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Abstract: Efficient management of renewable energy resources is imperative for promoting environ-
mental sustainability and optimizing the utilization of clean energy sources. This paper presents
a pioneering European-scale study on energy management within renewable energy communities
(RECs). With a primary focus on enhancing the social welfare of the community, we introduce
a reinforcement learning (RL) controller designed to strategically manage Battery Energy Storage
Systems (BESSs) and orchestrate energy flows. This research transcends geographical boundaries by
conducting an extended analysis of various energy communities and diverse energy markets across
Europe, encompassing different regions of Italy. Our methodology involves the implementation of
an RL controller, leveraging optimal control theory for training and utilizing only real-time data
available at the current time step during the test phase. Through simulations conducted in diverse
contexts, we demonstrate the superior performance of our RL agent compared to a state-of-the-art
rule-based controller. The agent exhibits remarkable adaptability to various scenarios, consistently
surpassing existing rule-based controllers. Notably, we illustrate that our approach aligns with the
intricate patterns observed in both Italian and European energy markets, achieving performance
levels comparable to an optimal controller assuming perfect theoretical knowledge of future data.

Keywords: reinforcement learning; energy community; social welfare; energy management; online
scheduling; mixed-integer optimization

1. Introduction

In recent times, renewable energy sources have gained attention as a sustainable
alternative to traditional fossil fuels. Fueled by goals outlined for ecological transition, such
as those outlined in the European Agenda 2030 [1], there is a growing focus on renewable
resources. The rise of communities dedicated to sustainable energy, often portrayed as
agents of change with significant benefits for participants [2], has prompted the need for a
carefully structured framework to facilitate the integration of these sources into the power
grid. As delineated in [3], renewable energy communities (RECs) are coalitions of individuals
and entities collaborating to advocate and employ renewable energy sources, encompassing
solar, wind, and hydroelectric power. This collective effort promotes the adoption and
utilization of environmentally friendly energy alternatives. These entities exist in various
forms, from small clusters of residents collectively funding solar panel installations to
large-scale organizations driving communal renewable energy initiatives. The primary
goal of RECs is to enhance the overall social welfare of the community (refer to the formal
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explanation below). This encompasses managing the expenses and income associated with
energy transactions within the community and with the broader grid. A crucial component
of the necessary infrastructure is the Battery Energy Storage System (BESS), which plays a
vital role in balancing energy supply and demand.

Addressing this challenge has seen the application of diverse techniques such as tradi-
tional optimization methods, heuristic algorithms, and rule-based controllers [4,5]. Notably,
the mixed-integer linear programming (MILP) solution has demonstrated considerable
success in energy management applications. In [6], the authors addressed the problem of
managing an energy community hosting a fleet of electric vehicles for rent. The request-
to-vehicle assignment requires the solution of a mixed-integer linear program. In [7], the
authors presented an optimized MILP approach specifically aimed at improving the social
welfare of a REC, a parameter that embraces revenues from the energy sold to the grid,
costs for energy bought from the grid, costs for battery usage, and potential incentives for
self-consumption. However, effectively scheduling BESS charging/discharging policies
encounters a critical hurdle due to the pronounced intermittency and stochastic nature
of renewable generation and electricity demand [8]. Accurately predicting these uncer-
tain variables proves to be a formidable task, and this is where machine learning-based
strategies come into play [9,10]. Alternatively, to address this issue, uncertainty-aware opti-
mization techniques have been developed, such as stochastic programming (SP) and robust
optimization (RO) [11]. SP employs a probabilistic framework but requires a priori knowl-
edge of the probability distribution to model the uncertainties, whereas RO focuses on the
worst-case scenario and, therefore, requires the known bounds of the uncertainties, leading
to far more conservative performance. On the flip side, an alternative strategy for real-time
scheduling, such as model predictive control (MPC), introduced in [12], has emerged. MPC
continuously recalibrates its solution in a rolling-horizon fashion. Although beneficial,
the effectiveness of the MPC solution is contingent upon the precision of forecasts [13].
Moreover, the substantial online computational load of long-horizon MPC in extensive
systems poses a potential hurdle for real-time execution. Hence, there is a notable shift in
focus toward methodologies rooted in deep reinforcement learning (DRL). In recent years,
DRL has gained substantial relevance in diverse energy management applications [14–16].
Addressing the distinctive constraints inherent in power scheduling poses a significant
challenge for DRL approaches. An uncomplicated strategy involves integrating constraints
into the reward function as soft constraints [17]. To tackle this issue, approaches based on
imitation learning (IM) have been suggested. In [18], the agent learns directly from the
trajectories of an expert (specifically, an MILP solver). Despite the commendable outcomes,
these approaches often overlook the incentive for virtual self-consumption proposed in the
Italian framework. In [19], an interactive framework for benchmarking DRL algorithms
was presented; however, it is not reflective of REC behavior and incentive schemes. Fur-
thermore, the primary objective typically revolves around flattening consumption curves
(benefiting energy suppliers), as observed in [14], rather than maximizing the social welfare
of the community.

In our previous work [20], we introduced a novel DRL strategy for managing energy
in renewable energy communities. This strategy introduces an intelligent agent designed
to maximize social welfare through real-time decision making, relying only on currently
available data, thus eliminating the necessity for generation and demand forecasts. To
enhance the agent’s training effectiveness, we leverage the MILP approach outlined in [7]
by directly incorporating optimal control policies within an asymmetric actor–critic frame-
work. Through diverse simulations across various REC setups, we demonstrate that our
methodology surpasses a state-of-the-art rule-based controller. Additionally, it yields
BESS control policies with performance closely matching the optimally computed ones
using MILP. In this study, we have expanded our research scope to encompass a broader
framework that addresses the entire European landscape. By doing so, we aim to shed
light on the advantages of our study in a more comprehensive context. This extended
perspective allows us to offer insights into the applicability and benefits of our innovative
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DRL approach not only within individual RECs but also on a larger scale, contributing to a
more sustainable and efficient energy landscape across Europe.

1.1. Hypothesis of This Study

This study focuses on efficiently managing renewable energy resources to promote
sustainability and optimize clean energy usage. Our primary hypothesis centers on the
potential for RL controllers to significantly enhance energy management within RECs.
Specifically, we posit that the strategic utilization of RL, particularly in the orchestration of
BESSs, can lead to substantial improvements in social welfare within these communities.
By transcending geographical boundaries and conducting a comprehensive examination of
various energy communities and markets across Europe, we aim to test the hypothesis that
RL controllers, grounded in optimal control theory and utilizing real-time data, can outper-
form existing rule-based controllers. Through extensive simulations in diverse contexts, we
seek to demonstrate the adaptability of our proposed RL agent to various scenarios and
its ability to achieve performance levels comparable to an optimal controller with perfect
theoretical knowledge of future data. This hypothesis forms the basis of our investigation
into advancing sustainable energy management strategies across European regions.

1.2. Enhancing Novelty: Methodological Advancements and Unexplored Territories

This study unfolds with a distinctive focus on augmenting the novelty of our re-
search methodologies and delving into previously unexplored territories within the realm
of renewable energy management. This study employs sophisticated simulation frame-
works, specifically designed within the OpenAI Gym, to replicate real-world REC dynamics.
Additionally, this study broadens its geographical scope to encompass diverse energy
communities and markets across Italy and Europe, providing insights into regional varia-
tions and unexplored complexities. The methodological innovations and exploration of
uncharted territories in this study establish a strong foundation for future research efforts.
By pushing the boundaries of current understanding in the field, this study sets a precedent
for integrating cutting-edge methodologies into renewable energy studies.

1.3. Regional Variations in Energy Dynamics: Insights from Italian Regions and Beyond

Understanding REC dynamics requires analyzing regional variations in energy dy-
namics. The inclusion of various regions within Italy serves as a crucial aspect of our study,
providing insights into the specific challenges and opportunities within the Italian energy
landscape. Italy’s diverse geographical and socio-economic characteristics necessitate a tai-
lored approach to energy management, making it an ideal testing ground for our proposed
reinforcement learning (RL) controller. On the other hand, extending our analysis to coun-
tries beyond Italy, such as France, Switzerland, Slovenia, and Greece, adds a transnational
dimension to our research. The selection of these specific countries is grounded in their
diverse energy market structures, regulatory frameworks, and renewable energy adoption
rates. France, with its nuclear-heavy energy mix, offers a contrasting scenario to Italy’s
reliance on renewables. Switzerland, a country known for its hydropower capacity, pro-
vides insights into decentralized energy systems. Slovenia and Greece, with their unique
geographical characteristics, contribute to a more comprehensive understanding of REC
dynamics in southern Europe. By incorporating this diverse set of countries, we aim to
capture a broad spectrum of challenges and opportunities faced by different European
regions. This comparative analysis enhances the generalizability of our findings, allowing
us to extrapolate insights that are not only relevant to Italy but also applicable to a broader
European context. The careful selection of these countries aligns with our goal of providing
a holistic perspective on the application of RL controllers in optimizing energy management
across diverse geographical and regulatory landscapes.

This work proceeds as follows. Section 2 encompasses a review of the relevant litera-
ture. Section 3 formalizes the task and introduces our methodology. Section 4 delineates
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the simulations and illustrates the numerical outcomes. Finally, Section 5 concludes the
discussion, delving into potential future advancements.

2. Related Works

Given our interest in the European perspective and the aim to compare various
countries, we examine energy communities operating under an incentive framework akin
to the one embraced in Italy. Within this context, the Italian government ensures incentives
for virtual self-consumption within a renewable energy community, as described in [21–23].
Virtual self-consumption is defined as “the minimum, in each hourly period, between the
electricity produced and fed into the network by renewable energy plants and electricity taken from
all final customers associates”.

Most research efforts focus on managing shared energy among community members
and optimizing economic outcomes. This includes analyzing storage system scheduling
and maximizing incentives. For example, the framework presented in [24] delved into
a scenario featuring a photovoltaic (PV) generation facility, a BESS, and a central user
entity representing all community consumers connected to the public grid. This config-
uration allows for a streamlined analysis, focusing on the aggregate community virtual
self-consumption rather than individual instances, with the incentives attained subse-
quently calculated retrospectively. Another contribution can be found in [25], where the
authors proposed a model considering various generators and consumers, with a central
BESS acting as a community member. In the community framework examined in [8], there
are exclusive consumers alongside a single prosumer equipped with a PV installation and
a BESS. Strict limitations are enforced to ensure the BESS charges solely from the PV system
and to prevent simultaneous charging and discharging (utilizing binary variables), thereby
avoiding arbitrage situations resulting from self-consumption incentives.

Paper’s Contributions

This paper explores the application of reinforcement learning to renewable energy
communities within an incentive framework. In this context, community members maintain
their contracts with energy providers and buyers and receive incentives for the virtual self-
consumption achieved at the community level. A centralized scheme is considered, where
entities share consumption and generation information to maximize overall community
welfare, including the incentive. This analysis extends beyond Italy, encompassing various
European states to provide a comparative perspective and account for diverse situations.
The significance of this study lies in its broad examination of RECs across European states,
offering insights into reinforcement learning’s applicability in diverse regulatory environ-
ments. The collaborative, centralized approach enhances energy management efficiency,
optimizes community welfare, and promotes sustainability. The focus on community-level
incentives adds realism, addressing the interconnected nature of REC operations.

This paper builds upon a conference paper [20]. Here, we provide more details
regarding the adopted methodology and extend the validation to new datasets from several
European countries.

3. Methods

In this section, we outline the problem formulation, control techniques employed,
designed architecture, optimization procedure, and simulated environment used.

3.1. Problem Formulation

Suppose an energy community consists of U entities, each including a load, a generator,
and a Battery Energy Storage System (BESS). A centralized energy controller is responsible
for computing the scheduling of the BESS. At each time step t, the controller chooses an
action au,t for the BESS of each entity u. These actions, denoted by values in the range of
[−1, 1], represent the fraction of the rated power ru for charging or discharging the BESS.
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The amounts of energy charged to and discharged from the battery of entity u at time
t are computed as follows:

echa
u,t = max{0, au,tru∆T} (1)

edis
u,t = max{0,−au,tru∆T}. (2)

To account for physical constraints, actions at each time step are bounded as follows:

Aupper
u,t = min{ru, gu,t/∆T , (cu − esto

u,t )/(∆Tηcha
u )} / ru (3)

Alower
u,t = min{ru, ηdis

u esto
u,t /∆T} / ru. (4)

Consequently, the action space of the controller is continuous and within the range
of [−Alower

u,t , Aupper
u,t ], where positive values indicate BESS charging and negative values

indicate discharging.
The energy controller’s objective is to select actions that maximize the daily social

welfare of the community. This welfare is defined by the following equation:

W = ∑
t∈T

∑
u∈U

[
π

egr
u,t egri

u,t − π
igr
u,t igri

u,t − πsto
u,t (η

cha
u echa

u,t +
1

ηdis
u

edis
u,t)

]
+ ∑

t∈T
πinc

t min
{

∑
u∈U

egri
u,t , ∑

u∈U
igri
u,t

}
.

(5)

This equation encompasses the revenues from energy sold to the grid, costs for energy
bought from the grid, costs for battery usage, and incentives for virtual self-consumption.
Notice that the min term in (5) represents the virtual community self-consumption, as
defined in [21].

The objective is to maximize (5) with respect to feasible actions while adhering to
constraints like BESS dynamics, energy balance, and complementarity constraints, ensuring
non-simultaneous export to and import from the grid for each entity. For more details,
interested readers can refer to [7,26]. To ensure that the community’s operation is decoupled
on different days, an additional constraint is imposed: the BESSs must be fully discharged
at the beginning and end of each day.

3.2. Optimal Control Policy

As discussed in [7], the optimization problem in Section 3.1 is non-convex due to
complementarity constraints of the type:

egri
u,t · igri

u,t = 0. (6)

These constraints enforce that there is no simultaneous import and export with the grid
for each entity of the community at each time period. To address this issue, an equivalent
MILP formulation was proposed in [7]. The formulation requires binary variables for each
entity and for each time step to determine the direction of the energy exchange with the
grid. It is stressed that when the demand and generation profiles are the true ones, the
MILP provides the optimal BESS control policy. While assuming to have an oracle is not
realistic in practice, in this paper, we make a twofold use of the optimal BESS control policy
computed with the MILP: first, to aid in agent training within an actor–critic structure, and
second, to assess the performance of the proposed DRL approach on fresh data not used
for training.

3.3. Reinforcement Learning Approach

The MILP formulation presented in Section 3.2 necessitates the solution of daily
demand and generation profiles (or their forecasts). In this section, we introduce a deep
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reinforcement learning (DRL) approach that determines the next actions based solely on
the currently available information.

To achieve this, the problem described in Section 3.1 is cast as a classical reinforcement
learning (RL) problem. RL is an agent-based algorithm that learns through interaction with
the environment it controls [27,28] (see Figure 1).

Figure 1. Agent–environment interaction in RL framework.

The objective of the agent (referred to as the energy controller) is to maximize the
expected cumulative sum of discounted rewards over time. RL is formalized using a
Markov Decision Process (MDP), represented by a tuple 〈S, A, P, R, γ〉, where P is a state
transition probability matrix, denoting the probability that action a in state s at time t leads
to state s′ at time t + 1:

Pa
ss′ = P[St+1 = s′|St = s, At = a], (7)

R is a reward function expressing the expected reward received after transitioning
from state s to state s′ with action a:

Ra
s = E[Rt+1|St = s, At = a], (8)

and γ ∈ [0, 1] is a discount factor for future rewards. The policy π represents a mapping
between states and actions, π : S −→ A, describing the behavior of an agent.

RL is further formalized using a Markov Decision Process (MDP), which includes
the sets of states S and actions A, a reward function R : S × A, and transition probabilities
between states P : S × A × S ∈ [0, 1]. The policy π represents a mapping between states
and actions, π : S −→ A, and the value function Vπ(S) is the expected return for the agent
starting in state s and following policy π, i.e.,

Vπ(S) = ∑
a

π(s, a)∑
s′

Pa
ss′ [R

a
ss′ + γVπ(s′)], (9)

where Ra
ss′ , denoted as r(s,a), is the reward obtained after taking action a = π(s), transi-

tioning from the current state s to the next state s’, and γ ∈ [0, 1] is a discount factor for
future rewards.

We designate the energy controller as the typical reinforcement learning (RL) agent,
which, by iteratively engaging with an environment E across independent episodes and
discrete-time steps, receives input observations si and rewards ri and generates actions
ai. As previously stated, the agent’s objective is to maximize the daily welfare of the
community by taking actions every hour. The agent operates without relying on forecasting
data, as it only has access to current time-step information. In our context, si captures only a
portion of the true hidden state of the problem, i.e., the data for the entire day. Consequently,
the environment E is characterized as a Partially Observable Markov Decision Process
(POMDP). The classical RL paradigm is impractical for this scenario because modeling the
action space would necessitate computing all possible state–action combinations.

To address these challenges, we leverage Deep Neural Network (DNN) approximators
and adopt the actor–critic formulation. Specifically, our goal is to learn an actor model that
provides the optimal policy for the given task and a critic model responsible for evaluating
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such a policy. Both the actor and the critic are implemented using two distinct DNNs:
a Policy-DNN (the actor network) and a Value-DNN (the critic network). The latter is
active only during the training phase, whereas the Policy-DNN is the actual model used
during testing to determine actions. Instead of employing traditional symmetric actor–critic
implementations, where the two DNNs share the same inputs, we adopt an asymmetric
structure. Inputs to the Policy-DNN are segregated into global data, common to all entities,
and individual data from each entity. Prior to being fed into the network, the inputs undergo
preprocessing. Table 1 summarizes the data constituting the state of the Policy-DNN.

Table 1. Policy-DNN state.

Global π
egr
u,t π

igr
u,t month day type hour

Individual lu,t gu,t esto
u,t Alower

u,t Aupper
u,t

Since the critic operates exclusively during the training phase, the structure of the
asymmetric actor–critic offers an opportunity to impart additional supervised information,
which is more challenging to acquire during testing, to the critic network. Specifically, in
addition to the inputs presented to the actor, we furnish the Value-DNN with the optimal
action computed for the load and generation data corresponding to that precise time step.
Assuming no stochasticity in the training data for the agent (as actions impact only a
portion of the state, i.e., the state of charge of the batteries), this information is readily
derived for the training data through the optimal control optimization procedure detailed
in Section 3.2. By incorporating this information about the optimal action achievable at that
time step into the network, we empower the critic to more effectively evaluate the actions
undertaken by the actor.

3.4. Actor–Critic Architecture

The Policy-DNN, as illustrated in Figure 2, processes the preprocessed data (referred to
as the actor’s state) outlined in Table 1. This neural network employs five fully connected
layers, and each layer undergoes layer normalization over a mini-batch of inputs, following
the approach detailed in [29]. The U outputs produced by the final layer correspond to the
actions for the U entities. All layers, excluding the output layer, incorporate ReLu activation.
The number of neurons in each layer is depicted in Figure 2.

Figure 2. Illustration of the architecture of the Policy-DNN utilized in this study, showcasing the
input sizes derived from both global and individual data after preprocessing. The Policy-DNN
consists of approximately 1.8 million parameters, which may vary based on the community’s size.
The preprocessing step, critical for model preparation, is visually represented in the figure, with the
green block indicating the current state St and refined input sizes fed into the fully connected layers
for decision making.
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In contrast, in addition to receiving the same actor data, the Value-DNN (see Figure 3)
is supplemented with the U optimal actions for the current time step. These optimal
actions are computed for the entire day’s generation and consumption data using the
optimal control algorithm outlined in Section 3.2. Similar to the Policy-DNN, the Value-DNN
comprises five fully connected layers, incorporating ReLu activation and layer normalization.
The final layer of the Value-DNN outputs the scalar value Vπ .

Figure 3. The visual representation within the red block provides an insightful overview of the archi-
tecture of the Value-DNN. This model receives the same inputs as the Policy-DNN and additionally
receives optimal actions computed beforehand using the MILP algorithm for the current time step.
The optimal actions do not require additional encoding, as they are naturally bounded within the
interval [−1, 1]. The state St depicted in the red box undergoes processing by a sequence of fully
connected layers to calculate the value function.

3.5. Optimization Procedure

In our scenario, the objective is to train a centralized deep reinforcement learning (DRL)
agent with the capability to manage the scheduling of Battery Energy Storage Systems
(BESSs) in an effort to maximize the daily social welfare (5) within the energy community.
To accomplish this goal, our algorithm incorporates the following two primary features:

1. Exploitation of optimal control actions: During the training phase, we have access to
optimal actions computed using the MILP algorithm outlined in Section 3.2. We
leverage this information to enhance our agent’s training. By feeding the optimal
actions as input to the Value-DNN, we aim to improve the critic’s ability to evaluate
the actions taken by the actor.

2. Reward penalties for constraint violations: At each time step, the Policy-DNN of the
agent generates U actions, each corresponding to a specific entity. As the training
objective is to maximize social welfare, we utilize the social welfare for that time step
as the reward signal for the actor’s actions. The Policy-DNN’s output actions are in
the range of [−1, 1]. Each action is then scaled by the rated power (i.e., ru) of the BESS
of the corresponding entity to determine the actual power for charging/discharging
the storage systems. Each action is then multiplied by the rated power (i.e., ru) of the
BESS of the corresponding entity to obtain the actual power for charging/discharging
the storage systems. However, the actor’s actions may violate feasibility constraints.
In such cases, actions that do not comply with the constraints are replaced with
physically feasible actions, and a penalty is computed for the constraint violation for
each action (au,t) using (10):

ku,t =


max(0, (au,t − Aupper

u,t )) au,t > 0
max(0, (|au,t| − Alower

u,t )) au,t < 0
0 au,t = 0

(10)
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The resulting total penalty is the average of the individual penalties:

Kt =
1
U ∑

u
ku,t. (11)

This overall penalty is subtracted from the reward, resulting in the following reward
signal, which is used to train the agent:

Rt = Wt − σ ∗ Kt, (12)

where Wt is the social welfare (5) computed for the current time step and σ is a training
hyperparameter. By providing -Alower

u,t and Aupper
u,t as inputs to the networks and using

such a reward signal, our agent is capable of both maximizing social welfare and
learning actions that do not violate physical constraints. It is indeed not uncommon
to use DRL algorithms to train a single model to solve different tasks in parallel.

The models undergo optimization using the well-known Soft Actor–Critic (SAC)
algorithm [30]. As a method operating off-policy, SAC effectively utilizes a replay buffer [31]
to recycle experiences and derive insights from a reduced sample pool. SAC is built upon
three fundamental features: an actor–critic architecture, off-policy updates, and entropy
maximization. The algorithm learns three distinct functions: the actor (policy), the critic
(soft Q-function), and the value function V defined as:

V(st) = Eat∼πθ
[Q(st, at)] + αH, (13)

where H ≥ 0 is the Shannon entropy of the policy πθ . In the context of state st, this entropy
is the probability distribution of all possible actions available to the agent. A policy with
zero entropy is deterministic, implying that all actions, except the optimal one a∗t , have
zero probability πθ(a∗t |st) = 1. Policies with non-zero entropy enable more randomized
action selection, enhancing exploration and avoiding premature convergence to suboptimal
policies. The SAC agent’s objective is to learn the optimal stochastic policy π∗, given by:

π∗ = arg max
πθ

T

∑
t=0

E(st ,at)∼ρπ
[r(st, at) + αH(πθ(·|st))]. (14)

The deterministic nature of the final optimal policy is achieved by simply choosing the
expected action of the policy (mean of the distribution) as the action of choice, as performed
in the evaluation of our agents after training. Here, (st, at)∼ρπ represents a state–action pair
sampled from the agent’s policy and r(st, at) is the reward for that particular state–action
pair. Due to the inclusion of the entropy term, the agent endeavors to maximize returns
while exhibiting behavior that is as random as possible. The critic network’s parameters
undergo updates by minimizing the expected error JQ between the predicted Q-values and
those calculated through iteration, expressed as:

JQ = E(st ,at)∼D

[
1
2
(Qθ(st, at)− (r(st, at) + γst+1∼ρ[Vθ(st+1)]))

2
]

. (15)

In Equations (13) and (14), the hyperparameter α ∈ (0, 1) is denoted as the temperature.
This parameter plays a pivotal role in influencing the significance of the entropy term
and, consequently, the stochasticity of the learned policy. Specifically, setting α = 1
would emphasize behaving as stochastically as possible, potentially resulting in uniformly
random behavior. Conversely, when α = 0, the entropy is disregarded, directing the agent
to prioritize maximizing the return without exploration, thereby leading to an almost
deterministic policy. For a more comprehensive understanding of the Soft Actor–Critic
(SAC) algorithm, we direct interested readers to the relevant literature [30]. It is noteworthy
that the parameters for the policy π and the value function Vπ differ due to the utilization
of an asymmetric actor–critic paradigm.
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3.6. Simulation Environment

Throughout our investigation, the development of a simulated environment emerged
as a critical component tailored specifically to facilitate the training of our intelligent agent.
This simulation tool, meticulously crafted in accordance with the recognized standards
of OpenAI Gym [32], stands as a sophisticated platform designed to emulate the intricate
dynamics inherent to a renewable energy community operating within an incentive frame-
work. Within this simulated REC environment, we considered a variable number of entities
denoted by U, with each entity potentially equipped with solar panels for energy generation
and an associated electrical storage system. The flexibility of our simulation setup is a
noteworthy feature, allowing for the granular customization of the REC’s configuration.
Parameters such as the number of entities, power output of the solar panels, and capacity of
the Battery Energy Storage Systems (BESSs) are all user-defined, facilitating a diverse range
of scenarios for the agent to navigate and learn from. As depicted in Figure 4, the simulated
environment operates on a discrete-time basis, reflecting the temporal dynamics of real-
world REC dynamics. At each discrete-time step, the environment receives a set of actions
computed by our DRL agent. These actions, which dictate the charging or discharging
power for each individual BESS within the community, are integral to steering the energy
flows and optimizing overall system performance. The simulation process then unfolds as
the environment responds to these actions by updating its state information, encapsulating
the current energy status of each entity and the community as a whole. Additionally, a
reward signal is generated at each time step, as defined by Equation (12). This reward signal
encapsulates the feedback mechanism for the DRL agent, serving as a quantitative measure of
the efficacy of its actions in alignment with the overarching goal of optimizing social welfare
within the REC. This dynamic feedback loop encapsulates the iterative learning process of
the DRL agent, allowing it to continually adapt and optimize its decision-making strategies
over successive time steps. The incorporation of this carefully crafted simulated environment
ensures a controlled yet realistic setting for training the agent, enabling a robust evaluation
of its performance under diverse and dynamically evolving scenarios. The versatility and
fidelity of our simulation design contribute to the reliability and generalizability of the insights
gained from the subsequent analysis of the agent’s performance.

Figure 4. In the framework, the agent–environment interaction occurs in multiple steps. Initially, the
agent calculates actions based on the current state, denoted as At, for each building. These actions
reflect the agent’s decisions. Subsequently, the Gym environment checks whether the actions comply
with the constraints. Any violations result in penalties, which are factored into the overall reward
signal. The environment then computes the community’s social welfare, a key component of the
reward signal, reflecting the societal impact of the agent’s decisions. Thus, the reward signal includes
penalties for constraint violations and the calculated social welfare, serving as a quantitative feedback
mechanism. Finally, the environment provides the agent with the calculated reward and the new
state calculated from the current state and the agent’s actions.
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3.7. Reinforcement Learning Logic Concept

In this section, we present an overview of the reinforcement learning logic concept.
For this purpose, we present a graphical representation (see Figure 5) illustrating the
approach used to train our RL agent and highlighting the various components detailed in
the previous sections.

Figure 5. Flowchart illustrating the training logic of the reinforcement learning agent.

The training phase commences with the initialization of the neural networks within the
RL agent, specifically the Policy-DNN and Value-DNN detailed in Section 3.4. Subsequently,
the training loop is initiated, operating episodically, with each iteration incrementing the
episode counter. Within each episode, two primary operations occur: cost evaluation,
assessing the agent’s capacity to maximize social welfare, and neural network updates.
Interacting with the virtual environment outlined in Section 3.6, the agent receives a
reward signal based on its policy-driven actions. As shown in Equation (12), the reward
is inclusive of social welfare, which is used precisely as a cost function to evaluate the
agent’s performance. Throughout training, the optimal MILP solution, computed a priori
with perfect knowledge of future data, serves a dual purpose. Firstly, it assesses cost by
comparing the RL agent’s performance against the MILP approach’s optimal performance,
setting an upper bound. Secondly, the neural network update phase is performed using the
SAC algorithm, as described in Section 3.5. In this phase, MILP solutions are used in the
Value-DNN to train the critic. A double condition is checked at the end of each iteration.
Training is terminated either when the episode count reaches the maximum limit Emax or
when the discrepancy between the costs obtained with the RL agent and those from MILP
falls below a predefined ϵ threshold (a training parameter).

4. Results

Our simulations were designed to evaluate the agent’s ability to optimize social
welfare, as expressed by Equation (5), within the energy community. To demonstrate the
generalization capabilities and effectiveness of our proposed approach, experiments were
conducted across various scenarios and conditions.

4.1. Dataset Selection and Rationale

In our investigation, we carefully curated data from 11 diverse regions across Italy
and Europe to simulate various configurations of renewable energy communities. These
regions encompassed a mix of geographical locations, each with unique characteristics
influencing energy dynamics. Included were northern and southern Italy, specific Italian
islands, and European nations such as Slovenia, Switzerland, Greece, and France. To ensure
a robust representation of energy consumption scenarios, we leveraged datasets provided
CityLearn [19] to simulate building consumption. These datasets enabled the simulation
of different building types, ranging from industrial facilities to retail establishments and
households. This diverse set of building profiles ensured a comprehensive exploration
of REC dynamics, considering the varied energy needs and consumption patterns across
different sectors. For generation data, we relied on PVGIS, a reliable source offering
accurate information on photovoltaic generation potential. This choice was motivated



Energies 2024, 17, 1249 12 of 19

by the need for precise and region-specific generation data to capture the nuances of
each zone’s renewable energy potential. In terms of energy prices, we aimed for realism
by considering actual market conditions. Zone-specific energy sale prices for 2022 were
sourced from the GME (Gestore Mercati Elettrici) website, providing real-world market
rates. The choice of specific pricing structures, such as hourly bands for Italian zones and
fixed rates for France, Switzerland, Slovenia, and Greece, reflects the diverse energy market
dynamics in these regions. This meticulous approach to data selection ensured that our
simulation captured the intricacies of each region, facilitating a nuanced analysis of REC
performance and behavior under varying conditions.

In the pursuit of comprehending the dynamics of RECs across diverse regions in
Italy and Europe, we present visual representations that offer invaluable insights into
two pivotal aspects: annual photovoltaic production and energy purchase/sale prices.

Production Across Six Zones

The first visual aid encapsulates the annual production in six distinct zones. This
graphical representation presents the AC inverted power (W) on the ordinate axis and
spans across the months on the abscissa. Through this visual narrative, we aim to provide
a comprehensive depiction of daily fluctuations in energy generation. By juxtaposing these
figures, readers can discern the geographical nuances influencing the production landscape
and appreciate the temporal dynamics inherent in renewable energy sources.

Energy Purchase and Sale Prices in Four Zones

The second visual representation delves into the intricate dynamics of energy markets
by showcasing the purchase and sale prices across four zones. This comparative view offers
a nuanced understanding of the economic factors shaping REC operations by providing
a condensed narrative of the energy market’s history, including daily fluctuations and
peak periods. With buying and selling prices as the focal points, this visual aid provides a
snapshot of the economic landscape within which these communities operate, facilitating
an insightful analysis of market trends and regional disparities.

These visuals, coupled with our meticulous dataset selection process, lay the foun-
dation for the exploration of RECs’ behavior and performance. They not only enhance
the reader’s understanding of regional disparities but also set the stage for a comprehen-
sive analysis of the interconnected factors shaping the renewable energy landscape across
diverse European contexts.

4.2. Training Details

The Policy-DNN and Value-DNN were trained with an SAC agent over 150 episodes,
employing the Adam optimizer [33] with learning rates of 1 × 10−4 and 5 × 10−4, respec-
tively, and a batch size of 512. Each episode consisted of one year of hourly sampled data,
totaling 8760 steps, and ended at the end of the year. The penalty coefficient of the reward
(i.e., σ) was set to 10 and the discount factor γ to 0.99. We clipped the gradient norm at
40 for all the networks. The SAC parameter τ and the temperature coefficient α were set
to 5 × 10−4 and 0.1, respectively. We used a replay buffer with a maximum capacity of
106 trajectories.

4.3. Evaluation Scenarios, Baselines, and Metrics

We assessed the performance of our methodology across diverse setups of the energy
community. In each configuration, we modified the community’s parameters, including
the number of entities, generation and consumption profiles, prices for the purchase and
sale of energy, and sizing of the photovoltaic arrays and storage systems. In particular,
we analyzed RECs designed in 11 different areas distributed among Italian regions and
European countries (see Figure 6):

1. FRAN: France, Paris;
2. SVIZ: Switzerland, Berne;
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3. SLOV: Slovenia, Ljubljana;
4. GREC: Greece, Athens;
5. NORD: northern Italy;
6. CNORD: central-northern Italy;
7. CSUD: central-southern Italy;
8. SUD: southern Italy;
9. CALA: Calabria region, Italy;
10. SICI: Sicily island, Italy;
11. SARD: Sardinia island, Italy.

Figure 6. Positions of energy communities among European states: 7 RECs in different Italian regions,
and 1 REC for each capital in France, Switzerland, Slovenia, and Greece.

In each zone, the generation and consumption profiles, as well as the purchase and sale
prices, varied, as described in Section 4.1. The performance of our approach was evaluated
in four configurations of the energy community, including 3, 5, 7, and 9 entities. As shown
in Table 2, for each configuration, we used the data of one climate zone for training, and
then we tested the agent on two different climate zones.

Table 2. Climate zones used for each energy community.

Community Train Test1 Test2

3 entities SUD SICI GREC
5 entities CNOR SLOV SARD
7 entities CALA SVIZ CNOR
9 entities FRAN CSUD NORD

Table 3 shows the sizes of the photovoltaic systems (kWp) and storage systems (kWh)
for the buildings in the different types of communities.

Throughout both the training and testing phases, we benchmarked our agent against
two baseline energy controllers:

1. Optimal Controller (OC), as detailed in Section 3.2. The optimal scheduling of the BESSs
for each day was determined using a mixed-integer linear programming (MILP) algo-
rithm. This approach assumes complete knowledge of generation and consumption
data for all 24 h, yielding optimal actions for BESS control and maximizing the daily
community welfare.
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2. Rule-Based Controller (RBC). The BESSs’ actions were determined by predefined rules
following Algorithm 1. Rule-based controllers, as exemplified in Algorithm 1, are
commonly employed to schedule the charge and discharge policies of storage systems.
For each entity, the RBC controller charged the BESS with surplus energy as long
as the battery had not reached maximum capacity. Conversely, if less energy was
produced than required, the loads were supplied with the energy from the BESS, if
available.

Table 3. Production and storage system sizing for each energy community.

3 Entities 5 Entities 7 Entities 9 Entities

Entity ID PV BESS PV BESS PV BESS PV BESS

1 - - - - - - 120 140
1 - - - - - - 70 80
3 - - - - 30 60 50 45
4 - - - - 60 70 40 75
5 - - 25 50 50 50 25 50
6 - - 20 30 10 30 20 30
7 35 20 20 40 35 50 25 35
8 20 35 30 40 40 50 40 50
9 25 40 20 35 40 50 30 35

Algorithm 1: Rule-based controller action selection
Result: action for entity u at time t
δu,t = gu,t − lu,t;
if δu,t ≥ 0 then

echa
u,t = min{ru∆T , δu,t, (cu − esto

u,t )/ηcha
u };

edis
u,t = 0;

else
echa

u,t = 0;
edis

u,t = min(ru∆T ,−δu,t, ηdis
u esto

u,t );
end

Given that the primary objective of the energy controller is to maximize daily social
welfare, we evaluated our agent’s performance by comparing the social welfare achieved
by the RL controller’s actions with that achieved by the baseline controllers. The OC
solution served as an upper limit (optimal solution), representing the best possible results.
Therefore, we assessed our agent’s performance by determining how closely it approached
the optimal solution. Similarly, we also evaluated the performance difference when using
the RBC controller instead of the OC controller.

The trend of daily social welfare over a one-year period is depicted by a non-stationary
time series. We contend that calculating the ratio between the OC, RL, and RBC time
series may lead to misleading results. This is due to the fact that comparing small values
of welfare may yield small differences but high ratios. For this reason, to quantitatively
measure the performance of the compared approaches, we introduced the following metric:

Fit Score: This metric measures the similarity between two time series T1 and T2 by
returning the fit score between them, defined as:

F =

(
1 − ∑(T2 − T1)

2

∑(T1 − T1)2

)
∗ 100%. (16)

In our context, T1 always represents the OC series, providing the best possible solution
achieved with an oracle providing perfect forecasts. Meanwhile, T2 represents either the
RL or the RBC series. This approach allowed us to assess how close our method was to the



Energies 2024, 17, 1249 15 of 19

optimal solution and, simultaneously, how much better our method performed compared
to a rule-based controller.

4.4. Results Discussion

The outcomes of the simulations are documented in Table 4. For each trial conducted
across diverse community configurations, the table displays the fit scores between the OC
controller and the alternative energy controllers. Notably, our approach (RL) consistently
outperformed the rule-based controller and achieved results comparable to the performance
of the optimal controller, representing the upper limit. These outcomes stem directly from
the learned policy of social welfare maximization by our agent.

It is important to note that the data on generation, consumption, and energy purchase
and sale prices (see Figures 7 and 8) varied significantly across the various areas where
energy communities were simulated (refer to Table 2). These results indeed underscore
the agent’s capacity to generalize the learned policy even in previously unseen contexts,
distinct from the scenarios encountered in the training phase.

Upon scrutinizing the performance of the RBC in various energy community con-
figurations, it became evident that in some scenarios, the RBC controller achieved very
poor results. This phenomenon can be attributed to the fact that the use of a controller
based on trivial rules is not suitable for an extremely dynamic environment where prices
change hourly based on the energy market. It is noteworthy that, unlike RBC, the RL agent
managed to maintain almost consistent performance, even with an increasing number of
entities and the use of data from different areas, thereby significantly outperforming the
rule-based controller.

Figure 7. Monthly distribution of PV generation in six distinct zones. The detailed visualization
highlights the high variability among the different geographic areas considered in this study.

Table 4. Train and test results for each energy community configuration.

Community Controller Train Test1 Test2

SUD SICI GREC

3 entities RL 99.55% 98.72% 91.91%
RBC 97.32% 96.04% 82.23%

CNOR SLOV SARD

5 entities RL 99.57% 96.17% 98.94%
RBC 95.38% 93.28% 96.75%

CALA SVIZ CNOR

7 entities RL 97.70% 95.77% 97.61%
RBC 64.49% 94.48% 94.79%
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Table 4. Cont.

Community Controller Train Test1 Test2

FRAN CSUD NORD

9 entities RL 97.95% 95.87% 95.74%
RBC 56.91% 94.91% 93.58%

Figure 8. Daily dynamics of energy market transactions. The figure displays the purchase (import)
and sale (export) prices in four distinct zones. The x-axis plots the progression of days, providing
a chronological perspective, whereas the y-axis quantifies prices in EUR, providing a standardized
metric for evaluation.

5. Conclusions

Our study introduces a novel experimental strategy for BESS scheduling in energy
communities. We propose a reinforcement learning agent capable of maximizing the so-
cial welfare of the community using only current time-step data, without relying on data
forecasts. Through extensive experiments, we show that our approach surpasses the per-
formance of a state-of-the-art (SotA) rule-based controller and achieves results comparable
to an optimal MILP controller that assumes perfect knowledge of future data. Experi-
ments demonstrate how our agent reaches good performance in vastly different application
scenarios, where energy consumption, production data, and purchase and sale prices
can vary greatly. Importantly, our study spans geographical boundaries, encompassing a
comprehensive examination of various energy communities and diverse energy markets
across Europe, including different regions of Italy. The observed performance of our RL
agent aligns seamlessly with the intricate patterns characterizing both Italian and European
energy markets. This not only validates the viability of RL-based approaches in practical
energy management scenarios but also emphasizes the potential impact of our findings on
advancing sustainable energy utilization strategies across diverse European regions.

Implications and Limitations of this Study

Our study on energy management within renewable energy communities offers valu-
able insights with both theoretical and practical implications. The utilization of reinforce-
ment learning controllers demonstrates promising outcomes for optimizing social welfare
within RECs. The theoretical implications highlight the efficacy of RL-based approaches in
navigating the complex and dynamic nature of energy systems, emphasizing their adapt-
ability and performance advantages over traditional rule-based systems. Practically, our
study provides actionable insights for policymakers, energy planners, and community
stakeholders. The performance of the RL agent across diverse scenarios in European regions
suggests its potential as a practical tool for enhancing energy management efficiency. Its
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adaptability to different market patterns in both Italian and European contexts reinforces
its versatility in real-world applications. Our research extends implications to other studies
in the field of renewable energy and smart grid management. The findings suggest RL
controllers as a viable solution for optimizing energy flows. However, acknowledging
the limitations of our study is essential. Although the regional scope provides valuable
insights, it may not capture the full spectrum of global energy dynamics. Further research
could explore the application of RL controllers in different cultural and regulatory contexts.
Additionally, addressing the assumption of perfect theoretical knowledge of future data in
the optimal controller scenario by incorporating more realistic forecasting methods may be
vital for future studies.

In conclusion, our study quantifies significant contributions to the field of renewable
energy management. Our approach achieves performance levels comparable to an optimal
controller with perfect theoretical knowledge, emphasizing its tangible impact on advanc-
ing sustainable energy utilization strategies. The adaptability of our agent to different
market patterns is reflected in its robust performance, providing a quantified measure of
its effectiveness.

In future work, we aim to conduct experiments in energy community scenarios with
even more entities involved, transitioning from a centralized solution to a more scalable
distributed solution based on the promising federated reinforcement learning technique.

Author Contributions: Conceptualization, G.P. and L.G.; Software, L.G. and M.S.; Validation, G.P. and
A.R.; Writing—original draft, G.P. and L.G.; Writing—review & editing, A.R. and S.P.; Supervision,
S.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by grant under the FRESIA project.

Data Availability Statement: Data available on request due to restrictions eg privacy or ethical.

Conflicts of Interest: Authors Giulia Palma and Leonardo Guiducci declare that a portion of their
research was financially supported by Sunlink Srl. The funder was not involved in the study design,
collection, analysis, interpretation of data, the writing of this article or the decision to submit it for
publication. The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

REC Renewable Energy Community
BESS Battery Energy Storage System
PV Photovoltaic
RL Reinforcement Learning
DRL Deep Reinforcement Learning
DNN Deep Neural Network
SAC Soft Actor–Critic
RBC Rule-Based Controller
OC Optimal Control
MILP Mixed-Integer Linear Programming

Constants and sets
U number of entities forming the community
T number of time periods per day
∆T duration of a time period (h)
S set of states
A set of actions

Variables
igri
u,t energy imported from the grid by entity u at time t (kWh)

egri
u,t energy exported to the grid by entity u at time t (kWh)

esto
u,t energy level of the battery of entity u at time t (kWh)

echa
u,t energy supplied to the battery of entity u at time t (kWh)

edis
u,t energy withdrawn from the battery of entity u at time t (kWh)
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Parameters
cu maximum capacity of the battery of entity u (kWh)
gu,t energy generated by PV plant of entity u at time t (kWh)
lu,t energy demand of entity u at time t (kWh)
ru rated power of the battery of entity u (kW)
ηdis

u discharging efficiency of battery of entity u
ηcha

u charging efficiency of battery of entity u
π

egr
u,t unit price of energy exported to the grid by entity u at time t (EUR/kWh)

π
igr
u,t unit price of energy imported from the grid by entity u at time t (EUR/kWh)

πsto
u,t unitary cost for usage of energy storage of entity u at time t (EUR/kWh)

πinc
t unit incentive for community self-consumption at time t (EUR/kWh)

References
1. United Nations. Agenda 2030. Available online: https://tinyurl.com/2j8a6atr (accessed on 28 January 2024).
2. Gjorgievski, V.Z.; Cundeva, S.; Georghiou, G.E. Social arrangements, technical designs and impacts of energy communities: A

review. Renew. Energy 2021, 169, 1138–1156. [CrossRef]
3. Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable

sources. Off. J. Eur. Union 2018, 328, 84–209. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=
CELEX:32018L2001 (accessed on 28 January 2024).

4. Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the Art in Research on Microgrids: A Review. IEEE Access 2015,
3, 890–925. [CrossRef]

5. Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Microgrids energy management systems: A critical review on methods, solutions, and
prospects. Appl. Energy 2018, 222, 1033–1055. [CrossRef]

6. Zanvettor, G.G.; Casini, M.; Giannitrapani, A.; Paoletti, S.; Vicino, A. Optimal Management of Energy Communities Hosting a
Fleet of Electric Vehicles. Energies 2022, 15, 8697. [CrossRef]

7. Stentati, M.; Paoletti, S.; Vicino, A. Optimization of energy communities in the Italian incentive system. In Proceedings of the 2022
IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Novi Sad, Serbia, 10–12 October 2022; pp. 1–5.

8. Talluri, G.; Lozito, G.M.; Grasso, F.; Iturrino Garcia, C.; Luchetta, A. Optimal battery energy storage system scheduling within
renewable energy communities. Energies 2021, 14, 8480. [CrossRef]

9. Aupke, P.; Kassler, A.; Theocharis, A.; Nilsson, M.; Uelschen, M. Quantifying uncertainty for predicting renewable energy time
series data using machine learning. Eng. Proc. 2021, 5, 50.

10. Liu, L.; Zhao, Y.; Chang, D.; Xie, J.; Ma, Z.; Sun, Q.; Yin, H.; Wennersten, R. Prediction of short-term PV power output and
uncertainty analysis. Appl. Energy 2018, 228, 700–711. [CrossRef]

11. Chen, Z.; Wu, L.; Fu, Y. Real-Time Price-Based Demand Response Management for Residential Appliances via Stochastic
Optimization and Robust Optimization. IEEE Trans. Smart Grid 2012, 3, 1822–1831. [CrossRef]

12. Parisio, A.; Rikos, E.; Glielmo, L. A Model Predictive Control Approach to Microgrid Operation Optimization. IEEE Trans.
Control. Syst. Technol. 2014, 22, 1813–1827. [CrossRef]

13. Palma-Behnke, R.; Benavides, C.; Lanas, F.; Severino, B.; Reyes, L.; Llanos, J.; Sáez, D. A Microgrid Energy Management System
Based on the Rolling Horizon Strategy. IEEE Trans. Smart Grid 2013, 4, 996–1006. [CrossRef]

14. Vazquez-Canteli, J.R.; Henze, G.; Nagy, Z. MARLISA: Multi-Agent Reinforcement Learning with Iterative Sequential Action
Selection for Load Shaping of Grid-Interactive Connected Buildings. In Proceedings of the 7th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation, Yokohama, Japan, 18–20 November 2020. [CrossRef]

15. Bio Gassi, K.; Baysal, M. Improving real-time energy decision-making model with an actor-critic agent in modern microgrids
with energy storage devices. Energy 2023, 263, 126105. [CrossRef]

16. Ji, Y.; Wang, J.; Xu, J.; Fang, X.; Zhang, H. Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning.
Energies 2019, 12, 2291. [CrossRef]

17. Mocanu, E.; Mocanu, D.C.; Nguyen, P.H.; Liotta, A.; Webber, M.E.; Gibescu, M.; Slootweg, J.G. On-Line Building Energy
Optimization Using Deep Reinforcement Learning. IEEE Trans. Smart Grid 2019, 10, 3698–3708. [CrossRef]

18. Gao, S.; Xiang, C.; Yu, M.; Tan, K.T.; Lee, T.H. Online Optimal Power Scheduling of a Microgrid via Imitation Learning. IEEE
Trans. Smart Grid 2022, 13, 861–876. [CrossRef]

19. Vázquez-Canteli, J.R.; Dey, S.; Henze, G.; Nagy, Z. CityLearn: Standardizing Research in Multi-Agent Reinforcement Learning for
Demand Response and Urban Energy Management. arXiv 2020, arXiv:2012.10504.

20. Guiducci, L.; Palma, G.; Stentati, M.; Rizzo, A.; Paoletti, S. A Reinforcement Learning approach to the management of Renewable
Energy Communities. In Proceedings of the 2023 12th Mediterranean Conference on Embedded Computing (MECO), Budva,
Montenegro, 6–10 June 2023; pp. 1–8. [CrossRef]

21. Legge 28 Febbraio 2020, n. 8, Recante Disposizioni Urgenti in Materia di Proroga di Termini Legislativi, di Organizzazione
delle Pubbliche Amministrazioni, Nonché di Innovazione Tecnologica. Gazzetta Ufficiale n. 51. 2020. Available online:
https://www.gazzettaufficiale.it/eli/id/2020/02/29/20G00021/sg (accessed on 28 January 2024).

https://tinyurl.com/2j8a6atr
http://doi.org/10.1016/j.renene.2021.01.078
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001
http://dx.doi.org/10.1109/ACCESS.2015.2443119
http://dx.doi.org/10.1016/j.apenergy.2018.04.103
http://dx.doi.org/10.3390/en15228697
http://dx.doi.org/10.3390/en14248480
http://dx.doi.org/10.1016/j.apenergy.2018.06.112
http://dx.doi.org/10.1109/TSG.2012.2212729
http://dx.doi.org/10.1109/TCST.2013.2295737
http://dx.doi.org/10.1109/TSG.2012.2231440
http://dx.doi.org/10.1145/3408308.3427604
http://dx.doi.org/10.1016/j.energy.2022.126105
http://dx.doi.org/10.3390/en12122291
http://dx.doi.org/10.1109/TSG.2018.2834219
http://dx.doi.org/10.1109/TSG.2021.3122570
http://dx.doi.org/10.1109/MECO58584.2023.10154979
https://www.gazzettaufficiale.it/eli/id/2020/02/29/20G00021/sg


Energies 2024, 17, 1249 19 of 19

22. Autorit à di Regolazione per Energia Eeti e Ambiente. Delibera ARERA, 318/2020/R/EEL—Regolazione delle Partite Economiche
Relative all’Energia Condivisa da un Gruppo di Autoconsumatori di Energia Rinnovabile che Agiscono Collettivamente in Edifici
e Condomini oppure Condivisa in una Comunità di Energia Rinnovabile. 4 August 2020. Available online: https://www.arera.it
(accessed on 28 January 2024).

23. Decreto Ministeriale 16 Settembre 2020 —Individuazione della Tariffa Incentivante per la Remunerazione degli Impianti a Fonti
Rinnovabili Inseriti nelle Configurazioni Sperimentali di Autoconsumo Collettivo e Comunità Energetiche Rinnovabili. Gazzetta
Ufficiale n. 285. 2020. Available online: https://www.mimit.gov.it/it/normativa/decreti-ministeriali/decreto-ministeriale-16
-settembre-2020-individuazione-della-tariffa-incentivante-per-la-remunerazione-degli-impianti-a-fonti-rinnovabili-inseriti-
nelle-configurazioni-sperimentali-di-autoconsumo-collettivo-e-comunita-energetiche-rinnovabili (accessed on 28 January 2024).

24. Cielo, A.; Margiaria, P.; Lazzeroni, P.; Mariuzzo, I.; Repetto, M. Renewable Energy Communities business models under the 2020
Italian regulation. J. Clean. Prod. 2021, 316, 128217. [CrossRef]

25. Moncecchi, M.; Meneghello, S.; Merlo, M. A game theoretic approach for energy sharing in the italian renewable energy
communities. Appl. Sci. 2020, 10, 8166. [CrossRef]

26. Stentati, M.; Paoletti, S.; Vicino, A. Optimization and Redistribution Strategies for Italian Renewable Energy Communities. In
Proceedings of the IEEE EUROCON 2023—20th International Conference on Smart Technologies, Torino, Italy, 6–8 July 2023;
pp. 263–268. [CrossRef]

27. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2018.
28. Rizzo, A.; Burgess, N. An action based neural network for adaptive control: The tank case study. In Towards a Practice of

Autonomous Systems; MIT Press: Cambridge, MA, USA, 1992; pp. 282–291.
29. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
30. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with

a Stochastic Actor. arXiv 2018, arXiv:1801.01290.
31. Wang, Z.; Bapst, V.; Heess, N.; Mnih, V.; Munos, R.; Kavukcuoglu, K.; de Freitas, N. Sample Efficient Actor-Critic with Experience

Replay. arXiv 2017, arXiv:1611.01224.
32. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016, arXiv:1606.01540.
33. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.arera.it
https://www.mimit.gov.it/it/normativa/decreti-ministeriali/decreto-ministeriale-16-settembre-2020-individuazione-della-tariffa-incentivante-per-la-remunerazione-degli-impianti-a-fonti-rinnovabili-inseriti-nelle-configurazioni-sperimentali-di-autoconsumo-collettivo-e-comunita-energetiche-rinnovabili
https://www.mimit.gov.it/it/normativa/decreti-ministeriali/decreto-ministeriale-16-settembre-2020-individuazione-della-tariffa-incentivante-per-la-remunerazione-degli-impianti-a-fonti-rinnovabili-inseriti-nelle-configurazioni-sperimentali-di-autoconsumo-collettivo-e-comunita-energetiche-rinnovabili
https://www.mimit.gov.it/it/normativa/decreti-ministeriali/decreto-ministeriale-16-settembre-2020-individuazione-della-tariffa-incentivante-per-la-remunerazione-degli-impianti-a-fonti-rinnovabili-inseriti-nelle-configurazioni-sperimentali-di-autoconsumo-collettivo-e-comunita-energetiche-rinnovabili
http://dx.doi.org/10.1016/j.jclepro.2021.128217
http://dx.doi.org/10.3390/app10228166
http://dx.doi.org/10.1109/EUROCON56442.2023.10199011

	Introduction
	Hypothesis of This Study
	Enhancing Novelty: Methodological Advancements and Unexplored Territories
	Regional Variations in Energy Dynamics: Insights from Italian Regions and Beyond

	Related Works
	Methods
	Problem Formulation
	Optimal Control Policy
	Reinforcement Learning Approach
	Actor–Critic Architecture
	Optimization Procedure
	Simulation Environment
	Reinforcement Learning Logic Concept

	Results
	Dataset Selection and Rationale
	Training Details
	Evaluation Scenarios, Baselines, and Metrics
	Results Discussion

	Conclusions
	References

