved pelican optimization
algorithm (IPOA) is proposed. Firstly, the nonlinear inertia weight factor, Cauchy mutation, and
sparrow warning mechanism are introduced to improve the pelican optimization algorithm (POA).
Secondly, the superiority of IPOA is verified by using the CEC–2022 benchmark test functions.
In addition, the Wilcoxon test is applied to evaluate the experimental results, which proves the
superiority of IPOA against other popular algorithms. Finally, BiLSTM-AM is optimized by IPOA,
and IPOA-BiLSTM-AM is used for porosity prediction in the Midlands basin. The results show that
IPOA-BiLSTM-AM has the smallest prediction error for the verification set samples (RMSE and MAE
were 0.5736 and 0.4313, respectively), which verifies its excellent performance.

Keywords: porosity prediction; bi-directional long short-term memory; pelican optimization
algorithm; nonlinear inertia weight factor; Cauchy mutation; sparrow warning mechanism

1. Introduction

Logging data are commonly used to predict reservoir parameters, including porosity,
permeability, and oil and gas saturation. Generally, logging or core data are used to
determine these reservoir properties. However, the evaluation of reservoir parameters
is insufficient due to the relatively limited reservoir data that are acquired via logging
and coring. Usually, a simplified geologic model or empirical formulas are established
to estimate the reservoir parameters of an unknown interval [1]. But because of the very
heterogeneous strata and complex geologic circumstances, the logging data frequently
show a strong nonlinear characteristic, and the relative relationship between various data
is complicated [2].

With the advent of the data-driven era and the popularity of digital oilfield, a great
number of rock property parameters can be obtained through logging technology. The
use of machine learning algorithms in the geophysics field, including in petrophysical
property evaluation [3], first-break picking [4], and lithology identification [5], has become
a major trend. Artificial neural networks (ANNs) and back-propagation neural networks
(BPNNs) have been used many times to predict logging data [6]. These neural networks
are fully connected, with separate, unconnected neurons existing in the same layer. When
predicting reservoir parameters, logging data from depths greater than or equal to the
depth of interest is not taken into account, and the accuracy of the anticipated result is
not always guaranteed. When dealing with massive data, ANN and BPNN have poor
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accuracy and are prone to falling into the local minimum. From the standpoint of network
architecture, one drawback of ANN and BPNN is that the information retrieved cannot be
sent across layers. Therefore, using ANN and BPNN to predict sequence data effectively is
challenging. Many academics use advances in ANN and BPNN to make predictions, but
putting these networks into practice is a very difficult task [7].

Deep learning is one of the main areas of machine learning research at the moment.
Numerous scientific domains have witnessed breakthrough accomplishments in deep learn-
ing [8]. Deep learning-based prediction accuracy is constantly improving, and an increasing
number of real-world development issues are being addressed with deep learning tech-
niques. A lot of experimental investigations have verified that diverse data representations
significantly influence the accuracy of task learning [9]. And deep learning can be applied
to the solution of challenging nonlinear geological issues [10]. However, the original deep
learning methods only take into account the relationship between the logging data at
different points at the same depth, ignoring the trend and correlation of the logging data
with formation depth. A recurrent neural network (RNN) incorporates the timing idea into
its architecture to improve the accuracy of the sequential data representation [11]. The long
short-term memory (LSTM) model is a modified version of RNN that efficiently solves the
gradient dispersion and exploding gradient issues in RNN through the use of a special
model structure. The inability of RNN to remember feature information over an extended
period of time during training and learning is another issue that LSTM can resolve. LSTM
uses implicit unit neurons, which is a type of information transmission mechanism similar
to that of organismal neurons. Therefore, LSTM can take into consideration the variation
trend of the log sequence data with depth in addition to utilizing the internal relationships
among different logging sequences [12]. However, LSTM can only make use of the cor-
relation of logging data information in a single direction. Bi-directional long short-term
memory (BiLSTM) can extract the features of the logging sequence from the front and back,
respectively, along the depth, and make full use of the dependent information in the front
and back sequences to predict the reservoir porosity [13]. Further, the attention mechanism
is integrated into the hidden state by mapping weight value to strengthen the influence of
important information [14].

It has been demonstrated that the pelican optimization algorithm (POA) provides
outstanding optimization performance [15]. However, it also has the disadvantages of
unbalanced global exploration and easily falling into local optimum. The nonlinear inertia
weight factor, Cauchy mutation strategy, and sparrow warning mechanism are introduced
to improve the optimization ability and convergence speed. It can be found that IPOA-
BiLSTM-AM has more remarkable porosity prediction performance than the rival machine
learning methods, which provides a promised way for predicting porosity. The remainder
of this paper is organized as follows. Section 2 presents the principle of IPOA. Section 3
presents the superiority of IPOA by using the CEC–2022 benchmark test functions. Section 4
presents the practical application and result analysis of IPOA-BiLSTM-AM by using the
NMR porosity data in the Midlands basin. Finally, the paper is concluded in Section 5.

2. Principle and Modeling
2.1. Principle of BiLSTM-AM

The long short-term memory neural network (LSTM) is an improved recurrent neural
network (RNN). By using an LSTM network memory cell, the issue of RNN gradients
inflating or disappearing has been resolved. The input, output, and forget gates are the
three nodes that make up the hidden layer, which is constructed by the memory cells.
The gates operate selectively, allowing specific data to be saved for further processing
and enabling the LSTM network to avoid vanishing gradients. LSTM is able to retain
information because the weights of the memory cells are adjusted during backpropagation.
As a result, when long-term dependencies between input and output are needed, LSTM
networks perform admirably. The basic structural unit of LSTM network is shown in
Figure 1.
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The following represents the mathematical formulations of the associated gates of
the LSTM cell for an input sequence (X = [x1, x2, . . . , xn]) that is mapped to an out-
put (h = [h1, h2, . . . , hn]) that results from the network being activated repeatedly for
t = [1, 2, . . . , t− 1, . . . , T]:

it = σ(wixxt + wihht−1 + bi) (1)

ft = σ
(

w f xxt + w f hht−1 + b f

)
(2)

gt = φ
(

wgxxt + wghht−1 + bg

)
(3)

ot = σ(woxxt + wohht−1 + bo) (4)

ct = σ
(

gt
⊕

it + wih
⊕

ct−1

)
(5)

ht = φ(ct)
⊕

ot (6)

where w and b represent the weight matrices and the bias, respectively; it, ft, and ot are the
input gate, forget gate, and output gate, respectively; ct and ht are the cell state and hidden
state, respectively; and φ and σ denote tanh and sigmoid activation functions, respectively.

To enhance the performance of a single LSTM cell, a bi-directional recurrent network
(BiLSTM) that combines two hidden layers of LSTM is developed. After processing the
input sequence (X = [x1, x2, . . . , xn]), BiLSTM produces hidden sequences in both the for-

ward (
→
ht =

[→
h1,
→
h2, . . . ,

→
hn

]
) and backward (

←
ht =

[←
h1,
←
h2, . . . ,

←
hn

]
) directions. Concatenating

the forward and backward hidden outputs yields the final output. The encoded vector
arising from the two hidden levels can be expressed mathematically as follows:

yt = σ

(
w

y
→
h

→
ht + w

y
←
h

←
ht + by

)
(7)

→
ht = σ

(
w→

h x
xt + w→

h
→
h

→
ht−1 + b→

h

)
(8)

←
ht = σ

(
w←

h x
xt + w←

h
←
h

←
ht+1 + b←

h

)
(9)

where yt =

[→
ht,
←
ht

]
is the output of the network’s corresponding sequence for the first

hidden layer. The output of the previous layer of the stacking BiLSTM becomes the input
of its succeeding layer. The structure of BiLSTM is shown in Figure 2.
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Figure 2. Structure of BiLSTM.

An attention mechanism (AM) is a data processing method that can ignore useless
information and amplify useful information through clever and reasonable allocation. An
AM is introduced into the BiLSTM structure to assign different weights to feature vectors
and focus attention to highlight key features, and better results can be obtained. The
attention mechanism structure is shown in Figure 3.
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In Figure 3, xt is BiLSTM’s input, ht is the hidden layer output produced by BiLSTM,
and αt is the attention probability distribution of BiLSTM hidden layer’s attention mech-
anism output. The attention layer input is the output vector that the BiLSTM activation
layer processes, and the weight coefficient of the attention layer is obtained as follows:

et = utanh(wht) (10)

αt =
exp(et)

∑t
j=1 ej

(11)

yatt =
i

∑
t=1

αtht (12)

where et is the value of the attention probability distribution computed by the LSTM output
vector ht, u and w are the weight coefficients, and st is the attention layer output. The final
output yatt is a representation of the input’s high-level abstract information.
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The network structure of BiLSTM-AM is shown in Figure 4.
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It can be seen from Figure 4 that two BiLSTM layers are stacked on top of each other.
Figure 4 illustrates how input information propagates both forward and backward in each
BilLSTM structure. The input of BiLSTM2 is the output of BiLSTM1. The final hidden
states are multiplied by attention weights and summated to provide the network’s final
output. The incorporation of an attention mechanism facilitates the extraction of highly
relevant information from input sequences with a long range. The regression layer uses the
attention layer’s output to obtain the result of regression prediction.

2.2. Pelican Optimization Algorithm

Pelican optimization algorithm (POA) is a heuristic intelligent optimization algorithm
proposed by Pavel Trojovský and Mohammad Dehghani in 2022 [6]. It is inspired by
the natural behavior of pelicans during hunting and modeled by simulating the moving
towards prey (exploration phase) and winging on the water surface (exploitation phase).

2.2.1. Moving towards Prey (Exploration Phase)

The first phase involves the pelicans locating the prey and then making their way
toward it. Search space scanning and the exploration capability of POA in locating various
search space regions are made possible by modeling the pelican’s approach. The pelican’s
approach to the prey location can be defined by Equation (13):

xP1
i,j =

{
xi,j + rand·

(
pj − I·xi,j

)
, Fp < Fi;

xi,j + rand·
(
xi,j − pj

)
, else,

(13)

where xP1
i,j represents the ith pelican’s new status in the jth dimension, I is a random number

that can be either 1 or 2, pj is the location of prey in the jth dimension, and Fp is its objective
function value.
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In POA, if the value of the objective function is improved at the current position, the
new position of the pelican is accepted; otherwise, it is not. This update method prevents
the algorithm from moving to a non-optimal region. The process can be described using
Equation (14):

Xi =

{
XP1

i , FP1
i < Fi;

Xi, else,
(14)

where XP1
i represents the new status of the ith pelican, and FP1

i is the pelican’s objective
function in the first phase.

2.2.2. Winging on the Water Surface (Exploitation Phase)

In the second phase, when the pelicans reach the water’s surface, they spread their
wings on the surface of the water to move the fish upwards, then collect the prey in their
throat pouch. This strategy leads more fish in the attacked area to be caught by pelicans.
This behavior of pelicans causes POA to converge to better points in the hunting area. The
behavior of pelicans during hunting can be defined by Equation (15):

xP2
i,j = xi,j + R·

(
1− t

T

)
·(2·rand− 1)·xi,j (15)

where xP2
i,j represents the ith pelican’s new status in the jth dimension based on phase

2, R is a constant with a value of 0.2, T is the maximum iteration number, and t is the
current iteration number. R·

(
1− t

T
)

represents the radius of the neighborhood where each
population member is located in order to search locally and converge on a better solution.

At this phase, the new pelican position has also been accepted or rejected using
effective updating, which can be represented by Equation (16):

Xi =

{
XP2

i , FP2
i < Fi;

Xi, else,
(16)

where XP2
i represents the new status of the ith pelican, and FP2

i is the pelican’s objective
function in the second phase.

By updating every member of the population according to the first and second phases,
the optimal candidate solution will be updated, taking into account the population’s new
status and the objective function’s values. The algorithm then moves on to the following
iteration, repeating the various stages of POA based on Equations (13)–(16) until the
execution is finished. Lastly, a quasi-optimal solution to the given problem is offered using
the best candidate solution found. POA has the characteristics of faster optimization speed
and good convergence accuracy and has fewer parameters, is simple to operate, and has a
wide application range. However, some problems remain, such as decreasing convergence
speed and falling into local extremum in the late iteration.

2.3. Improvement of POA
2.3.1. Nonlinear Inertia Weight Factor

Coordinating the local and global optimization ability is the key factor that can affect
the optimization accuracy and speed. Since the updating of a pelican’s individual position
is closely related to the current position, the nonlinear inertia weight factor ω can be used
to adjust the correlation between the updated position and the current position information
of the pelican. The calculation method of the nonlinear inertia weight factor is as follows:

ω =
e

t
T − 1
e− 1

(17)

where T is the maximum iteration number, and t is the current iteration number. In the
initial iteration of the algorithm, ω is small, and the updating of the position of the seeking
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individual is less affected by the current position of the pelican, which is conducive to the
search of the algorithm in a larger scope and improve the global development ability of the
algorithm. With the advancement of the optimization process, ω gradually increases, and
the update of the position of the optimization individual becomes more influenced by the
pelican’s current position. Narrowing the optimization range of the algorithm helps the
algorithm search for the optimal solution, which not only improves the local exploration
ability but also improves the convergence speed. The pelican’s approach to the prey’s
location can be improved with Equation (18):

xP1
i,j =

{
ω·xi,j + rand·

(
pj − I·xi,j

)
, Fp < Fi;

ω·xi,j + rand·
(
xi,j − pj

)
, else,

(18)

2.3.2. Cauchy Mutation

The Cauchy mutation strategy is introduced to improve the optimization ability of
POA in the second phase. Each iteration compares the size of the current pelican’s fitness
value with the population average fitness value. When the current fitness value is lower
than the average fitness value of the population, it indicates that the current pelicans are in
an aggregative state. In this case, Cauchy variation strategy is adopted to increase pelican
diversity. When the current fitness value is higher than the average fitness value of the
population, the original pelican location updating method is used. The behavior of pelicans
during hunting can be improved with Equation (19):

xP2
i,j =

{
xbest + xbest·Cauchy(0, 1), FP2

i < Favg
xi,j + R·

(
1− t

T
)
·(2·rand− 1)·xi,j, else

(19)

where FP2
i is the current fitness value in the second phase, Favg is the average fitness value

of the population, and xbest is the optimal fitness value of the population.

2.3.3. Sparrow Warning Mechanism

The presence of predators makes sparrows very sensitive and cautious. When a host
of sparrows becomes aware of danger, those on the edge of the host quickly move to
safety to obtain a better position, while those in the middle of the host move randomly
to come closer to other sparrows. Therefore, the sparrow host can be integrated with the
sparrow’s warning mechanism, which can make the meta-heuristic algorithm improve
convergence speed. Therefore, the sparrow alert mechanism can be applied to improve the
optimization ability of POA in the second phase. The sparrow mechanism can be obtained
from Equation (20):

xP2
i,j =


xbest + b·

∣∣xi,j − xbest
∣∣ FP2

i > Fg

xi,j + k·
(

xi,j−xworst(
FP2

i −Fw

)
+ε

)
FP2

i = Fg
(20)

where xbest is the current global optimal location; b is a random number with a normal
distribution of mean 0 and variance 1; k is a random number between [−1,1]; FP2

i is the
fitness value of the current individual pelican; Fg and Fw are the best and worst global
fitness values, respectively; and ε is a constant to avoid zeros in the denominator. FP2

i > Fg
indicates that the pelican is at the edge of the population and is vulnerable to natural
enemies. When FP2

i = Fg, it indicates that the pelican in the middle of the swarm is aware
of the danger and needs to stay close to other pelicans to avoid predation.
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2.3.4. IPOA Calculation Flow

The IPOA calculation flow is shown in Figure 5.
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The overall steps of IPOA are as follows:

Step 1: set population size N, maximum number of iterations T.
Step 2: generate initial population.
Step 3: calculate objective function.
Step 4: generate the prey at random.
Step 5: calculate xP1

i,j according to Equation (18).

Step 6: update the Xi position according to Equation (14).
Step 7: calculate xP2

i,j according to Equations (19) and (20).

Step 8: update the Xi position according to Equation (16).
Step 9: determine whether the end condition is reached; if so, jump to the next step;
otherwise, jump to step 4.
Step 10: output the optimal solution.

3. IPOA Performance Test

In this section, the CEC–2022 benchmark test functions are employed to examine
the efficiency of IPOA. To compare the performance of IPOA with the rival algorithms,
including sand cat swarm optimization (SCSO) [16,17], dung beetle optimizer (DBO) [18],
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sparrow search algorithm (SSA) [19,20], and whale optimization algorithm (WOA) [21],
the population size and maximum iteration number are 30 and 500, respectively, in ad-
dition to the average value of each objective function derived from 30 separate runs for
each algorithm.

3.1. Exploration and Exploitation Analysis

The test results of IPOA and other algorithms are shown in Table 1, where the mean
and the standard deviation of the fitness value are applied to assess the search accuracy
and stability. IPOA finds the better solution when solving F1, F2, F3, F4, F6, F9, F10, and
F11 functions. WOA is better at solving the function F5. For the functions F7 and F8, IPOA
is the similar to POA but still better than the rest of the algorithms. For function F12, the
search capability of all algorithms is reduced. Therefore, the above comparison shows the
excellent performance of IPOA.

Table 1. Results of IPOA, POA, SCSO, DBO, SSA, and WOA on CEC–2022 benchmark functions. The
standard deviation is presented in parentheses and the best values are written in bold.

Funciton IPOA POA SCSO DBO SSA WOA

F1 3.29 × 102 7.34 × 102 3.07 × 103 3.68 × 103 5.26 × 103 4.12 × 103

(1.37 × 102) (8.84 × 102) (2.36 × 103) (1.90 × 103) (2.25 × 103) (2.26 × 103)
F2 4.22 × 102 4.28 × 102 4.45 × 102 4.55 × 102 4.66 × 102 4.58 × 102

(2.95 × 101) (3.04 × 101) (3.54 × 101) (3.43 × 101) (3.62 × 101) (3.18 × 101)
F3 6.06 × 102 6.19 × 102 6.17 × 102 6.24 × 102 6.22 × 102 6.10 × 102

(4.72 × 100) (9.68 × 100) (1.06 × 101) (5.54 × 100) (1.07 × 101) (5.55 × 100)
F4 8.13 × 102 8.19 × 102 8.28 × 102 8.23 × 102 8.47 × 102 8.31 × 102

(6.59 × 100) (4.44 × 100) (5.17 × 100) (6.56 × 100) (7.25 × 100) (1.04 × 101)
F5 1.16 × 103 1.09 × 103 1.13 × 103 1.05 × 103 9.79 × 102 1.02 × 103

(2.21 × 102) (1.21 × 102) (2.01 × 102) (7.86 × 101) (4.88 × 101) (1.14 × 102)
F6 4.57 × 102 2.79 ×103 4.48 × 103 2.23 × 103 5.17 × 104 1.43 × 104

(2.44 × 102) (1.40 × 103) (2.23 × 103) (5.67 × 102) (3.63 × 104) (1.43 × 104)
F7 2.03 × 103 2.03 × 103 2.05 × 103 2.05 × 103 2.08 × 103 2.05 × 103

(9.43 × 100) (1.06 × 101) (2.26 × 101) (1.17 × 101) (3.70 × 101) (2.42 × 101)
F8 2.22 × 103 2.22 × 103 2.23 × 103 2.23 × 103 2.25 × 103 2.23 × 103

(2.06 ×100) (7.45 × 100) (4.11 × 100) (7.87 × 100) (2.23 × 101) (3.82 × 100)
F9 2.53 × 103 2.54 × 103 2.59 × 103 2.56 × 103 2.64 × 103 2.60 × 103

(1.92 × 10−1) (2.77 × 101) (4.48 × 101) (1.42 × 101) (4.39 × 101) (3.04 × 101)
F10 2.50 × 103 2.55 × 103 2.56 × 103 2.54 × 103 2.64 × 103 2.57 × 103

(6.53 × 101) (6.24 × 101) (6.51 × 101) (3.84 × 100) (4.22 × 101) (6.34 × 101)
F11 2.71 × 103 2.77 × 103 2.88 × 103 2.81 × 103 3.27 × 103 3.03 × 103

(1.37 × 102) (1.62 × 102) (2.12 × 102) (6.53 × 101) (2.78 × 102) (2.21 × 102)
F12 2.87 × 103 2.87 × 103 2.88 × 103 2.87 × 103 2.87 × 103 2.87 × 103

(5.68 × 100) (1.09 × 101) (1.91 × 101) (3.85 × 100) (9.04 × 100) (9.47 × 100)

3.2. Comparative Analysis of Algorithm Convergence Curves

The performance of IPOA is analyzed with the convergence curve. Figure 6 shows the
convergence curves of IPOA, POA, SCSO, DBO, SSA, and WOA algorithms on CEC–2022
benchmark functions. It can be concluded from Figure 6 that IPOA can acquire relatively
satisfactory mean fitness values with a convergence that is more rapid than that of the other
proposed algorithms in the iteration process.

3.3. Statistical Analysis Rank-Sum Test

In this section, the Wilcoxon test is used to further compare the distinctions between
IPOA and the rival algorithms. The nonparametric Wilcoxon rank-sum tests’ p-values
for the pairwise comparison between IPOA and the rival algorithms (SCSO, DBO, SSA,
and WOA) are shown in Table 2. In this table, the “+” denotes the proposed algorithm’s
supremacy where p < 0.05 and the “−” indicates that the proposed algorithm’s obtained
answer is inferior to the compared algorithms where p > 0.05.
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Table 2. Pair-wise comparison with IPOA and the rival algorithms.

Funciton IPOA vs. POA IPOA vs. SCSO IPOA vs. DBO IPOA vs. SSA IPOA vs. WOA

P h P h P h P h P h

F1 1.29 × 10−9 + 8.15 × 10−11 + 3.02 × 10−11 + 3.34 × 10−11 + 3.69 × 10−11 +
F2 3.48 × 10−2 + 1.85 × 10−3 + 1.63 × 10−5 + 3.81 × 10−6 + 1.67 × 10−4 +
F3 6.01 × 10−8 + 4.42 × 10−6 + 4.50 × 10−11 + 1.17 × 10−9 + 5.57 × 10−3 +
F4 9.88 × 10−3 + 6.91 × 10−4 + 7.28 × 10−11 + 1.20 × 10−10 + 4.85 × 10−3 +
F5 6.52 × 10−1 − 9.00 × 10−1 − 3.87 × 10−1 − 2.71 × 10−2 + 8.50 × 10−2 −
F6 8.12 × 10−4 + 1.00 × 10−3 + 7.22 × 10−6 + 6.70 × 10−11 + 1.41 × 10−9 +
F7 6.57 × 10−2 − 8.56 × 10−4 + 2.88 × 10−6 + 1.61 × 10−10 + 1.95 × 10−3 +
F8 2.01 × 10−4 + 3.82 × 10−9 + 6.07 × 10−11 + 3.02 × 10−11 + 1.33 × 10−10 +
F9 9.67 × 10−9 + 5.04 × 10−11 + 2.25 × 10−11 + 2.25 × 10−11 + 2.25 × 10−11 +
F10 6.31 × 10−3 + 9.82 × 10−3 + 9.33 × 10−2 − 6.01 × 10−8 + 9.47 × 10−1 −
F11 2.60 × 10−3 + 1.17 × 10−4 + 3.33 × 10−3 + 9.62 × 10−10 + 5.99 × 10−7 +
F12 2.64 × 10−2 + 4.19 × 10−2 + 5.97 × 10−5 + 1.34 × 10−5 + 3.40 × 10−2 +

The algorithm performance of IPOA and the rival algorithms is significantly different
in F1, F2, F3, F4, F6, F8, F9, F11, and F12 functions. For function F5, the search capability of
IPOA is similar to that of POA, SCSO, DBO, and WOA. For function F7, IPOA is similar to
POA. For function F10, IPOA is similar to DBO. According to the above analysis, IPOA is
generally superior to the rival algorithms.
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4. Practical Application and Result Analysis
4.1. Construction of BiLSTM-AM Based on IPOA

In the training of BiLSTM-AM, IPOA is used to optimize the three parameters in
BiLSTM-AM, including the number of nodes in the hidden layer, initial learning rate, and
L2 regularization coefficient. In traditional model training, parameter selection is manually
adjusted according to experience, which is greatly affected by subjective factors, so it is
difficult to obtain the optimal model. Therefore, IPOA can be used to acquire the optimal
combination of parameters, and the root mean square error (RMSE) is chosen as the fitness
function. The specific steps of IPOA-BiLSTM-AM are as follows:

Step 1: Divide the input dataset into a training set and test set, and normalize the
data to [0,1] using the max-min normalization method. The expression of the max-min
normalization method is as follows:

x′ =
x− xmin

xmax − xmin
(21)

where x is the actual vector, xmax and xmin are the maximum and minimum values of the
vector x, respectively, and x′ is the normalized vector.

Step 2: Establish an objective function model. The objective function is the root-mean-
square error (RMSE), which is expressed as follows:

RMSE =

√
1
N ∑N

i=1(yk − ŷk)
2 (22)

where yk is the true value, and ŷk is the predicted value of BiLSTM-AM.
Step 3: IPOA is used to optimize the hyperparameters of BiLSTM-AM, and the optimal

individual (the optimal parameters in BiLSTM-AM) is selected by judging the value of the
fitness function or the maximum number of iterations.

Step 4: Apply the optimal combinations of the parameters to the estimation of BiLSTM-AM.

4.2. Data Preparation

Nuclear magnetic resonance logging (NMR) is an effective method to evaluate the
porosity of a complex lithologic reservoir. The exploration well A with NMR, located in
the Midlands basin, is studied. In addition, the Wolfcamp formation (2130–2330 m) is the
interest interval of well A. The log graph for well A is shown in Figure 7. The included
logging sequence is as follows: acoustic time difference (DT), density (RHOB), neutron
porosity (NPHI), gamma ray (GR), true resistivity (RT), and the porosity derived by NMR
(NMR porosity). It is important to note that due to data confidentiality requirements, we
cannot present the original NMR graphs.

4.3. Analysis of Prediction Results

It is assumed that well A at depths from 2130 to 2260 m has the entire NMR porosity,
which can be used as the training dataset to create IPOA-BiLSTM-AM and the rival models,
including BPNN, the gated recurrent unit network (GRU), and LSTM. The six parameters
(DEPTH, CAL, NPHI, GR, DT, and RT) serve as input parameters. The NMR porosity is the
output parameter.

To prevent a huge search space from affecting optimization efficiency, the search range
of relevant parameters is limited. Specifically, the L2 regularization coefficient is limited
to 10−8–10−2, the initial learning rate was limited to 10−4–10−3, and the number of nodes
in the hidden layer is limited to 10–100. The fitness reduction rate in the training phase of
BiLSTM-AM is shown in Figure 8. As can be observed, IPOA converges more quickly than
the rival algorithms, and the final error resulting from IPOA is lower than those obtained
from the rival algorithms. This further verifies the superiority of IPOA.
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The parameter optimization results of IPOA are as follows: the number of nodes in
the hidden layer is 60, the initial learning rate is 0.002, and the L2 regularization coefficient
is 0.003. Using the trained model, the “missing” porosity of well A at depths from 2261 to
2330 m can be predicted. The quantitative prediction results of IPOA-BiLSTM-AM and the
rival models are shown in Table 3. It can be observed that IPOA-BiLSTM-AM has better
prediction performance than the rival models.
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Table 3. Quantitative prediction results of IPOA-BiLSTM-AM and the rival models in well A at
depths from 2261 to 2330 m.

Model RMSE MAE

BPNN 1.1217 1.0338
GRU 0.9712 0.9025
LSTM 0.7421 0.6918

IPOA-BiLSTM-AM 0.5736 0.4313

The comparison between NMR porosity and estimated porosity in well A at depths
from 2261 to 2330 m by the trained models is shown in Figure 9. The IPOA-BiLSTM-AM
model’s prediction results are closer to the measured porosity, demonstrating that it is more
appropriate for porosity prediction than the rival models.
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The cross-plots of the NMR porosity versus predicted porosity utilizing IPOA-BiLSTM-
AM, and the rival models are displayed in Figure 10.

It can be shown that the predicted porosity of IPOA-BiLSTM-AM is more in line
with NMR porosity than the rival models, demonstrating that IPOA-BiLSTM-AM is more
effective for porosity prediction. In conclusion, IPOA-BiLSTM-AM has an excellent effect
on porosity prediction, clearly demonstrating its advantages.
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5. Conclusions

In this paper, a reservoir porosity prediction method based on IPOA-BiLSTM-AM is
proposed. BiLSTM-AM can fully extract the dependent information in the front and back
sequences and strengthen the influence of important information. The nonlinear inertia
weight factor, Cauchy mutation, and sparrow warning mechanism can improve the local
exploration ability and the convergence speed of POA. In addition, IPOA-BiLSTM-AM
is used for porosity prediction in the Midlands basin. In comparison to the rival models,
IPOA-BiLSTM-AM has the fewest errors (RMSE: 0.5736 and MAE: 0.4313). Additionally,
the estimated porosity of IPOA-BiLSTM-AM is more in line with NMR porosity than the
rival models. Therefore, it can be confidently stated that IPOA-BiLSTM-AM is much better
suited for porosity prediction.
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