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Abstract: Four types of undulated cylinders with streamwise undulation, transverse undulation,
in-phase undulation and antiphase undulation are employed to investigate the undulation-axis effect
on the structure of heat transfer around wavy cylinders. The flows around these undulated cylinders
are numerically simulated by large eddy simulation at Re = 3000. The force coefficients and Nusselt
numbers of the cylinders with transverse undulation and in-phase undulation are significantly
influenced by wavelength and wave amplitude. On the other hand, the cylinders with streamwise
undulation and antiphase undulation show a very weak dependence of the force coefficients and
Nusselt numbers on the combinations of wavelength and wave amplitude. It is noted that the cylinder
with antiphase undulation, under certain wavy conditions, provides about the same Nusselt number
as the smooth cylinder, even though the force coefficients are considerably decreased. The thermal
characteristics, according to the combination of wavy geometric parameters, are supported by the
surface distribution of the Nusselt numbers. In addition, the isothermal distribution, which depends
on the wake flow, explains the variation in the Nusselt numbers. The present results suggest that a
proper modification of geometry can improve both heat transfer and aerodynamic performances.

Keywords: undulation axis; undulated cylinder; heat transfer

1. Introduction

The flow around bluff bodies is observed daily in natural phenomena and industrial
applications. For this reason, in order to identify the flow characteristics, many researchers
have studied different geometrical cross-sections in various applications, for instance,
electric and heat transfer equipment, and aerodynamics and hydrodynamics of land or
offshore architectural structures. Among them, several studies on wavy cylinders have been
recently implemented and published to closely investigate the effect of rectified cylinder
geometry on thermal characteristics. From a global perspective, two types of cylinder
geometries are mainly taken into account for a detailed description and grouping hereafter,
one for wavy cylinders and the other for wavy elliptic cylinders.

For wavy cylinders, Ahn et al. [1] investigated the effect of undulation on fluid flow
and forced convection heat transfer around wavy cylinders with different wavelengths,
such as π/2, π/3 and π/4, with a fixed amplitude of 0.1 at a Reynolds number and a
Prandtl number of 300 and 0.71, respectively. The fluid dynamics and heat transfer around
these undulating cylinders are influenced by both the position along the spanwise direction
and the wavelength. For a wavy cylinder with a half wavelength (λ/2), the averaged
Nusselt number over time and the entire surface are greater than those of a smooth cylinder.
Conversely, for cylinders with wavelengths of λ/4 and λ/3, the averaged Nusselt number
is smaller compared to that of a smooth cylinder. While Ahn et al. [1] performed their study
at a Reynolds number of 300, Kim and Yoon [2] extended the investigation at a higher
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Reynolds number of 3000 in the subcritical regime. Kim and Yoon [2] also investigated the
effect of wavelength (λ/Dm) on the flow and thermal field. They considered a wide range
of wavelengths from 1.136 to 6.06 at a Reynolds number of 3000 in the subcritical regime
and a Prandtl number of 0.7. They showed that the changes in the mean Nusselt number
are correlated with the force coefficients. They found that the critical wavelength occurs at
the transition of the point where the maximum Nusselt number is located, shifting from
the node to the saddle.

Moon et al. [3] studied the effect of asymmetric wavy (ASW) perturbation on forced
convection heat transfer as a passive technique to control the force coefficients by means
of a large eddy simulation at a Reynolds number of 3000. The ASW cylinder exhibits
the lowest mean and fluctuation in the time- and total surface-averaged Nusselt number
compared to the smooth (CY) and symmetric wavy (SW) cylinders. The Nusselt number,
averaged over time and locally in the spanwise direction for the SW cylinder, exhibits
region-dependent characteristics, with one region remaining invariant and another region
showing an increase. The ASW cylinder shows increasing and decreasing performance at
the short and long wavelengths, respectively.

Yoon et al. [4] adopted the shape of a double-wavy (DW) cylinder as a geometrical
perturbation to control the fluid flow and heat transfer at a Reynolds number and a Prandtl
number of 3000 and 0.7, respectively. Among the different geometrical perturbations
such as CY and SW, the ASW of a DW cylinder achieves the smallest mean drag and lift
fluctuation in terms of not only the force coefficient but also the Nusselt number. The DW
cylinder yields a reduced spanwise local Nusselt number across the span when compared
to the SW and ASW cylinders. The wake alteration exhibited by the DW cylinder allows
the attenuation in heat transfer.

Yoon et al. [5] performed an initial research study on the forced convection heat
transfer around a helically twisted elliptic (HTE) cylinder influenced by the structure and
design of a daffodil stem. They also investigated the influence of Reynolds number on the
system of the laminar flow by means of a numerical simulation at the range of Reynolds
numbers of 60 ≤ Re ≤ 150 and a Prandtl number (Pr) of 0.7. The HTE cylinder has much
lower drag and lift fluctuation than a smooth cylinder. The variation in Nusselt number
along the spanwise direction was discerned through an examination of the flow structures
and the distribution of isotherms.

Yoon and Moon [6] conducted a numerical evaluation of the performance of a variable-
pitch helically twisted elliptic (VPHTE) cylinder at a Reynolds number of 3000. A com-
prehensive investigation, including a parametric study on the variable pitch ratio and
simulations of both smooth and HTE cylinders for a comparative analysis, was conducted.
The obtained results affirm the efficacy of the VPHTE disturbance as a passive flow control
strategy for achieving drag reduction and suppressing lift fluctuations, which is in line with
previous research findings. The VPHTE cylinder presents a relatively smaller value of total
surface-averaged Nusselt number than the smooth and HTE cylinders, with a stabilized
time series.

There have been more published studies on wavy elliptic cylinders than wavy cylin-
ders. Kim and Yoon [7] studied the forced convection heat transfer around a biomimetic
elliptic cylinder inspired by a harbor seal vibrissa (HSV) by utilizing the technique of large
eddy simulation at a Reynolds number and a Prandtl number of 500 and 0.7, respectively.
The temporal trends of the surface-averaged Nusselt number demonstrated that the HSV
contributed to the stable heat transfer behavior by significantly suppressing its fluctuation,
whose characteristics aligned with the HSV’s distinctive ability to suppress lift fluctuation.

Kim and Yoon [8] employed numerical methods to explore the influence of Reynolds
number (Re) on the fluid flow and heat transfer characteristics of a biomimetic elliptical
cylinder inspired by an HSV at Reynolds numbers ranging from 50 to 500 and a Prandtl
number of 0.7. The findings confirm the effect of the distinctive geometry of the HSV in the
low Reynolds number regime, demonstrating a reduction in drag and a suppression of lift
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fluctuation. The root-mean-square (RMS) amplitude of the fluctuating lift is exceedingly
small due to the unsteady behavior of the HSV within this Reynolds number range.

Yoon et al. [9] numerically investigated the influence of geometrical characteristics
of an HSV on forced convection heat transfer at a Reynolds number of 500. Seven types
of HSV geometries were defined to utilize and combine the minor-axis undulation, the
major-axis undulation, the both-axis undulation and the offset angle. The inclusion of
HSV features in all modified geometries results in a reduction in the time-averaged drag
coefficient when compared to the mean drag coefficient of an elliptic cylinder. The authors
concluded that it can be cautiously inferred that among the geometrical features of the HSV,
the undulation along the major axis is a crucial factor influencing the forced convection
heat transfer.

Yoon et al. [10] studied the effect of wavelengths of a wavy elliptic cylinder with
different aspect ratios on forced convection heat transfer. They defined four types of wake
thermal structures, such as quasi-2D unsteady and steady structures, which are formed by
short wavelengths, and complex 3D unsteady and steady structures, which are originated
from long wavelengths. The surface distribution of the mean Nusselt number varied based
on the characteristics of the thermal structures. In summary, the authors suggested that a
streamlined shape plays a dominant role in stabilizing the forced convection as the aspect
ratio (AR) decreases, irrespective of the wavelength.

From a review of previous studies, it is found that there is no dedicated study that
takes into account the specific types of undulated geometry disturbance to find the effect
of heat transfer characteristics and the correlation between undulation geometries. Thus,
four types of undulated cylinders with streamwise undulation (SU), transverse undulation
(TU), in-phase undulation (IPU) and antiphase undulation (APU) are considered in this
study to classify the undulation-axis effect on the wake of flow and the reduction in
force coefficients.

The main objective of this study is to confirm whether a geometrical modification
of wavy cylinders can well explained the structure of heat transfer around these wavy
cylinders. Particularly, it is noted that the motivation for conducting this study is to clarify
the thermal and heat transfer characteristics of the proposed undulated cylinders and to
identify the correlation among the undulated cylinders with SU, TU, IPU and APU, even
though the wavelength (λ) and amplitude (a) of each type are randomly selected and
applied, with the combination of λ/Dm = 2.273 and a/Dm = 0.091 being considered as Case
1, while the combination of λ/Dm = 6.06 and a/Dm = 0.152 is considered as Case 2.

2. Numerical Details
2.1. Geometry Definitions

The shapes of smooth cylinders (CY) with in-phase undulation (IPU), transverse
undulation (TU), streamwise undulation (SU) and antiphase undulation (APU) are depicted
in Figure 1. The local diameter (Dz) of a cylinder with IPU is defined as follows:

Dz = Dm + 2acos
(

2πz
λ

)
(1)

where a and λ are the amplitude and wavelength of the waviness, respectively; Dm is
the mean diameter of the wavy cylinder, which is the mean value of the maximum and
minimum local diameters (Dmax and Dmin); and Dm is the same as the diameter of a
smooth cylinder.

The locations of Dmax, Dm and Dmin are at the node, the middle and the saddle, respec-
tively, as shown in Figure 2. As mentioned above, the combination of
λ/Dm = 2.273 and a/Dm = 0.091 is considered Case 1, while the combination of
λ/Dm = 6.06 and a/Dm = 0.152 is considered Case 2.

Unlike the IPU cylinder, the TU, SU and APU cylinders have local axis lengths in
the streamwise and transverse directions. The geometry definitions of the TU, SU and
APU cylinders are shown in Figure 2b–d, respectively. The local lengths in the streamwise



Energies 2024, 17, 894 4 of 21

direction (Lz,s) and transverse direction (Lz,t) of the TU, SU and APU cylinders are defined
in Equations (2)–(4), respectively, as follows:

Lz,s = Dm, Lz,t = Dm + 2acos
(

2πz
λ

)
(2)

Lz,s = Dm + 2acos
(

2πz
λ

)
, Lz,t = Dm (3)

Lz,s = Dm + 2acos
(

2πz
λ

)
, Lz,t = Dm − 2acos

(
2πz

λ

)
(4)

Energies 2024, 17, 894 4 of 25 
 

 

 

(a) 

 

(c) 

 

(b) 
 

(d) 
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Figure 1. The geometries of cylinders with (a) SU, (b) TU, (c) IPU and (d) APU.

The TU cylinder has an undulation in the transverse direction along the center of the
cylinder. This wavy shape is similar to the MI cylinder among the HSV-shaped cylinders
presented in Yoon et al. [9,10]. The SU cylinder has an undulation in the streamwise di-
rection along the center of the cylinder. This wavy shape is similar to the MA cylinder
among the HSV-shaped cylinders presented in Yoon et al. [9,10]. The APU cylinder has
undulations in both the streamwise and transverse directions like the IPU cylinder. How-
ever, it has an antiphase undulation in the streamwise and transverse directions. This
wavy shape is similar to the BA cylinder among the HSV-shaped cylinders presented in
Yoon et al. [9,10]. All undulation cases have the same mean diameter of Dm, though these
three cylinders have different lengths in the streamwise and transverse directions according
to the spanwise direction.
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2.2. Governing Equations and Numerical Methods

The Navier–Stokes, continuity and energy equations were considered to simulate the
unsteady three-dimensional incompressible turbulent flow and thermal fields around the
wavy cylinders. The filtered governing equations were used in the large eddy simulation
(LES), and their expressions are as follows:

∂ũi
∂t

+
∂ũiũj

∂xj
= − ∂ p̃

∂xi
+

1
Re

∂2ũi
∂xj∂xj

−
∂τij

∂xj
(5)

∂ũi
∂xi

= 0 (6)

∂T̃
∂t

+
∂ũj

∂xj
=

1
RePr

∂2T̃
∂x2

j
−

∂qj

∂xj
(7)

where ui is the corresponding velocity component; p is the pressure; Re is the Reynolds
number; and τij is the subgrid-scale stress tensor (τij = ũiuj − ũi ũj), resulting in an effect of
the subgrid scales on the resolved scales. T is the temperature, Pr is the Prandtl number,
and qi is the subgrid flux (qi = T̃uj − T̃ ũj). An overbar denotes a large-scale (or resolved)
flow obtained from grid filtering.
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The dynamic Smagorinsky subgrid-scale (SGS) model by Germano et al. [11] was
used to represent the effects of unresolved small-scale fluid motions. Further details of
the SGS model are available from Yoon et al. [12], Jung and Yoon [13], Yoon et al. [14],
Bohgi et al. [15], Ouro et al. [16], Silva et al. [17], Hubbard et al. [18] and Shi et al. [19]. Jung
and Yoon [13] successfully used this model to simulate the flow around a helical twisted
elliptic cylinder at the same sub-critical Reynolds number of 3000. This study uses the same
LES method as Yoon et al. [12].

All variables were non-dimensionalized according to the free-stream velocity U∞,
the cylinder surface temperature TS, and the mean diameter Dm = Dmax+Dmin

2 , where Dmax
and Dmin represent the maximum and minimum local diameters of the wavy cylinder.
The non-dimensionalization results in two dimensionless parameters: Re = U∞Dm/υ and
Pr = Cpµ/k, where Cp is the specific heat, and µ and k are the dynamic viscosity and
thermal conductivity, respectively. The Prandtl number is Pr = 0.7, which corresponds to
air, and the Reynolds number is Re = 3000.

For spatial discretization, a second-order central difference scheme based on the finite
volume method (FVM) was applied to the structured grids under consideration. A second-
order implicit scheme was employed for temporal discretization of the governing equations.
The second-order Adams–Bashforth scheme and the Crank–Nicolson scheme were used for
the convection and diffusion terms, respectively. We derived the governing equations using
a generalized curvilinear coordinate system. Detailed information on the implementation
can be found in the STAR CCM+ manuals [20].

2.3. Computational Domain and Boundary Conditions

Figure 3 presents the domain sizes and boundary conditions imposed in each direction.
The outflow boundary is at a distance of 16 Dm from the cylinder. The spanwise domain
size varies according to the wavelength. We determined the spanwise domain size based on
Yoon et al. [21], Lam and Lin [22] and Lin et al. [23] for smaller and larger wavelengths of
λ/Dm ≤ 2.818 and λ/Dm ≥ 3.79, respectively. Lam and Lin [22] and Lin et al. [23] explained
the determination of the spanwise domain size corresponding to the wavelength.
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Figure 3. Schematic of the computational domain and boundary conditions.

A fluid flow was uniformly imposed on the outflow [inflow] region along the x-axis at
the inlet boundary, with a constant temperature of T∞ and a convective boundary condition.
A no-slip condition was applied at the wall boundary with a constant surface temperature of
Ts, and a Neumann-type boundary condition was used for pressure. A periodic boundary
condition was imposed in the spanwise direction.

2.4. Grid Dependence Test and Validation

To verify the presented numerical method and grid system, a validation test of our
results and a grid dependence test were carried out. Comparisons of the time-averaged
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drag coefficient (CD), the root mean square (RMS) of lift fluctuation (CL,RMS), the Strouhal
number (St) and the time- and total surface-averaged Nusselt number (≪Nu≫) with
previous data were performed for the smooth cylinder, as shown in Table 1.

Table 1. Validation of the present numerical methods.

Case CD CL,RMS St ≪Nu≫

Present study Numerical
Coarse 0.9725 0.0850 0.20 26.61

Medium 0.9756 0.0836 0.20 26.71
Fine 0.9757 0.0837 0.20 26.71

Lam and Lin [22] Numerical 1.09 0.177 0.21 -
Norberg [24] Experimental 0.98–1.03 - 0.210–0.213 -
Norberg [25] Summarized - 0.05, 0.07 0.21 -
Lu et al. [26] Experimental 1.02 N/A N/A -
Yoon et al. [27] Numerical 1.023 0.1648 0.21 -
Zukauskas and Ziuhzda [28] Analytical - - - 27.94
Sanitjai and Goldstein [29] Analytical - - - 26.98
Hilpert [30] Analytical - - - 25.66

The drag and lift coefficients and the Strouhal number are defined as follows:

CD =
2FD

ρU2
∞ A

(8)

CL =
2FL

ρU2
∞ A

(9)

St =
fsDm

U∞
(10)

where FD and FL are the total drag and lift forces, respectively; ρ is the fluid density; U∞ is
the free-stream velocity; A is the projected area of the cylinder facing the flow direction;
and fs is the frequency of vortex shedding. The Nusselt number is the ratio of convective
heat transfer to conductive heat transfer:

Nu =
hDm

k
(11)

where h is the convective heat transfer coefficient, and k is the thermal conductivity. Once
the velocity and temperature fields are obtained, the local Nusselt number, the spanwise
local surface-averaged Nusselt number, the total surface-averaged Nusselt number, the
time-averaged local Nusselt number, the time- and spanwise local surface-averaged Nusselt
number, and the time- and total surface-averaged Nusselt number are defined as follows:

Nu = ∂T
∂n

∣∣∣
wall

, ⟨Nu⟩ = 1
Wz

∫ Wz
0 NudS, ≪Nu≫= 1

L
∫ L

0 ⟨Nu⟩dz

Nu= 1
tp

∫ tp
0 Nudt, ⟨Nu⟩ = 1

tp

∫ tp
0 ⟨Nu⟩dt, ≪Nu≫= 1

tp

∫ tp
0 ≪Nu≫dt

(12)

where n is the normal direction to the walls, Wz is the spanwise local surface area, L is
the spanwise arc length, and tp is the period of time integration. The results agree well
with those of previous research. The force coefficients and flow structures of the wavy
cylinders at different wavelengths were also compared with previous results for valida-
tion. Three different grid systems were considered for the grid dependence test: coarse
(5.5 million grids), medium (7.5 million grids) and fine (9.5 million grids). The values of the
force coefficients and the Nusselt numbers for the three different grid systems show small
variations that are not significant, so the medium grid system is used to discuss the results.

Figure 4 shows a typical grid system. The grid distribution is non-uniform in the
x–y plane and uniform along the z direction. The distance between the cylinder surface
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and the nearest grid points is confined to y+ = ρuτ∆y / µ ≈ 1, where uτ =
√

τw
ρ is the

friction velocity and τw is the wall shear stress. Grid stretching was used to increase the grid
resolutions near the surface and in the wake region. There are 250 grids around the cylinder
circumference, which corresponds to 61,752 cells in the x–y plane. The number of uniform
grid layers along the z direction ranges from 65 to 121, depending on the wavelength of the
sinusoidal cylinder.
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3. Results and Discussion

Figure 5a,b show the time histories of CD and CLf that correspond to Case 1 and Case
2, respectively. For both cases, a smooth cylinder was included to investigate (a) CD and
CL for Case 1 and (b) CD and CL for Case 2 as an objective of the comparison basis. In
addition, for a quantitative comparison of the force coefficients, the reduction rates of
CD and CL,RMS of the undulated cylinders compared to those of a smooth cylinder are
described in Figure 5c. The reduction rates of CD and CL,RMS are defined as ∆CD/CD,CY
and ∆CL,RMS/CL,RMS,CY, respectively, where ∆CD = CD,CY − CD, ∆CL,RMS = CL,RMS,CY −
CL,RMS, and the subscript of CY stands for a smooth cylinder.

For CD in Case 1, the APU cylinder provides the smallest value among the different
undulated cylinders, as shown in Figure 5a. The APU cylinder presents the largest reduction
rate of CD at 14.8%, as shown in Figure 5c. Otherwise, the TU cylinder achieves the largest
value of CD, resulting in the smallest reduction rate of 7.6% for CD. The values of CD for
the SU and IPU cylinders are in between those of the APU and TU cylinders, as shown
in Figure 5a. The SU cylinder shows the second lowest value of CD, leading to a 13.5%
reduction rate of CD, as shown in Figure 5c.
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For CL in Case 1, the APU cylinder also provides the smallest value among the various
types of undulated cylinders, as described in Figure 5a. Therefore, the APU cylinder
presents the largest reduction rate of CL,RMS at 92.9%, as shown in Figure 5c. On the other
hand, the TU cylinder also represents the largest value of CL, resulting in the smallest
reduction rate of 72.9% for CL,RMS. The values of CL for the SU and IPU cylinders are in
between those of the APU and TU cylinders, as shown in Figure 5a. The SU cylinder’s CL
is ranked as the second lowest value, resulting in a 91% reduction rate of CL,RMS, as shown
in Figure 5c.

For CD in Case 2, the TU cylinder exhibits the smallest value among the different
undulated cylinders, as illustrated in Figure 5b, leading to the largest reduction rate of CD
at 16.8%, as shown in Figure 5c, whereas the APU cylinder shows the largest value of CD,
resulting in the smallest reduction rate of 13.9% for CD. The values of CD for the SU and
TU cylinders are in the middle of those of the TU and APU cylinders, as shown in Figure 5b.
The IPU cylinder shows the second lowest value of CD, leading to a 14.9% reduction rate of
CD, as shown in Figure 5c.

For CL in Case 2, the SU cylinder provides the smallest value among the different
undulated cylinders, as described in Figure 5b. Thus, the SU cylinder shows the largest
reduction rate of CL,RMS at 95.6%, as shown in Figure 5c. By contrast, the TU cylinder
presents the largest value of CL, resulting in the smallest reduction rate of 89.1% for CL,RMS.
The values of CL for the IPU and APU cylinders are in the middle of those of the SU and
TU cylinders, as shown in Figure 5b. The APU cylinder’s CL is ranked as the second lowest
value, leading to a 92% reduction rate of CL,RMS, as shown in Figure 5c.

The TU and IPU cylinders are significantly influenced by the wavelength and wave
amplitude, with the reduction rates of force coefficients being the smallest in Case 1 and the
drag reduction being the largest in Case 2. On the other hand, the SU and APU cylinders
in this study are not strongly affected by the considered combinations of wavelength and
wave amplitude.

Figure 6 shows the 3D vortical structures as visualized through the utilization of the
methodology proposed by Zhou et al. [31]. Apart from the types of undulation, a smooth
cylinder is also included as (a) CY in Figure 6 for comparison. The vortical structures
are identified by the negative of λ2, which is the second largest eigenvalue of S2

ij + Ω2
ij,

where S2
ij and Ω2

ij are the strain-rate and rotation-rate tensors, respectively. To analyze the
impact of flow structures on the thermal field, temperature contours were overlaid onto the
vortical structures.

It is clearly depicted in Figure 6a–e that the CY, SU, TU, IPU and APU cylinders in
Case 1 show a clear visualization of Kármán vortices in the wake region. On the other hand,
the corresponding undulated cylinders in Case 2 cause a further delay in the vortex roll-up
and a greater suppression of vortex shedding than those in Case 1, as shown in Figure 6a–e.
Therefore, in general, the SU, TU, IPU cylinders in Case 2 contribute to a greater reduction
in CD and CL fluctuations than those in Case 1.
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More specifically, for Case 1, the vortical structure of the TU cylinder in Figure 6c
shows that vortex shedding occurs relatively early in the near-wake region, which is
strongly associated with and is supported by the highest values of CD and CL, as shown in
Figure 5a, corresponding to the lowest values for the reduction rates of CD and CL shown
in Figure 5c.

The vortical structure of the APU cylinder in Figure 6e shows that the shear layer is
further elongated and vortex shedding is more delayed, compared to the other undulated
cylinders. These features of the wake structure are associated with the smallest values of
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force coefficients, which result in the largest reduction rates of CD and CL,RMS, as already
observed in Figure 5a,c, respectively.

In addition, the TU cylinder has the smallest zero-vorticity area, but the APU cylinder
presents the largest area of zero vorticity, as shown in Figure 6c,e, respectively, which also
support the smallest and largest reduction rates of force coefficients of the TU and APU
cylinders seen in Figure 5a,c.

For Case 2, the SU cylinder forms the earliest rolling-up and vortex shedding among
the undulated cylinders, as shown in Figure 6f, which supports the largest value of CL seen
in Figure 5b. The TU cylinder in Figure 6g shows a weaker shear-layer elongation among
the undulated cylinders in Case 2, which supports the largest value of CD seen in Figure 5b.

The APU cylinder in Figure 6i presents the bluffiest near wake and an almost dis-
appearance of vortex shedding, which support the lowest values of CD and CL seen in
Figure 5b. From the perspective of vorticity near each cylinder, the SU cylinder presents a
wide area of zero vorticity, as shown in Figure 6f, which supports the reduction rates of CD
and CL,RMS seen in Figure 5b,c.

Figure 7 presents the Cp contours in the x-z plane for all the undulated cylinders. A
wide and close Cp distribution along a cylinder represents high values of CD and CL, for
instance, (c) the TU cylinder in Case 1 and the (f) SU and (i) APU cylinders in Case 2 in
Figure 7, which is confirmed by (a) the CD and CL values for Case 1 and (b) the CD and CL
values for Case 2 seen in Figure 5. A narrow and far Cp distribution along a cylinder
shows low values of CD and CL, for example, (e) the APU cylinder in Case 1 and (g) the TU
cylinder in Case 2 in Figure 7, which is also well matched with (a) the CD and CL values for
Case 1 and (b) the CD and CL values for Case 2 seen in Figure 5.
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Figure 8 shows the time histories of the total surface-averaged Nusselt number
for Case 1 and Case 2, respectively. It is evident in Figure 8a,b that for Case 1 and
Case 2, the values of ≪Nu≫ for the undulated cylinders are smaller than those for the
smooth cylinder.
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Among the undulated cylinders in Case 1, the TU cylinder has the largest value and
the IPU cylinder has the next highest value of ≪Nu≫. The SU and APU cylinders reveal
almost the same values of ≪Nu≫ that are in between those of the TU and IPU cylinders.

For Case 2 in Figure 8b, the APU cylinder presents a plot of ≪Nu≫ with the highest
values over the entire time. The ≪Nu≫s of the TU, SU and IPU cylinders are ranked
next in order, but there is a big discrepancy between the APU cylinder and the other
undulated cylinders.

The reduction rates of the time- and total surface-averaged Nusselt number (≪Nu≫)
for the undulated cylinders in Case 1 and Case 2 are presented in Figure 8c. The reduc-
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tion rate of ≪Nu≫ is defined as ∆≪Nu≫/≪Nu≫)CY, where ∆≪Nu≫ = ≪Nu≫CY −
≪Nu≫, and the subscript of CY stands for a smooth cylinder. For Case 1, the APU and SU
cylinders accomplish a considerable reduction in ≪Nu≫ in comparison with the smooth
cylinder, as described in Figure 8c, leading to approximately 10.3% and 10.1% attenuation
in ≪Nu≫ compared to the smooth cylinder, respectively. The IPU cylinder is ranked next,
with an 8.3% reduction rate for ≪Nu≫. The TU cylinder shows the lowest value of 5.4%
in the reduction rate among the cylinders in Case 1.

For Case 2, the TU cylinder still gives a low reduction rate of 4.4%. The ≪Nu≫s of the
IPU and SU cylinders show the highest reduction rate of 9.6% and the second highest rate
of 9.1%, respectively, which are comparable to the reductions rates for Case 1. Otherwise,
the APU cylinder in Case 2 presents a considerably different ≪Nu≫ to that in Case 1,
resulting in the lowest reduction rate of 1.2 for ≪Nu≫. It is noted that the APU cylinder
in Case 2 provides about the same ≪Nu≫ compared to the smooth cylinder. Specifically,
there is almost no attenuation in the heat transfer performance in comparison with the
smooth cylinder.

In general, a disturbance of geometry in forced convection establishes a connection
between the Nusselt number and force coefficients. This correlation prompts a reduction in
CD and CL,RMS, which occurs concurrently with a decrease in ≪Nu≫. In recent studies,
geometric disturbances, such as through the use of a helically twisted elliptic cylinder [5], a
wavy cylinder [2], an asymmetric wavy cylinder [3], or a double-wavy cylinder [4], have
been examined for their impact on forced convection. These studies have indicated that a
stable near wake is distinguished by a prolonged vortex formation length, a low vorticity,
and a regime of zero vorticity. Consequently, an altered wake pattern caused by geometric
disturbances plays a role in diminishing the mixing in the near wake, ultimately leading to
a reduction in heat transfer.

However, the APU cylinder under the condition of Case 2 gives an inconsistent pattern
with regard to the force coefficients and Nusselt number. Regardless of whether it is Case
1 or Case 2, the APU cylinder presents a significant reduction in CD and CL,RMS. But the
APU cylinder reveals almost no reduction in ≪Nu≫. It means that a proper modifica-
tion of geometry can achieve a reduction in force coefficients by maintaining the heat
transfer performance.

Figure 9a,b present the time- and spanwise local surface-averaged Nusselt number
(⟨Nu⟩) along the spanwise direction for the undulated cylinders in Case 1 and Case 2,
respectively. In addition, the ratios of the amplitude of ⟨Nu⟩ to ≪Nu≫ ( ⟨Nu⟩A/≪Nu≫)
for the undulated cylinders are shown in Figure 9c, where the amplitude of ⟨Nu⟩ is
defined as ⟨Nu⟩A =

(
⟨Nu⟩Max − ⟨Nu⟩Min

)
/2. The ⟨Nu⟩ for the smooth cylinder remains

consistent along the spanwise direction due to the statistically homogeneous condition
imposed by its two-dimensional geometry.

For Case 1, the values of ⟨Nu⟩ along the spanwise direction are smaller than those
of the smooth cylinder, as shown in Figure 9a, which supports that the values of ≪Nu≫
for all undulated cylinders in Case 1 are smaller than those of the smooth cylinder, as
already shown in Figure 8a,c. In addition, the undulated cylinders in Case 1 reveal a much
weaker spanwise dependence of ⟨Nu⟩ on the spanwise direction than those in Case 2. Thus,
the values of ⟨Nu⟩A for all undulated cylinders in Case 1 are smaller than those of the
corresponding cylinders in Case 2, as shown in Figure 9c.

For Case 2, the undulated cylinders provide about the same spanwise variation in
⟨Nu⟩. Specifically, as the cross-sectional area’s spanwise location shifts from z/λ = 0 to
0.5, ⟨Nu⟩ experiences an increase, reaching its peak near z/λ = 0.5. As the position of the
cross-sectional area progresses from z/λ = 0.5 to 1, there is a subsequent decrease in ⟨Nu⟩.

In contrast to Case 1, the undulated cylinders with TU, IPU and APU in Case 2 give
locally larger values of ⟨Nu⟩ than the smooth cylinder, as shown in Figure 9b. Particularly,
the APU cylinder forms a wider spanwise range that exhibits larger values of ⟨Nu⟩ than
the smooth cylinder, as shown in Figure 9b, and the ratio of the amplitude is also the
smallest, as shown in Figure 9c. As a result, the APU cylinder in Case 2 has the smallest
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reduction rate of ≪Nu≫ among the undulated cylinders considered in this study, as
already observed in Figure 8c.
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Figure 10 illustrates the distribution of the time-averaged local Nusselt number (Nu)
across the surface from various perspectives for the different undulated cylinders in Case 1
and Case 2. In addition to the various undulation types, a smooth cylinder is also presented
in Figure 10a as CY for the purpose of comparison. This visualization aligns with the
spanwise variation in ⟨Nu⟩ depicted in Figure 9a,b. For more information, it is noted that
the distribution of the time-averaged local Nusselt number is denoted as 2λ in Figure 10,
whereas the spanwise local Nusselt number is depicted as λ in Figure 9.

For Case 1, Figure 10a–e show the front, top and rear views of the 3D contours of Nu
for the CY, SU, TU, IPU and APU cylinders.

From the front view, the SU and APU cylinders form a local maximum of ⟨Nu⟩ near
the nodal position along the streamwise direction, as shown in Figure 10b,e, respectively.
In contrast, the TU and IPU cylinders form a local maximum of ⟨Nu⟩ near the saddle along
the transverse direction, as shown in Figure 9c,d for Case 1, respectively. Particularly, the
front view of the SU cylinder exposes a diminished three-dimensional reliance of Nu on
both the spanwise and transverse directions in comparison to other undulated cylinders,
which contributes to the weakest variation in ⟨Nu⟩ seen in Figure 9a,c.

From the top view, the SU cylinder shows that the sinusoidal profiles exhibit maximum
and minimum deflection points at the nodes and saddles, respectively, as shown in the
upstream side in the left half of the top view. Alternatively, for the downstream side, the
local maximum and minimum of Nu emerge near the nodes and saddles, respectively, as
shown in Figure 10b. The TU cylinder shows a nearly 2D distribution of Nu, except for the
region near the rear stagnation point, as shown in the middle column of Figure 10c.

The top view of the upstream side for the IPU cylinder depicts that the surface
distribution of Nu showcases a 3D wavy formation, as illustrated in Figure 10d. As the
spanwise location of the cross-sectional area shifts from z/Dm = 0 to 0.5, the Nu of the IPU
cylinder is larger and forms a denser distribution, which clearly explains the larger value
of ⟨Nu⟩ near the saddle around z/Dm = 0.5, as depicted in Figure 9a. The APU cylinder
forms a more apparent wavy pattern of Nu compared to the IPU cylinder, not only in the
upstream side but also in the downstream side, as illustrated in Figure 10e.

For Case 2 in Figure 10f–i, the configurations of Nu contours for the undulated
cylinders are very similar with those for the corresponding undulated cylinders in Case 1.
However, the distributions of Nu in Case 2 are more 3D-dependent than those in Case 1,
regardless of the undulation type. In addition, the ranges of Nu in Case 2 are wider than
those of Nu in Case 1. In particular, the distributions of Nu on the top and rear surfaces
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are more locally dependent, leading to the clear identification of the local maximum and
minimum positions, as shown in Figure 10f–i. Therefore, these strong 3D distributions of
Nu in Case 2 cause a larger spanwise variation in ⟨Nu⟩, as seen in Figure 9b,c.
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To identify the downstream and rear distributions of Nu observed in Figure 10, the
mean isotherms in the x-z plane at y = 0.0 and in the x-y plane at the nodes and saddles
for the four different undulated cylinders are presented in Figure 11. In addition to the
various undulated cylinders, a smooth cylinder is also featured as (a) CY in Figure 9 to
serve as a basis for comparison. In general, the undulated cylinders in Case 1, as shown in
Figure 11b–e, form a weaker spanwise-dependent thermal boundary layer than those in
Case 2, as shown in Figure 11f–i.
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Figure 11. Time-averaged isotherms in the x-z plane at y = 0.0 (left column) and in the x-y plane at
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(d) IPU and (e) APU for Case 1, and (f) SU, (g) TU, (h) IPU and (i) APU for Case 2.
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In Case 1, the SU, IPU and APU cylinders form denser and coarser isotherms near the
nodes and saddles, respectively, as shown in Figure 11b,d,e, respectively. Therefore, thinner
and thicker thermal boundaries appear near the nodes and saddles on the rear surface in
the x-z plan. These local distributions of the isotherms in the x-z plane are consistent with
the isothermal distributions in the x-y plane. The isotherms near the rear surface in the
nodal plane for these undulated cylinders are much denser than those in the saddle plane,
as shown in Figure 11b,d,e, which explains the alternate appearance of locally large and
small values of Nu near the nodes and saddles, as already depicted in Figure 10b,d,e.

By contrast, the TU cylinder in Case 1 forms an opposite pattern of isothermal distri-
bution when compared to the SU, IPU and APU cylinders. Specifically, the TU cylinder
forms coarser and denser isotherms near the nodes and saddles, respectively, as shown in
Figure 11c, which explains the alternate appearance of locally small and large values of Nu
near the nodes and saddles, as already shown in Figure 10c.

In Case 2, the undulated cylinders form isotherm patterns opposite to those of the
corresponding undulated cylinders in Case 1. Thus, the SU, IPU and APU cylinders form
denser and coarser isotherms near the saddles and nodes in the x-z and x-y planes, as
shown in Figure 11f,h,i, respectively. Successively, the TU cylinder forms denser and coarser
isotherms near the nodes and saddles, respectively, as shown in Figure 11g.

Particularly, the APU cylinder in Case 2 causes a much wider region with a very
thin isothermal boundary layer compared to the other undulated cylinders, which results
in a wider region containing locally large values of Nu on the real surface, as shown
in Figure 10i. As a result, the ⟨Nu⟩ values of the APU cylinder become much larger
through the wide region surrounding the saddle than those of the smooth cylinder, as
already depicted in Figure 9b showing the spanwise variation in the local surface-averaged
Nusselt number.

These strong 3D isothermal distributions for the APU cylinder in Case 2 can be
associated with the wake flow structures. Thus, the distributions of the spanwise vorticity
in the x-y plane at the nodes and the saddles are presented in Figure 12. The spanwise
vorticities in the nodal plane are constrained to a very narrow width, as shown in Figure 12a.
The upper and lower shear layers are very close to each other and are further elongated
downstream. The corresponding streamlines within the upper and lower shear layers
reveal almost no reverse flow in the nodal plane, as shown in Figure 12b. Therefore, the
isotherms near the nodes are very coarse due to the weak mixing effect, as already observed
in Figure 11i.
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Otherwise, a large spanwise vortex pair occurs in the saddle plane, as shown in
Figure 12c,d. Thus, short and wide spanwise vorticities are formed in the wake. These
strong revere flows contribute to the mixing effect, which causes the very dense isothermal
distribution and corresponding thin thermal boundary layer near the saddle that are
previously seen Figure 11i. As a result, the APU cylinder presents larger ⟨Nu⟩ values near
the saddle than the smooth cylinder, as already shown in Figure 9b. Consequently, the APU
cylinder in Case 2 provides about the same ≪Nu≫ values as those of the smooth cylinder,
as depicted in Figure 8 showing the time- and total surface-averaged Nusselt number.

4. Conclusions

The present study focused on an assessment of the influence of undulation on the heat
transfer characteristics around wavy cylinders at a Reynolds number of 3000 by using LES.
The presented numerical methods were well validated by comparing previous results and
a grid dependence test was successively conducted. Four types of wavy cylinders with
SU, TU, IPU and APU were taken into account to confirm the heat transfer characteristics,
together with two different cases of wavelength and amplitude combinations. In addition,
for the purpose of comparison, a smooth cylinder was considered.

From the different aspects of wavelength and amplitude, for the TU and IPU cylinders,
there is an obvious discrepancy between Cases 1 and 2 in the values of CD and CL. For
the SU and APU cylinders, however, there is little discrepancy between Case 1 and Case
2. Therefore, it is concluded that the TU and IPU cylinders are significantly influenced
by wavelength and wave amplitude, with the reduction rate of force coefficients being
the smallest in Case 1 and the drag reduction being the largest in Case 2. On the other
hand, the SU and APU cylinders in this study are not strongly affected by the considered
combinations of wavelength and wave amplitude.

For the Nusselt number, it is observed that the largest and smallest reduction rates
occur for the APU and TU cylinders in Case 1, respectively. But, in Case 2, the IPU
and APU cylinders provide the largest and smallest reduction rates. The spanwise local
surface-averaged Nusselt numbers for the undulated cylinders in Case 1 are smaller than
those of the smooth cylinder along the spanwise direction. However, the undulated
cylinders with TU, IPU and APU in Case 2 present locally larger values of ⟨Nu⟩ than the
smooth cylinder. In general, Case 2 causes a stronger spanwise dependence of ⟨Nu⟩ than
Case 1. These characteristics, according to the combination of the parameters of the wavy
geometry, are supported by the surface distribution of the Nusselt numbers. In addition,
the isothermal distribution, which depends on the wake flow, explains the variation in the
Nusselt numbers.

It is noted that the APU cylinder in Case 2 provides about the same ≪Nu≫ values
as those of the smooth cylinder. Specifically, there is almost no attenuation in the heat
transfer performance in comparison with the smooth cylinder. However, the APU cylinder
under the condition of Case 2 gives an inconsistent pattern of force coefficients and Nusselt
number. Regardless of whether it is Case 1 or Case 2, the APU cylinder presents a significant
reduction in CD and CL,RMS. But the APU cylinder reveals almost no reduction in ≪Nu≫.
It means that a proper modification of geometry can achieve a reduction in force coefficients
by maintaining the heat transfer performance.

Based on the forementioned geometrical characteristics of undulated cylinders and the
correlation of heat transfer performance of each wavy cylinder, it is feasible to predict the
structure of heat transfer from the modification of wavy cylinder geometry. It is recognized
that how we modify the geometry of a wavy cylinder to obtain what we desire affects the
structure characteristics of heat transfer accordingly. Furthermore, it enables us to predict
the expected thermal performance of heat transfer structure through the generalization of
the geometry of wavy cylinders without any time-consuming and costly simulation.

It is expected that an extended investigation based on this study is to be carried out
in the near future in order to clarify the relationship between undulated cylinders that
results from the superposition and combination of these undulated cylinders from the flow
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structure and heat transfer point of view. Specifically, a wide range of wavelength and
wave amplitude will be considered to find the more general dependence of heat transfer
characteristics on wavy geometric parameters.
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Nomenclature

Re Reynolds number
λ Wavelength
Dm Mean diameter of a cylinder
Pr Prandtl number
a Wave amplitude
Dz Local diameter
Dmax Maximum local diameter
Dmin Minimum local diameter
Lz,s Local length in the streamwise direction
Lz,t Local length in the transverse direction
t Time
xi Cartesian coordinates
ui, uj Velocity components
p Pressure
T Temperature
τij Subgrid-scale stress tensor
qi Subgrid flux
TS Cylinder surface temperature
T Temperature
Cp Specific heat capacity
k Thermal conductivity
CD Drag coefficient
CL Lift coefficient
St Strouhal number
FD Total drag force
FL Total lift force
U∞ Free-stream velocity
A Projected area of a cylinder
fs Frequency of vortex shedding
Nu Nusselt number
⟨Nu⟩ Spanwise local surface-averaged Nusselt number
≪Nu≫ Total surface-averaged Nusselt number
Nu Time-averaged local Nusselt number
⟨Nu⟩ Time- and spanwise local surface-averaged Nusselt number
≪Nu≫ Time- and total surface-averaged Nusselt number
n Normal direction to the walls
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Wz Spanwise local surface area
L Spanwise arc length
tp Period of time integration
y+ Wall scale
uτ Friction velocity
τw Wall shear stress
λ2 Second largest eigenvalue
S2

ij Strain-rate tensor
Ω2

ij Rotation-rate tensor
Greek
sym-
bols
ρ Density
µ Dynamic viscosity
ν Kinematic viscosity
Superscripts
− Time-averaged quantity
∼ Grid filtering
Abbreviations
ASW Asymmetric wavy
CY Smooth
SW Symmetric wavy
DW Double wavy
HTE Helically twisted elliptic
VPHTE Variable-pitch helically twisted elliptic
HSV Harbor seal vibrissa
RMS Root mean square
SU Streamwise undulation
TU Transverse undulation
IPU In-phase undulation
APU Antiphase undulation
SGS Smagorinsky subgrid scale
FVM Finite volume method
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