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Abstract: Energy communities are key actors in the energy transition since they optimally intercon-
nect renewable energy capacities with the consumers. Despite versatile objectives, they usually aim
at improving the self-consumption of renewable electricity within low-voltage grids to maximize
revenues. In addition, energy communities are an excellent opportunity to supply renewable electric-
ity to regional and national energy systems. However, effective price signals have to be designed
to coordinate the needs of the energy infrastructure with the interests of these local stakeholders.
The aim of this paper is to demonstrate the integration of energy communities at the national level
with a bottom–up approach. District energy systems with a building scale resolution are modeled
in a mixed-integer linear programming problem. The Dantzig–Wolfe decomposition is applied to
reduce the computational time. The methodology lies within the framework of a renewable energy
hub, characterized by a high share of photovoltaic capacities. Both investments into equipment
and its operation are considered. The model is applied on a set of five typical districts and weather
locations representative of the Swiss building stock. The extrapolation to the national scale reveals
a heterogeneous photovoltaic potential throughout the country. Present electricity tariffs promote
a maximal investment into photovoltaic panels in every region, reaching an installed capacity of
67.2 GW and generating 80 TWh per year. Placed in perspective with the optimal PV capacity forecast
at 15.4 GWpeak at the national level, coordinated investment between local and national actors is
needed to prevent dispensable expenses. An uncoordinated design is expected to increase the total
costs for residential energy systems from 12% to 83% and curtails 48% of local renewable electricity.

Keywords: energy communities; renewable energy hub; MILP; multi-objective optimization; Dantzig–
Wolfe decomposition

1. Introduction

In 2018, the European Parliament emphasized the role of energy communities in
the energy transition [1]. The reasons include the penetration of renewable energies, the
reduction of energy poverty and the enhancement of technological acceptance [2]. Energy
communities aim at supplying energy needs with a high self-consumption of local energy
sources. The reduction in the electricity grid reliance prevents costly grid reinforcements,
therefore supporting a rapid electrification of heating and mobility services. In Switzerland,
the electricity demand is expected to increase from 57 TWh/yr today to 95 TWh/yr in
2050, from which 33 TWh/yr is and will be supplied by hydropower [3,4]. Based on
the cost-optimum scenario, the remaining electricity will be supplied by PV capacities
(15.4 GW) and wind turbines (20 GW) [3]. The high investment into distributed capacities
highlights the need for coordination between energy communities and grid utilities. The
involvement of these actors in the decision-making dictates the energy flowing through the
energy network, ultimately affecting the whole infrastructure.
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The concept of an energy community is not strictly delimited, but it can be described as
a local energy system encompassing distributed sustainable energy conversion units, both
on the supply and demand sides [2]. The concept of the energy hub is usually used to model
such systems. Multi-energy sources supply a multi-service demand with conversion units
being optimally interconnected and operated. Extensive reviews have been carried out
on this topic [5]. The scale considered varies from local energy hubs, such as a residential
area to large-scale systems, including a whole country. Energy communities are usually
deployed at the neighborhood scale since the proximity facilitates governance.

Due to its network structure, modeling an energy community at the district scale with
a building resolution usually exceeds computational power [6]. Facing this problem, a
popular method is to fix some degrees of freedom by making assumptions and scenarios
based on expert knowledge (Table 1). As an example, half of the literature reviewed
assumes energy demand profiles or predetermines the energy system configuration. The
issue with such assumptions is the consideration of a fixed energy demand instead of
energy services to be fulfilled. The change of approach is beneficial since it does not assume
local investment decisions into energy capacities [7]. Therefore, it allows an optimal system
design considering the interdependencies between subsystem components. An example
within energy communities is the sharing of renewable energy capacities among buildings
to maximize self-consumption. Another dimension is the coordination of the investments
among subsystems to respect constraints at the district’s boundary, such as grid constraints.
Modeling subsystems as entities embedded in a larger system reveals the interdependency
of the decision-making. It also entails an ethical aspect since the modeling should account
for the interests of the actors concerned [7]. Therefore, assumptions and scenarios should
be considered with care since they tend to oversimplify the view on the problem.

Table 1. Literature review on energy communities addressing simultaneously the optimal design
and operation of energy systems: Sub problem and Main problem describe the resolution and problem
boundary of the case studies. Approach shows the methodology used to handle problem complexity.
Interdependent decisions highlights whether the authors considered decision-making interactions
between buildings, and between the national and local scales. Finally, Systemic constraints refers to
the boundary constraints consideration, such as grid constraints.

Method Analysis

Sub Problem Main Problem Approach National
Scope

Interdependent
Decisions

Systemic
Constraints Reference

Building Building Clustering ✓ ✗ ✗ [8]

Building Building Clustering ✓ ✗ ✗ [9]

Building District Pre-selection ✗ ✓ ✗ [10]

Building District Profiles ✗ ✗ ✓ [11]

Building District Pre-selection ✗ ✗ ✗ [12]

Building District Pre-selection ✗ ✗ ✗ [13]

Building District Dantzig-Wolfe ✗ ✓ ✗ [14]

District District Scenario ✗ ✗ ✗ [15]

Building District Scenario ✗ ✗ ✗ [16]

Building District Bi-level ✗ ✓ ✓ [17]

Building District Dantzig-Wolfe ✗ ✓ ✗ [18]

Building District Dantzig-Wolfe ✗ ✓ ✗ [19]

Building District Benders + Dantzig-Wolfe ✗ ✓ ✗ [20]

Building District Bi-level ✗ ✓ ✓ [21]

District District Rolling horizons ✗ ✗ ✗ [22]

Building District Clustering + Dantzig-Wolfe ✓ ✓ ✓ This paper
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Despite the extensive literature existing on the topic of energy communities, a holistic
framework is usually not considered. Besides the simplification of the problem statement,
another research gap is the lack of generality of the results. Most of the literature considers
a single case study on a neighborhood. Some authors investigated the broad impact of local
residential systems but the scope relied on single building energy systems [8,9]. Therefore,
the potential of energy communities to support the energy transition at the national level
is an evident knowledge gap in the literature. Based on these research gaps, the present
study aims at answering the following research questions:

• Methodology for scaling-up local decisions to the national level:

1. How to identify typical neighborhoods representing a whole country?
2. How does the decision-making change with geographic and urban context?

• National systemic integration of local energy systems based on interface conditions:

1. How does renewable electricity penetration change with electricity tariffs?
2. What are the impacts of considering grid capacity for energy communities?

2. Methodology

The energy community is modeled as a renewable energy hub, being defined as a
system optimally interconnecting multi-energy streams and conversion units [6]. Addi-
tionally, the energy hub is characterized by a high share of renewable energy and aims at
maximizing self-consumption. The renewable energy hub is at the district scale within a
low-voltage (LV) electricity grid served by a low-to-medium voltage (LV/MV) transformer
(Figure 1). Service demands of each building, such as domestic hot water, domestic elec-
tricity and space heating, are supplied by conversion units and a gas and electricity utility.
A mixed-integer linear programming (MILP) formulation optimizes the investment into
conversion units and the operation of the energy system. The conversion units include
thermal units (air–water heat pumps, gas boilers, and electrical heaters) and storage units
(thermal tanks and lithium-ion batteries). Batteries are available both at the building and
district scales. PV panels are the main source of renewable electricity. Their orientation on
the roofs is a decision variable as described by Middelhauve et al. [6].

Figure 1. Energy community model with energy flows and network constraints.

2.1. Optimization Problem Formulation

The objective functions are described in Equations (1a)–(1c). In the equations, deci-
sion variables are highlighted with bold characters. The total costs (TOTEX) encompass
operating costs (OPEX) and capital costs (CAPEX). The OPEX correspond to the annual
energy costs and revenues. The electricity and gas retail tariffs are given by c+l , with l either
electricity or natural gas, and the feed-in tariff is c−l . The variables Enet,±

l,p,t correspond to the
energy exchange of an energy carrier l over a period p and a duration t with the network
outside the energy community. A positive symbol represents an import of energy, and
a negative one, an export. The CAPEX (1c) consider investments and replacement costs
of energy units. The costs are annualized over an n years horizon with an interest rate i.
The investment costs Cinv are linearized with fixed (ic1

u ) and variable (ic2
u ) costs ((4a), (9a)).

The CAPEX is dictated by two decision variables, the binary decision to install a unit or
not (yu) and the installed capacity ( fu). When a conversion unit has a lifetime lu lower
than the project horizon n, the replacement cost is given by the number of replacements R
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over the horizon n ((4b), (9b)). Investment decisions are taken both at the district (4) and
building levels (9). The size of each unit is lower- and upper-bounded by two reference
capacities Fmin

u and Fmax
u (10), delimiting the region where the unit investment cost has a

linear relationship with respect to its capacity. Multi-objective optimization is performed
to evaluate the solution space at the interplay of two conflicting objectives: OPEX and
CAPEX. One objective is upper-bounded by an ϵ-constraint, while the second objective is
minimized. Pareto fronts are generated by varying the ϵ-constraints and by exchanging the
objectives that are constrained and minimized:

TOTEX = OPEX + CAPEX (1a)

OPEX = ∑
l∈L

∑
p∈P

∑
t∈T

c+l · Enet,+
l,p,t − c−l · Enet,−

l,p,t (1b)

CAPEX =
i(1 + i)n

(1 + i)n − 1
(Cinv + Crep) (1c)

Energy and mass balances as well as heat cascade are the main constraints of the
model. Equation (8a) shows the building energy balance between energy flows of the units
Ė±

b,l,u,p,t, the domestic electricity demand ĖB,−
b,l,p,t and the buildings import and export Ėgr,±

b,l,p,t.
A second energy balance is applied at the district scale (3a), allowing synergies between
buildings and between energy carriers. The energy balance is closed by energy exchanges
with the network outside the community Enet,±

l,p,t . Technical constraints are considered to
model conversion units and to account for infrastructure specifications. For example,
Constraint (3b) is applied to restrict the power exchanged on the LV/MV transformer to a
specified value Ėnet,max

el . To reduce computational burdens, time series are clustered into
typical and extreme operating periods. The typical day frequency is dp, and the timesteps
duration is dt. The model considers five main sets: buildings B, layers of energy carriers
L, typical periods P, timesteps T of each typical period, and units U. More details on the
formulation are given in the two following theses [6,8].

2.2. Dantzig–Wolfe Decomposition

Evaluating simultaneously investment and operation decisions at the building and
district scales is computationally intensive due to the network structure of the problem. As
described by Middelhauve et al. [23], the CPU time is around a few minutes for a problem
with four buildings, whereas it reaches more than an hour with nine buildings. Therefore,
the Dantzig–Wolfe decomposition is applied on the original MILP problem. The choice of
this decomposition method is linked to the presence of the linking constraints (3), which
are at the origin of the problem network structure. The algorithm has been described step
by step by Middelhauve et al. [23]. Each building energy system represents a subsystem
independent from other subsystems except for the resources balance at the district level
(3a) and capacity constraints (3b), being linking constraints. The model is decomposed
into two problems: a master problem (MP) and sub problems (SPs). The SPs represent
the subsystems and contain building energy and mass balances, as well as investments
in building-scale units. The MP considers linking constraints and represents the district
energy system problem. Figure 2 describes the decomposition algorithm. First, the SPs are
solved individually. The aim of the initiation is to obtain a set of system configurations
representative of the SPs solution space. Each configuration accounts for an investment
into conversion units Cinv/rep

i,b and associated energy flows with the district grids Ėgr,±
i,b,l,p,t.

A multi-objective optimization between CAPEX and OPEX is performed to obtain seven
system configurations for each building. With this initial set of SPs configurations, the MP
is initiated. The latter selects an optimal set of SPs configurations by a linear combination
of the proposals. A weight λi,b is attributed to each SPs design proposal. In the initiation
and iteration loop, an LP relaxation is performed, and the MP is optimized with continuous
λi,b. Once optimized, the MP calculates the dual values of the linking constraints that are
inserted in the SPs objective function as Lagrangian multipliers. While the latter provide
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SPs with information on the state of the district energy system, the SPs attempt to react to
this signal with new design proposals. The SPs are formulated as reduced costs, meaning
that a solution with a negative value has the potential to improve the MP objective. The
iteration loop terminates when the SPs cannot find negative reduced costs or when the
maximum number of iterations is reached. The solution obtained represents a lower bound
due to the LP relaxation. Therefore, a last MP optimization is performed with binary
weights λi,b to ensure integrality of the SPs binary variables. This optimization provides
an upper bound to the objective function. The resulting gap between the two bounds is
typically below 0.1% [23]. This value is considered sufficiently low, and the algorithm
is terminated.

Figure 2. Dantzig–Wolfe decomposition algorithm with information flow between the MP and SPs.

2.2.1. Master Problem

The MP objective functions are the ones described in Equations (1a)–(1c). The main
decision variable is the weight λi,b attributed to each SPs design proposal i ∈ I. Convexity
constraints (2) are applied, where Constraint (2a) represents the LP relaxation of the prob-
lem. A dual variable µb (5a) is associated with Constraint (2b) and represents the marginal
cost of the building b on the objective function. Energy balances and capacity constraints
represent the linking constraints (3) and are associated with the dual variable πl,p,t. The
latter corresponds to the marginal cost profile of resources in the district and is inserted as
an energy tariff in the SPs operating cost function (7). Investment costs (4) account for units
at the building (u ∈ U) and district (u ∈ U∗) scales:

0 ≤ λi,b ≤ 1 ∀i, b ∈ I, B (2a)

∑
i∈I

λi,b = 1 ∀b ∈ B ∽ [µb] (2b)

∑
i∈I

∑
b∈B

λi,b ·
(

Ėgr,+
i,b,l,p,t − Ėgr,−

i,b,l,p,t

)
· dp · dt = Enet,+

l,p,t − Enet,−
l,p,t ∽ [πl,p,t] (3a)

Ėnet,±
l,p,t ≤ Ėnet,max

l ∀l, p, t ∈ L, P, T (3b)

Cinv = ∑
i∈I

∑
b∈B

λi,b · Cinv
i,b + ∑

u∈U∗
bu · (ic1

u · yu + ic2
u · fu) (4a)

Crep = ∑
i∈I

∑
b∈B

λi,b · Crep
i,b + ∑

u∈U∗
∑
r∈R

1
(1 + i)r·lu

· (ic1
u · yu + ic2

u · fu) (4b)

[µb] =
∆obj

∆
(
∑i∈I λi,b

) ∀b ∈ B (5a)

[πl,p,t] =
∆obj

∆
(

Enet,+
l,p,t − Enet,−

l,p,t

) ∀l, p, t ∈ L, P, T (5b)
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2.2.2. Sub-Problem

The objective function of the the SPs (6) is the reduced cost of each building energy
system. The main decision variables are the sizing of the energy units (yb,u and fb,u) and
energy flows with the grid Ėgr,±

b,l,p,t. Similar to Constraint (3b), the LV lines capacity can be

considered with Constraint (8b), where Ėgr,max
b,l corresponds to the maximum connection

power of a building b. Equation (11a) further details the space heating demand. Buildings
are represented with a 1R1C thermal model, where Ub is the heat transfer coefficient
of the building and Cb is its heat capacity. The indoor temperature T int

b,p,t is a decision
variable, allowing for building pre-heating. Space heating requirements are divided into
K temperature intervals Ṙ±

k,b,p,t and are supplied by hot streams from energy conversion
units following heat cascades ((11b), (11c)):

Min Cop
b +

i(1 + i)
(1 + i)n − 1

(Cinv
b + Crep

b )− µb (6)

Cop
b = ∑

l∈L
∑
p∈P

∑
t∈T

(
πl,p,t · Ėgr,+

b,l,p,t − πl,p,t · Ėgr,−
b,l,p,t

)
· dt · dp ∀b ∈ B (7)

Ėgr,+
b,l,p,t + ∑

u∈U
Ė+

b,l,u,p,t = Ėgr,−
b,l,p,t + ∑

u∈U
Ė−

b,l,u,p,t + ĖB,−
b,l,p,t (8a)

Ėgr,±
b,l,p,t ≤ Ėgr,max

b,l ∀b, l, p, t ∈ B, L, P, T (8b)

Cinv
b = ∑

u∈U
bu · (ic1

u · yb,u + ic2
u · fb,u) ∀b ∈ B (9a)

Crep
b = ∑

u∈U
∑
r∈R

1
(1 + i)r·lu

· (ic1
u · yb,u + ic2

u · fb,u) ∀b ∈ B (9b)

yb,u · Fmin
u ≤ fb,u ≤ yb,u · Fmax

u ∀b, u ∈ B, U (10a)

fb,u,p,t ≤ fb,u ∀b, u, p, t ∈ B, U, P, T (10b)

Q̇SH
b,p,t = Q̇gain

b,p,t − Ub · Aera
b · (T int

b,p,t − Text
p,t )− Cb · Aera

b · (T int
b,p,t+1 − T int

b,p,t) (11a)

∀b, p, t ∈ B, P, T

Ṙk,b,p,t − Ṙk+1,b,p,t = ∑
uh∈Sh

Q̇−
uh ,k,b,p,t − ∑

uc∈Sc

Q̇+
uc ,k,b,p,t (11b)

Ṙ1,b,p,t = Ṙnk+1,b,p,t = 0 ∀k, b, p, t ∈ K, B, P, T (11c)

2.3. Limitations of the Model

The aim of the model is to design an energy system by optimally selecting the capacity
of energy conversion and storage units. The optimization takes peak power into account
when sizing energy networks. However, the dynamics of the power system, such as
frequency and voltage stability, are not considered. As a result, the design of the energy
infrastructure is based on an estimate of the peak power that would occur during its
operation. A second limitation of the model is its deterministic nature, which can be offset
by sensitivity analysis.

2.4. Key Performance Indicators

Key performance indicators are used to quantify the solutions performance. The
self-consumption (SC) is the share of onsite electricity generation potential Epot being
consumed within the district (12a). The self-sufficiency (SS) corresponds to the share of the
electricity demand being supplied by onsite generated electricity (12b). PV curtailment is
the share of onsite electricity generation potential being neither self-consumed, nor sold to
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the grid (12c). Finally, the PV penetration (PVP) is the proportion of the electricity demand
that could be supplied by the onsite generated electricity with a SC of 100% (12d). The
global warming potential (GWP) accounts for both the energy system construction and
operation emissions (12e) as described in [6]. Emissions related to the installation of energy
conversion units (ig1

u and ig2
u ) are taken from the Ecoinvent 3.6 database with the method

IPCC 2013.

SC = (Epot − Ecurt − Enet,−
el )/Epot (12a)

SS = (Epot − Ecurt − Enet,−
el )/(Epot − Ecurt − Enet,−

el + Enet,+
el ) (12b)

PVC = Ecurt/Epot (12c)

PVP = Epot/(Epot − Enet,−
el + Enet,+

el ) (12d)

GWP = ∑
l∈L

(
g+l · Enet,+

l − g−l · Enet,−
l

)
+ ∑

u∈U

1
lu

·
(

ig1
u · yu + ig2

u · fu

)
(12e)

2.5. Typical Districts Identification

Gupta et al. estimated that Switzerland hosts 17’844 MV/LV transformers [24]. To
handle this problem complexity, a k-medoids clustering algorithm is applied to find the
most representative districts of the country. The case study is implemented through a
geographic information system to adequately describe the energy demands and sources.
Clustering features consider real-estate characteristics (heating surface, roof area, service
demands, building category, and construction year) and geographic ones (annual solar
irradiation, average temperature, electricity and gas grids density). Typical Swiss weather
profiles have been assessed for each district by Stadler et al. [8]. A principal component
analysis is applied to reduce the dataset dimensionality [25]. The purpose is to restrain the
computational time while keeping the information variability from the dataset.

The k-medoids algorithm is run over 50 iterations to estimate the optimal number
of clusters Kopt. The latter corresponds to the minimum number of clusters required to
represent the initial dataset as faithfully as possible. Three indicators are used to assess the
clustering quality: elbow, silhouette and Calinski–Harabasz (CH). The silhouette and CH
indexes are two metrics of the clusters cohesion [26]. Therefore, the aim is to maximize their
score. In contrast, the elbow method measures the distortion of the clusters and should
be minimized. Figure 3 presents the mean score of the indicators. The trade-off between
information loss and complexity reduction is clear for the CH and elbow index. Below
10 clusters, the marginal performance improvement of adding a new cluster is high. The
value of Kopt is, respectively, 6 and 7 for the elbow and CH index. Regarding the silhouette
index, Kopt reaches 4 clusters but the metric does not capture well the trade-off between
information loss and complexity. While Figure 3 shows the mean score of the metrics over
all iterations, Figure 4 represents the distribution of Kopt. The silhouette and elbow score
are robust. However, the result of the CH metric is distributed over several Kopt, ranging
from 12 to 19 clusters. Since Kopt is measured at the maximum of the CH score and since
this maximum is located on a plateau, it makes Kopt difficult to locate. Therefore, the mean
score interpretation is preferred. Based on this analysis, the optimal number of clusters
is between 6 and 10. The exact value of Kopt depends on the level of detail needed for
the case studies to accurately represent specific regions. This clustering algorithm allows
considering versatile district typologies within a restricted set of case studies. In particular,
it allows the contextualization and extrapolation of local decisions to the national scale.
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Figure 3. Mean scores obtained for the three metrics over 50 iterations.

Figure 4. Occurrences of the optimal number of clusters.

2.6. Case Study

Within this case study, 6 clusters are identified to represent the whole Swiss building
stock (Figure 5). The Urban cluster is the largest one with a mix of single and multi-family
dwellings, plus commercial centers. The Sub-urban one is represented by a compact village
of 2-floor buildings. The Countryside and Mountain areas are both dominated by single-
family detached houses but with different densities. Finally, the Forest cluster is dominated
by large farms converted into residential houses. The sixth cluster is not considered in the
case study since it is characterized by forests, mountains and glaciers without any buildings.
For extrapolation to the national level, the representative roof area of each typical district is
used. Since the present study aims at analyzing the impact of energy communities, it is
assumed that each district in Switzerland can endorse the status of an energy community.
Figure 6 shows the convergence curves of each typical district for a TOTEX minimization.
The urban cluster requires the largest number of iterations to converge. One possible
explanation is linked to the heterogeneity of the buildings and their large number.

Most data are open source and provided by the Swiss government. The building
characteristics, such as the height, heated areas or types of construction, come from the
cantonal and federal Official Buildings Registry [27]. Energy standards such as the envelope
heat transfer, building heat capacity, and domestic electricity demand, as well as the internal
and external heat gains are calculated based on Swiss standard norms [28]. These data
are used to build the thermal model of the buildings [29]. The outdoor temperature and
solar irradiation come from Meteonorm [30]. These time series are clustered into ten typical
periods of 24 h and two extreme periods of one hour using k-medoids clustering. The project
horizon is 20 years, and the interest rate 2%. Electricity and gas retail tariffs are, respectively,
0.25 CHF/kWh and 0.14 CHF/kWh and the feed-in tariff is 0.10 CHF/kWh. These values
are based on average energy tariffs in Switzerland for the years 2022–2023 [31]. The carbon
content of electricity and natural gas are respectively set to 0.13 and 0.23 kg CO2 /kWh. The
fixed investment cost for PV panels is CHF 6556, and the variable cost is 1300 CHF/kWpeak.
Regarding batteries, the fixed cost is CHF 825, and the variable cost 1290 CHF/kWh. More
details on the parameters settings are provided by Middelhauve et al. [6].
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Figure 5. Typical districts distribution in Switzerland. The clusters differentiate the morphological
and meteorological characteristics of the Swiss building stock.

Figure 6. Convergence curves: percentage error between lower and upper bounds with a maximum
of 10 iterations.

3. Results and Discussion

The discussion follows two axes. First, the decision-making trends within energy com-
munities are analyzed and contextualized with their geographic and urban characteristics.
Then, the potential of energy communities to supply renewable electricity to the national in-
frastructure is analyzed. The analysis considers grid constraints and confronts the cost and
energy efficiency impacts of a coordinated or uncoordinated investment strategy between
local investments and national energy needs.

3.1. Decision-Making Trends within Energy Communities

A multi-objective optimization between the CAPEX and OPEX is performed to obtain
the solution trends for each district. Figure 7 shows the progressive substitution of the
principal energy source, natural gas, by renewable energy as investments are increased.
Gas boilers deployment corresponds to the solution with lowest investment and highest
operational cost. Then, it is substituted by investments into heat pumps and solar panels.
The marginal PVP improvement decreases with investment since the best roof orientations
are activated first. The typical districts split into three decision-making trends. This
behavior is mainly explained by the ratio ηs between roof surfaces and heated surfaces.
This ratio can be considered as an approximation of the PVP. With its large farms, the
Forest cluster (4) has the largest solar potential. However, it has as well the highest
heated surface among the typical districts resulting in the lowest ηs ratio (ηs = 0.57) and
therefore the lowest PVP. The Urban (1) and Sub-urban (2) districts have similar building
compactness (ηs = 0.80 and 0.86), even though they contain different building density and
usage purposes. Finally, since clusters 3 and 5 mainly contain single-family dwellings, they
have the largest roof area with respect to their energy demand (ηs = 1.26 and 1.42). Since a
large ηs ratio usually represents small buildings, it means as well a low economy of scale.
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As there is a fixed investment cost to install energy units, the investment to decarbonize the
energy system increases together with ηs.

Besides decarbonization, local investment decisions have as well an impact at the dis-
tricts boundary. Figure 8 presents the annual electricity flows at the LV/MV transformers.
Electricity imports remain more or less constant with the investment since the installation
of PV panels compensates for the electricity consumption of heat pumps. In District 4, heat
pumps are deployed before PV panels, resulting in an increase in electricity imports in
the low-investment region. Electricity exports follow the same trend as the PVP, with the
difference of exhibiting a constant slope of 9.4 kWh/CHF, a value to be put in perspective
with the feed-in tariff promoting a sale of 10 kWh/CHF. It demonstrates the sensitivity of in-
vestments and energy flows to energy tariffs. Besides maximizing self-consumption, energy
communities are able to move from passive consumers to renewable electricity suppliers.
And this shift in role is predetermined based on the price signals. A question still remains:
do the grid operators provide the right incentives to perform the energy transition?

Figure 7. Natural gas imports and renewable electricity generated onsite for each typical district.

Figure 8. Electricity flows at the districts LV/MV transformer, normalized by heated surface.

3.2. National-Scale Impacts of Energy Communities

As seen in Figure 7, the marginal cost of PV panels is increasing with the investment
allocated. The last economically feasible point is obtained once the investments into PV
panels break even with the revenues over their lifetime [6]. Since the revenues vary with
the electricity tariffs, the investments induced by the tariffs can be calculated assuming
that local stakeholders would invest until they reach the last economically feasible point.
Figures 9 and 10 present these induced investments in the form of annual renewable elec-
tricity generated by energy communities in Switzerland for a range of feed-in and retail
tariffs. Figure 9 is generated assuming that the investments were optimized for each build-
ing individually while Figure 10 represents the case of energy communities. Below a certain
energy tariff, PV investments are not profitable due to the affordable electricity cost from
the grid. The investment threshold is delimited by the lower black line. On the other side,
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the upper investment limit maps the region where the PV installed capacity reaches its
maximum of 67.2 GW, representing an annual electricity generation of 80 TWh/yr. The
extrapolation to the national scale assumes that 70% of the roofs are suitable for PV installa-
tions [32]. The PV potential calculated in this study is 14% higher than the one estimated by
Swissolar (70 TWh/yr [32]). Since the PVP varies within and throughout typical districts,
there exists a large spectrum of investments. Districts with high solar potential are firstly
selected. Then investments with lower profitability are allocated as the price signals sent
by the grid operators become more attractive. Present energy tariffs incite to invest into the
maximum PV panels capacity, reaching a potential of 80 TWh/yr. However, Schnidrig et al.
estimated that the cost-optimal PV deployment in Switzerland would lead to a 20 TWh/yr
electricity generation from PV panels [3]. This optimum considers the possibility of energy
storage in hydro dams, batteries, and biogas or hydrogen reservoirs. In addition, it accounts
for grid availability, power losses and peak power. Based on this value, the price incentives
should fall within the red–orange region. In conclusion, there is a discordance between
the price signals sent by grid operators and the long-term needs of the infrastructure. This
situation could result into costly grid reinforcements or local PV generation curtailment. In
both cases, the solution is socially unfair since the former induces costs to end users and
the latter might render some investments unprofitable. In the remaining of the analysis, the
impact of curtailment is analyzed in terms of energy efficiency and costs.

Figure 9. Optimal yearly renewable electricity generation based on building scale decisions.

Figure 10. Optimal yearly renewable electricity generation based on energy communities.

To support the analysis, two scenarios are considered. In the first one (uncoordinated),
an investment decision into PV panels and heat pumps is taken today. Then, peak shaving
is applied on the energy system. The investment into storage units and their operation are
optimized with fixed sizes of PV and heat pump units. In the second scenario (coordinated),
all investment and operation decisions are taken considering peak shaving. Therefore, PV
and heat pump capacities vary as the system is being constrained. The aim of these two
scenarios is to assess the impact of peak shaving on the decision-making and to measure
the importance of coordinating investments. Figure 11 shows the load duration curve of
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electricity flows between energy communities and the national grid. The present electricity
tariffs promote a peak export power of 46.8 GW, exceeding by a factor of three the existing
capacity of the Swiss MV grid, being 15.8 GW [3]. The optimal PV capacity is represented
in Figure 11 by the blue area and corresponds to a peak PV power of 15.4 ± 2 GW with a
self-consumption of 5.8 GW at the time of the peak export. The curtailed system reduces
by two thirds the maximum export power. The uncoordinated scenario exports more
electricity and has a flat profile. Because of its large PV capacity, the energy system simply
curtails the exceeding power. This outcome is beneficial for the grid operators since the
export profile shows fewer variations. However, from the perspective of households, the
PV investment is oversized since the optimal export profile would have been 29% lower
(plain red line).

Figure 11. Load duration curve of electricity imports and exports for energy communities in Switzer-
land. The unconstrained solution is constrained to reduce the maximum power peaks by a factor
of three. Two design scenarios are considered, a coordinated one accounting for peak shaving in
the investment decision and an uncoordinated one, with peak shaving being imposed after the
investment decision.

For each scenario, Figure 12 further details the energy efficiency (A), the energy units
installed (B) and the associated energy flows and GWP (C). Each plot represents the impacts
on energy communities as the peak export power is increasingly constrained, from 46.8 GW
down to 5.1 GW as shown on Figure 11. In the uncoordinated scenario, an investment into
35 GWhth of thermal storage is allocated to increase self-consumption and self-sufficiency.
In addition, 0.12 GWhel of batteries is installed. Even though the energy storage strategy
increases the energy performance, it is not sufficient to absorb the large amount of electricity
generated onsite. Therefore, most of the peak shaving is performed by PV curtailment, and
48% of the renewable electricity is simply not used. In contrast, under the consideration
of peak shaving, the coordinated scenario invests 37% less into PV panels. It reduces the
self-sufficiency by 20%, but it mitigates curtailment with a PVC of 9% only. In addition, the
reduction in PV capacity and grid constraints decrease the electrification of space heating
by 9%. Consequently, the use of gas boilers as ancillary units during peak demand hours
increases the GWP by 17%. It is worth mentioning that alternative solutions, such as district
heating, synthetic gas storage or the use of biomass, could provide the offloading necessary
to decarbonize hard-to-abate emissions. Although the methodology makes it possible to
incorporate new technological breakthroughs, these are not yet included in this analysis.
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Figure 12. (A) Energy performance, (B) energy units capacity and (C) energy imports and GWP with
respect to peak shaving. All values are given after extrapolation to the whole country. The GWP is
normalized per heated surfaces and considers the embodied emissions and emissions of purchasing
energy carriers. (D–F) present the total cost differences between the two system designs at the peak
shaving optimum for a range of energy tariffs and interest rates.

The two system designs differ in terms of unit capacity and energy exchanges with
the networks. They, therefore, lead to a difference in financial performance that depends
on the economic context. Figure 12D–F present this financial gap for a range of interest
rates and energy tariffs. The oversized PV capacity of the uncoordinated design and its
PV curtailment induce a total cost increase from 12% to 83% compared to the coordinated
design. Increasing energy tariffs has the tendency to decrease the financial gap due to the
low amount of energy imports in the first scenario. In particular, high natural gas prices
impact the economic performance of the coordinated scenario due to its use of gas boilers
during peak demand hours. In contrast to energy tariffs, the interest rate sharpens the
economic gap due to the large investments in the uncoordinated scenario.

4. Conclusions

The objective of this paper is to highlight the decision-making trends within energy
communities and their integration in the national energy infrastructure. The communities
are modeled as renewable energy hubs, considering operation and investments into energy
conversion units. Five typical districts are considered, and the energy system solutions are
extrapolated to the national scale. Multi-objective optimization and grid constraints are
applied to fulfill the national needs for local renewable electricity. The main outcomes of
the study are as follows:
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• Investment trends are similar among the typical districts. However, their magnitude
and solar potential differ based on the location and morphology of the buildings.

• The methodology provides a good estimation of the solar potential in Switzerland
with a limited set of typical districts. The estimation is 14% above the findings of
previous detailed studies [32].

• Investment and operation decisions in energy communities are highly sensitive to
electricity tariffs. Present price signals promote an excessive PV deployment into the
energy system, with an installed capacity that could considerably exceed by a factor
of three the forecast cost optimum of 15.4 GW [3].

• Uncoordinated investments with respect to grid constraints could generate curtailment
up to 48% and increase total costs from 12% to 83%. In contrast, a coordinated
planning where energy communities adapt their equipment to the specifications of
the infrastructure only curtails the PV generation potential by 9%.

The presented results contribute to a better understanding of the decision-making
interdependency between local actors and national energy systems. A holistic approach
encompassing various stakeholders within a single optimization framework favors a
coordinated energy transition and increases acceptance for the decision makers. Grid
operators and national institutions should adopt a consensus on the appropriate price
signals to send to local stakeholders to incentivize renewables deployment while preventing
flawed returns on investment. The extension of the work includes a better definition of the
national infrastructure. To this extent, bi-level and nested decomposition methods have a
high potential to link the various levels of decision-making.
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