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Abstract: This computational study explores the potential of several soft-computing techniques for
wind turbine (WT) output power (kW) estimation based on seven input variables of wind speed (m/s),
wind direction (◦), air temperature (◦C), pitch angle (◦), generator temperature (◦C), rotating speed of
the generator (rpm), and voltage of the network (V). In the present analysis, a nonlinear regression-
based model (NRM), three decision tree-based methods (random forest (RF), random tree (RT),
and reduced error pruning tree (REPT) models), and multilayer perceptron-based soft-computing
approach (artificial neural network (ANN) model) were simultaneously implemented for the first
time in the prediction of WT output power (WTOP). To identify the top-performing soft computing
technique, the applied models’ predictive success was compared using over 30 distinct statistical
goodness-of-fit parameters. The performance assessment indices corroborated the superiority of
the RF-based model over other data-intelligent models in predicting WTOP. It was seen from the
results that the proposed RF-based model obtained the narrowest uncertainty bands and the lowest
quantities of increased uncertainty values across all sets. Although the determination coefficient
values of all competitive decision tree-based models were satisfactory, the lower percentile deviations
and higher overall accuracy score of the RF-based model indicated its superior performance and
higher accuracy over other competitive approaches. The generator’s rotational speed was shown
to be the most useful parameter for RF-based model prediction of WTOP, according to a sensitivity
study. This study highlighted the significance and capability of the implemented soft-computing
strategy for better management and reliable operation of wind farms in wind energy forecasting.

Keywords: artificial neural networks; decision tree-based modeling; soft-computing; wind turbine
output power

1. Introduction

Meeting the world’s expanding energy demand depends mostly on fossil fuels, in-
creasing greenhouse gas emissions—the primary cause of global warming [1]—the impact
of which is environmental degradation that causes constant damage [2]. However, the
consequence of global warming can be mitigated by deploying efforts to increase renewable
energy production [3]. Global warming effects could be reduced by utilizing wind energy,
which is one of the most promising renewable energy sources. Many efforts have been
made to generate combined mechanical and electric power [4]. To reduce dependence on
the fossil fuel sector and coal for electricity generation, various wind farms have been con-
structed [5]. According to the Global Wind Energy Council (GWEC), more than 1.2 billion
tons of CO2 are avoided thanks to the 837 GW total worldwide wind generating capacity
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installed up to 2022 [6]. Moreover, many countries have built offshore wind farms con-
tributing about 22.5% to wind energy installed worldwide in 2021 [4]. However, the wind
turbine (WT) is an intricate electro-mechanical device made up of multiple components. It
incorporates an electrical generator, a rotating shaft, a gearbox, a lubrification system, and
an electronic-control system, and is generally susceptible to various problems and failures
in severe conditions, which will eventually lead to further operational and maintenance
cost [7]. In addition, a number of operational and meteorological factors affect how wind
turbines (WTs) operate [8]. While the operating parameters incorporate the pitch angle,
generator operating temperature, generator rotation speed, and grid voltage [9], the inter-
mittency of the meteorological parameters is one of the major causes of the WT failures.
Precise knowledge of the operating state of WTs makes it possible to optimize the control
and planning of energy consumption management. For instance, one of the most important
indicators used to decide the quality of wind potential for wind energy generation is wind
speed distribution [8]. In addition, the pitch angle is generally considered for optimizing
the WTs’ output power [4]. Therefore, the use of WT technology should be supported by
the development of new tools for wind power forecasting, to build up an ideal strategy for
the intelligent control, maintenance, and management of the electrical systems, minimizing
the deterioration of the wind system components. In addition, system reliability has a
considerable influence on WTs’ power producing cost [10]. In this situation, optimizing
actual wind farms at the lowest possible cost requires an original approach consisting of a
variety of relevant decision variables, and limitations [11]. As a result, a strong and flexible
optimization technique combined with an appropriate estimation method may provide
significant financial advantages over manual scheduling [12,13]. Additionally, monitoring
the dynamic nature of meteorological parameters and wind farms is a challenging task that
calls for the development of reliable forecasting methodologies, forecasting algorithms, and
expert systems.

In light of the dearth of wind data on actual locations, a number of methods for
predicting wind power and speed have lately been created [14–23]. Additionally, three
stage genetic ensemble and auxiliary predictor [24], Bayesian model averaging and ensem-
ble learning (BMA-EL) [25], stacked recurrent neural network (SRNN) with parametric
sine activation function (PSAF) algorithm [26], data-driven approach integrating data
pre-processing and deep learning models [27], spatiotemporally multiple clustering algo-
rithm and hybrid neural network method [28], deep residual gated recurrent unit (GRU)
network combined with ensemble empirical mode decomposition (EEMD) and crisscross
optimization algorithm (CSO) [29], machine learning [30], three improved encoder–decoder
architectures (TIEDA), sequence-to-sequence bidirectional gated recurrent unit (SBIGRU),
attention-based sequence-to-sequence Bi-GRU (ASBIGRU) and transformer, in natural
language processing (T-NLP) [31], data-driven applications using both historical measure-
ments and modern-era retrospective analysis [32], and wavelet transform based convo-
lutional neural network and twin support vector regression [33] have been conducted to
improve prediction accuracy in wind power forecasting. Appendix A (Tables A1 and A2)
summarizes various techniques and approaches developed for the forecast of wind power
and speed to understand the behavior of wind farms in different climatic condition. Statis-
tical regression, machine learning, and artificial intelligence methods are used to predict
wind speed and wind power, with the goal of improving the quality of the wind signal
to optimize energy production and reduce the failures of WTs. It is noted that other pa-
rameters (e.g., air pressure, humidity, ambient temperature, etc.) can also influence the
production of the WTs and should be taken into account when forecasting wind power.
Furthermore, the wind power forecast performance is influenced by the specific operational
parameters of the WTs and their components under certain operating conditions. These
parameters include rotating speed, lubrication, output voltage, output current, alignment
angle, and energy loss during warm-up. These factors can all lead to structural fatigue,
bearing picking, corrosion, abrasion of the blades, and failures, as well as lowering the accu-
racy of wind power prediction. From this perspective, several studies have been conducted
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using various new approaches to increase the forecasts of wind power and speed accuracy
(Appendix A). Moreover, Xiong et al. [34] proposed a hybrid model that combines comple-
mentary ensemble empirical mode decomposition (CEEMD), sample entropy (SE), random
forest (RF), improved reptile search algorithm (IRSA), bidirectional long short-term mem-
ory (BiLSTM) network, and extreme learning machine (ELM) for wind power prediction.
Furthermore, Jiading et al. [35] presented a novel strategy integrating learning algorithm
(TS_XGB model) based on spatio-temporal data mining according to change in the direction
and speed of the wind for ultra-short-term wind power forecasting. In another study from
China, Sheng et al. [36] conducted a short-term wind power prediction based on the deep
clustering-improved temporal convolutional network (DCTCN) for WT output power
(WTOP) prediction by classifying the various typical features of numerical weather pre-
diction (NWP) extracted based on the categorical generative adversarial network (CGAN).
In Portugal, Osório et al. [37] developed a hybrid and adaptable ANFIS-based technique
incorporating the wavelet transform (WT) and the PSO with mutual information (MI).
An et al. [38] employed a hybrid prediction model including the EMD (empirical model
decomposition) based on the chaos and grey theories. The EMD allowed the decomposition
of the power signal into numerous intrinsic-mode-function (IMF) components and one
residual, whereas the grey forecasting model allowed the residual prediction. Guo et al. [39]
developed a physics-inspired neural network (PINN) model for short-term wind power
prediction considering wake effects. Al-qaness et al. [40] conducted an optimized Random
Vector Functional Link (RVFL) network using a new naturally inspired technique called the
capuchin search algorithm (CapSA). Ye et al. [41] proposed an ensemble learning prediction
model considering the rolling error correction strategy for wind power prediction based
on multiple gradient boosting trees (GBDTs) based on Bayesian optimization. In Iran,
Bigdeli et al. [42] introduced various hybrid prediction models based on neural networks
optimized by an imperialist competitive algorithm (ICA), the GA, and the PSO. Bench-
marking of the NN-ICA, NN-GA, and NN-PSO prediction models on an input dataset
selected using time series analysis has revealed the dominance of the NN-ICA prediction
model. Additionally, a novel adaptive neuro-fuzzy inference system with the moving
window (ANFIS-MoW) for the wind power prediction was developed by Bilal et al. [43].
The proposed approach was applied to dataset in different time series windows, namely
the very short-term, short-term, medium-term and long-term time horizons. According
to the study’s findings, the recommended method was a potential soft-computing tool
for precisely measuring the WT output power. To highlight the superior performance
of the G-NN-based model, Weidong et al. [44] built a genetic neural network (G-NN)
modeling technique for predicting both the wind speed and the WTs output power. They
also benchmarked with the standard back-propagation (BP), the momentum BP, and the
GA, respectively. For multi-step offshore wind power prediction, a new hybrid proba-
bility density model including time varying filter based empirical mode decomposition
(TVFEMD), approximate entropy (AE), Yeo-Johnson transform quantile regression (YJQR),
and gaussian approximation of quantiles (GAQ) was proposed by Zhang et al. [45]. First,
the raw data was preprocessed using TVFEMD decomposition and AE theory. YJQR was
then used to forecast offshore wind power 16 steps ahead. Finally, the GAQ technique was
used to generate probability density curves for the outcomes of the 16-step cumulative
quantile prediction. Recently, Liu and Zhang [46] conducted study on a bilateral branch
learning paradigm with data of multiple sampling resolutions for short term wind power
prediction. Huang et al. [47] studied a multiple-SVR-based model as another innovative
approach for short-term wind power prediction. Kassa et al. [48] indicated that a hybrid
GA-BP-NN-based model prediction outperformed others. The model’s parameters are
determined using the (enhanced harmony search (EHS) approach with 15-min increments
of accurate forecasts for predictions at 3 h. In another study conducted by the same research
team, Kassa et al. [49] suggested an ANFIS-based one-day wind power generation forecast
that outperformed the BP-NN and hybrid GA-BP-NN-based models. According to the



Energies 2024, 17, 697 4 of 36

above-mentioned research, hybrid models based on algorithms can enhance the accuracy
of the model significantly more than single models.

WTs are complex electromechanical devices that depend heavily on wind speed and
direction to function. Many other meteorological factors (e.g., ambient temperature, atmo-
spheric pressure, humidity, air density, wind direction, etc.) and operational parameters
(e.g., rotational speed, lubricating oil temperature, output voltage, output current, align-
ment angle, energy loss with warm-up, and so forth) could influence the behavior of the
wind farm, reducing the energy produced in the long term, so they should be taken into
consideration when modeling a new approach for wind power. The most recent studies
based on hybrid techniques for wind speed [14–21,50–54] and on the hybrid techniques
for wind power predictions [25,26,28,45,46,48] have used a simple input variable (wind
speed or wind power). Also, two or three input variables combined are used in some
studies [21,47]. However, the performances of the models are generally affected due to
neglect of those potentials meteorological and operational parameters. Furthermore, the
complexities of some hybrid techniques [20,45,54] have made prediction accuracy a chal-
lenging task in scientific research. It was found in another study [28] that complicated
intermittent weather factors, including typhoons, cannot be processed fully, while an-
other [47] produced different confidence levels for different forecasting periods. In this
situation, more models may be considered to improve forecasting accuracy. In addition,
the model’s capability to extract the meaning characteristics of the considered input data is
investigated in order to refine the model. Of course, the dynamic character of wind farms
and the operational characteristics of WTs have been extensively studied and documented.
However, there is still a shortage of research on state-of-the-art soft computing or machine
learning methods for modeling WTOP. Previous models have weaknesses that need to be
addressed by robust techniques, and it is envisaged that the application of models based
on more effective techniques will produce better results and offer new possibilities for
the WT design scheme. Although several data-driven models have been used in earlier
studies, a nonlinear regression-based model (NRM), three decision tree-based methods
(RF, RT, REPT), and a multilayer perceptron-based soft-computing approach (ANN) are
still lacking comprehensive benchmarks for WTOP modeling. The primary contribution
of this research is to identify the best-performing model for wind turbine output power
prediction while taking into account various input variables such as meteorological and
wind farm operating parameters. Furthermore, the impact of input variables and the
dynamic behavior of the wind system on the accuracy of the indicator performance have
been taken into account. The most reliable model for WTOP estimation that responds to the
intermittency of critical system parameters is required to better manage wind farms’ opera-
tion and contribute to better scheduling of wind farm maintenance operations, reducing
system component failure.

As a result, in order to shed light on the specified gap, the following goals were
devised for the current study: (1) gathering a considerable amount of WT-related data from
a 30-MW wind farm; (2) the first-ever WTOP forecast using simultaneous optimization
and inter-comparison of the used data-intelligent methodologies; (3) identifying the top
soft-computing strategy utilizing more than 30 different statistical performance evaluations,
reliable mathematical diagrams, and detailed supportive visual/tabulated presentations
for the WT dataset; and (4) presentation of the flexibility and usefulness of the proposed
soft calculation approach for a highly nonlinear real-world wind farm power system.

2. Materials and Methods
2.1. Collection of the Dataset Used in the Present Computational Analysis

The dataset from a 30-MW wind farm (Figure 1) considered in this investigation
was given by the Mauritanian Electricity Company (SOMELEC). Figure 1 illustrates the
meteorological station (including anemometers at different heights, a wind vane, a tower
for installing the wind sensors, and a data logger to collect the meteorological data for the
control the wind form system), the structure of the wind farm, data SCADA/SGIPE for
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monitoring and controlling the wind system, and an interface for observation and planning
actions. The data were collected over a year, from 00:00 on 3 July 2015 to 23:50 on 2 July
2016. The facility composed of 15 WTs of 2 MW each is located on the northwestern coast
of Nouakchott (Mauritania) at 17.99 North, 15.97 West, and 1 m above the sea level. The
cut-in speed of each WT is 3 m/s, the rated speed is 12 m/s, the cut-off speed is 20 m/s,
and the tower height is 100 m. The dataset contains meteorological observations (e.g., wind
speed, wind direction, temperature, air density, humidity, and pressure) and the WTs’
state variables including output power, rotation speed, WT generator temperature, voltage,
pitch angle, rotating speed of the generator, frequency, oil lubrication temperature, gearbox
temperature, etc. Every second of data was recorded, and the average was calculated over
a 10-min duration (which corresponds to 52,560 values a year for every parameter, before
filtering the outliers’ data). Next, the data for the standard deviation, maximum, minimum,
and average were transferred to a supervisory control and data acquisition (SCADA)
system, as shown in Figure 1. Software called SGIPE (Sistema de Gestión de Parques
Eólicos) connected to the SCADA server for facility monitoring, providing observation of
measured parameters, reports on energy generated, wind farm availability, and graphical
representation of the findings. Due to the server’s ability to send data via a wide area
network (WAN) to distant SCADA computers, this program allows an external operator to
stop or restart a turbine based on its performance and circumstances. However, an expert
intervention is susceptible to delays based on the degradation of system components. Thus,
considering operational factors and meteorological data, an accurate assessment of wind
farms’ output power is required to lower the danger of failure and financial loss. The SGIPE
software is configured according to two scenarios, namely local configuration and distance
configuration. For the local configuration, the operator can act locally on the SCADA to
collect data, stop/start wind turbines, and configure the system operation. However, for
the distance configuration, the expert can operate online.
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2.2. Importance of Selected Predictor Variables

Wind speed and direction are the main inputs for electricity generation from WTs [55].
Generally, WTs operate in wind speeds ranging from 3 up to 25 m/s [56]. However, the
wind speed can reach more than 25 m/s in some cases [57]. Under real operation conditions,
WTs use wind speed and direction to generate power. WT power decreases with rapid
changes in wind speed and direction due to torsional vibrations in the drivetrain structure,
increasing stress on turbine components [58,59]. Moreover, WTs are controlled and adjusted
to maximize power. The swept area of the wind blades has a significant impact on output
power, so it is important to determine the blades’ orientation towards the wind direction
based on changes in the location of the WTs. So, the pitch angle is controlled to maximize
the best region on the power curve for the WT [60]. The WT’s pitch angle mechanism may
malfunction, preventing it from optimizing output power and forcing it to operate at a fixed
angle. Without repairs, damage to the pitch angle system may spread to other parts of the
WT, which would cause it to shut down. WT performance is significantly impacted by blade
angle control [61]. Moreover, WTOP depends on wind speed, direction, system conversion
parameters, blade pitch angle, rotor-generator speed, temperature, and turbine components
(e.g., generator, gearbox, lubricating oil temperature, etc.) [43,62]. Additionally, high wind
power penetration can reduce the frequency regulation ability of conventional synchronous
generators (SGs). WTs operate using maximum power point tracking (MPPT), which is
independent of the grid system and does not react to system frequency deviation [63].
Therefore, WTs must be controlled to guarantee the grid’s stability in the event of faults.

2.3. Descriptive Statistics of the Model Components Assigned for Training and Testing Phases

The goal of this work was to show how different complex soft-computing methods
could be applied to estimate WTOP and to determine which method would yield the
greatest modeling performance. Out of a total of 36,798 observations from a 30-MW wind
farm, 25,759 observations (~70% of the entire dataset) were employed during the model’s
training phase, while 11039 observations (~30% of the entire dataset) were considered in
light of the literature for the testing step [64–68]. In this study, wind speed (X1: WS [=] m/s),
wind direction (X2: WD [=] ◦), air temperature (X3: AT [=] ◦C), pitch angle (X4: PA [=] ◦),
generator temperature (X5: GT [=] ◦C), rotating speed of the generator (X6: RSG [=] rpm),
and voltage of the network (X7: VN [=] V) were considered as the input variables, whereas
WT output power (Y: WTOP [=] kW) was selected as the models’ target. The comprehensive
descriptive statistics of the model components utilized in soft computing approaches based
on multiple inputs single output (MISO) are compiled in Table 1. The preliminary trial-
and-error results (not presented here due to limited place) also demonstrated that better
predictions were obtained with actual data-based inputs in the present study, which is
in line with the previous findings [65,69,70]. The skewness values showed that AT and
VN datasets were approximately symmetric (“+” indicates right-skewed or right-tailed,
and the “−” symbol indicates left-skewed or left-tailed), while WS and PA datasets were
weakly skewed right (Table 1). On the other hand, the GT dataset was somewhat skewed
to the right for both the training and test sets. Although WD and WTOP datasets showed a
slight skewness to the right, the RSG dataset had a slight skewness to the left. In addition,
the kurtosis values indicated that the WS dataset was classified as almost mesokurtic
(i.e., K ≈ 3), whereas the VN data revealed a leptokurtic character (i.e., K > 3). All other
attributes (WD, AT, PA, GT, RSG, and WTOP) had platykurtic distributions for training and
testing phases (i.e., K < 3). To further illustrate the point, Figure 2 shows scatter plots of
WTOP versus each estimator. Considering the strength of S-type, I-type, and square-type
clusters in certain intervals, every forecaster showed a specific importance, suggesting
that they should not be excluded from the applied models, which is consistent with other
MISO-type data-intelligent studies [67,71,72].
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Table 1. Comprehensive descriptive statistics of the model elements utilized in techniques based on
soft-computing.

Statistics Set WS WD AT PA GT RSG VN WTOP

Number of data (n)
TRA 25,759 25,759 25,759 25,759 25,759 25,759 25,759 25,759
TES 11,039 11,039 11,039 11,039 11,039 11,039 11,039 11,039
ALL 36,798 36,798 36,798 36,798 36,798 36,798 36,798 36,798
TRA 7.2961 157.3875 26.2558 172.9313 87.5073 1412.0088 690.6746 992.4396
TES 7.3086 159.7961 26.2374 169.5787 87.7762 1413.8035 691.0028 1000.9088Mean
ALL 7.2998 158.1100 26.2502 171.9256 87.5880 1412.5472 690.7731 994.9803

Standard deviation
TRA 1.9911 175.5085 4.0817 178.7955 13.1531 246.5384 10.9000 654.4935
TES 1.9907 175.7825 4.1103 178.6290 13.3157 247.5135 10.8640 660.8619
ALL 1.9910 175.5918 4.0903 178.7498 13.2025 246.8294 10.8901 656.4129
TRA 0.2729 1.1151 0.1555 1.0339 0.1503 0.1746 0.0158 0.6595
TES 0.2724 1.1000 0.1567 1.0534 0.1517 0.1751 0.0157 0.6603Variance coefficient
ALL 0.2727 1.1106 0.1558 1.0397 0.1507 0.1747 0.0158 0.6597

Standard error of mean
TRA 0.0124 1.0935 0.0254 1.1140 0.0820 1.5361 0.0679 4.0779
TES 0.0189 1.6731 0.0391 1.7002 0.1267 2.3558 0.1034 6.2899
ALL 0.0104 0.9154 0.0213 0.9318 0.0688 1.2867 0.0568 3.4219
TRA 7.3204 159.5309 26.3056 175.1149 87.6679 1415.0197 690.8077 1000.4326
TES 7.3458 163.0755 26.3141 172.9113 88.0247 1418.4212 691.2055 1013.2382Upper 95% CL of mean
ALL 7.3202 159.9042 26.2920 173.7520 87.7229 1415.0692 690.8843 1001.6873

Lower 95% CL of mean
TRA 7.2718 155.2441 26.2059 170.7478 87.3467 1408.9980 690.5415 984.4466
TES 7.2715 156.5166 26.1607 166.2461 87.5278 1409.1857 690.8001 988.5795
ALL 7.2795 156.3159 26.2085 170.0992 87.4531 1410.0252 690.6618 988.2733
TRA 7.5630 235.7000 26.5700 248.7000 88.4900 1433.0000 690.8000 1189.0000
TES 7.5750 237.6000 26.5600 246.3000 88.7800 1435.0000 691.1000 1199.0000Quadratic mean (RMS)
ALL 7.5660 236.3000 26.5700 248.0000 88.5800 1434.0000 690.9000 1192.0000

Skewness
TRA 0.1874 0.2601 −0.0559 0.0865 0.6748 −0.2624 −0.1135 0.2951
TES 0.1199 0.2321 −0.0337 0.1241 0.6494 −0.2760 −0.0365 0.2757
ALL 0.1671 0.2517 −0.0492 0.0978 0.6673 −0.2665 −0.0907 0.2893
TRA 3.1188 1.0682 2.5573 1.0079 2.4583 1.4716 3.4671 1.6994
TES 2.9105 1.0544 2.5353 1.0158 2.3835 1.4739 3.3665 1.6690Kurtosis
ALL 3.0560 1.0639 2.5506 1.0099 2.4355 1.4722 3.4390 1.6901

Maximum (Q4)
TRA 19.5000 360.0000 40.1400 360.0000 122.6000 1685.6100 739.4300 2040.1100
TES 16.1900 360.0000 40.3900 360.0000 122.7400 1686.0900 737.0300 2031.9700
ALL 19.5000 360.0000 40.3900 360.0000 122.7400 1686.0900 739.4300 2040.1100
TRA 8.7300 357.0000 29.4200 359.6500 96.6100 1679.5900 697.7800 1627.2400
TES 8.8100 357.0000 29.4500 359.6400 97.2100 1679.7700 698.0300 1660.2000Upper quartile (Q3)
ALL 8.7500 357.0000 29.4300 359.6400 96.7600 1679.6600 697.8600 1636.7800

Median (Q2)
TRA 7.3100 6.0000 26.5400 7.7200 83.5700 1448.2700 690.7300 855.1900
TES 7.3400 6.0000 26.5100 6.6800 83.7300 1454.3700 690.9900 866.7900
ALL 7.3200 6.0000 26.5300 7.4200 83.6200 1449.7850 690.8100 858.2600
TRA 5.8900 3.0000 23.2500 0.7300 77.5400 1159.1100 683.8300 419.5100
TES 5.8900 3.0000 23.1800 0.7300 77.5200 1159.3700 684.0400 420.2900Lower quartile (Q1)
ALL 5.8900 3.0000 23.2300 0.7300 77.5400 1159.1200 683.9100 419.6400

Minimum (Q0)
TRA 2.1300 0.0000 13.9600 −0.9000 42.1300 1045.2300 638.8800 0.1200
TES 2.4200 0.0000 13.9900 −0.9000 37.0200 1045.4400 643.7300 0.0900
ALL 2.1300 0.0000 13.9600 −0.9000 37.0200 1045.2300 638.8800 0.0900
TRA 17.3700 360.0000 26.1800 360.9000 80.4700 640.3800 100.5500 2039.9900
TES 13.7700 360.0000 26.4000 360.9000 85.7200 640.6500 93.3000 2031.8800Range (Q4–Q0)
ALL 17.3700 360.0000 26.4300 360.9000 85.7200 640.8600 100.5500 2040.0200

Interquartile range
(IQR = Q3–Q1)

TRA 2.8400 354.0000 6.1700 358.9200 19.0700 520.4800 13.9500 1207.7300
TES 2.9200 354.0000 6.2700 358.9100 19.6900 520.4000 13.9900 1239.9100
ALL 2.8600 354.0000 6.2000 358.9100 19.2200 520.5400 13.9500 1217.1400
TRA 10.3000 359.2400 32.2600 359.9100 112.7500 1681.7400 708.4900 2001.6900
TES 10.2500 359.2300 32.3700 359.9100 113.1800 1681.8600 708.8300 2002.1000Centile 95
ALL 10.2900 359.2300 32.3000 359.9100 112.8600 1681.7800 708.5800 2001.8900

Centile 5
TRA 4.0100 0.6600 19.3700 −0.3000 71.5300 1049.9900 672.7400 108.4400
TES 3.9900 0.7100 19.4200 −0.3000 71.5300 1049.9900 673.1800 108.8100
ALL 4.0000 0.6800 19.3900 −0.3000 71.5300 1049.9900 672.9100 108.5400

TRA: Training dataset; TES: Testing dataset; ALL: Overall dataset; CL: Confidence limit; RMS: Root mean square;
Q0: Minimum value or zeroth quartile (0th centile/percentile, quantile 0.00); Q1: Lower quartile or first quartile
(25th centile/percentile, quantile 0.25); Q2: Median or second quartile (50th centile/percentile, quantile 0.50);
Q3: Upper quartile or third quartile (75th centile/percentile, quantile 0.75); Q4: Maximum value or fourth quartile
(100th centile/percentile, quantile 1.00); IQR: Interquartile range; WS: Wind speed (m/s); WD: Wind direction
(◦); AT: Air temperature (◦C); PA: Pitch angle (◦); GT: Generator temperature (◦C); RSG: Rotating speed of the
generator (rpm); VN: Voltage of the network (V); WTOP: Wind turbine output power (kW).
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RSG, VN).

2.4. Presentation of Soft-Computing Techniques and Software Systems

Soft-computing approaches, including the random forest (RF) model, random tree
(RT) model, reduced error pruning tree (REPT) model, and feed-forward artificial neu-
ral network (ANN) (or multi-layer perceptron (MLP)) model, were developed utilizing
WEKA 3.9.6 (Waikato Environment for Knowledge Analysis) software (The University of
Waikato, Hamilton, New Zealand, https://www.cs.waikato.ac.nz/ml/weka/, accessed
on 16 December 2023). In the computational analysis, the overall dataset was shuffled
with a random seed value of 42 to ensure consistency and reproducibility, which is in
accordance with recent studies [73–76]. It is noted that since the random state 42 offers a

https://www.cs.waikato.ac.nz/ml/weka/
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reliable beginning point for random number generation, it is frequently used in machine
learning applications. This suggests that when the random state is set to 42, the random
number generation process will always result in the same set of values.

In addition to three decision tree-based methods and an ANN-based approach, a
nonlinear regression-based model (NRM) was also established within the scope of the
present study. To achieve this, the training portion of the entire dataset imported from
Microsoft® Excel® 2010 (V14.0.7015.1000) was moved into the DataFit® (V8.1.69) multiple
regression software package’s numerical computation environment and assessed using a
Casper Excalibur PC running Windows 10.

Two statistical and visualization software packages, namely StatsDirect (V2.7.2,
Copyright© 2024–2008, StatsDirect Ltd., Altrincham, Cheshire, UK) and GraphPad Prism
(V9.5.0 (730), Copyright© 2024–2022, GraphPad Software LLC, Boston, MA, USA) were
employed in the computation of the comprehensive descriptive statistics as well as the
measured and forecasted WTOP values (kW) for the training, testing, and overall datasets.
These software packages were also employed in order to generate predictor variable scatter
plots, violin plots, box-and-whisker plots, and spread plots. SigmaPlot® (V10.0.0.54, Systat
Software, Inc., GmbH, Düsseldorf, Germany) software and Microsoft® Excel® 2010 were
used to create linear correlation graphs of the applied soft-computing models for both the
training and testing phases.

In the present computational analysis, MATLAB® R2018a program (V9.4.0.813654)
was used for the determination of more than 30 distinct statistical performance evaluators
(definitions of the relevant indices are presented in the Section 2.5). Moreover, Taylor
diagrams for both the training and testing stages were developed through the execution of
an original solution script created in MATLAB®’s M-file Editor.

2.4.1. Nonlinear Regression-Based Model (NRM)

In the current study, the training dataset (n = 25,759) was imported from Microsoft®

Excel® 2010. The nonlinear regression-based analysis was implemented within the con-
text of DataFit® software. For the convergence criterion in the multiple regression-based
analysis, the values of the solution preferences were selected as follows: (a) regression
tolerance = 1 × 10−10, (b) maximum number of iterations = 250, and (c) diverging nonlinear
iteration limit = 10. The nonlinear regression was performed using Richardson’s extrapo-
lation approach to obtain numerical derivatives for the model solution. The Levenberg–
Marquardt approach with double-precision was used to conduct the multiple regression-
based analysis. An alpha (α) level of 0.05 (or 95% confidence) was used to determine the
statistical importance of the model’s components.

2.4.2. Random Forest (RF) Model

Using random vector samples, the random forest (RF) algorithm is a well-liked ensem-
ble machine learning technique that creates a structured set of tree predictors from input
vectors [77,78]. To obtain a final decision via majority voting, it mixes random subspace,
bagging (sometimes called bootstrap aggregating), and functions. When determining how
to split the forest trees, two factors need to be considered: the number of decision trees
(N-tree) to be formed and the number of features to be examined to identify the ideal
split. By combining many criteria, random forest regression allows the tree to expand to
the depth of all new training data [79]. Regression forests are less predictive than single
regression trees. To give the optimum RF model, RF models classify the variables based on
their relevance. In order to accurately predict WTOP, an RF-based model was built in this
work using a trial-and-error methodology.

2.4.3. Random Tree (RT) Model

Without pruning, a predetermined number of random features at each node are
evaluated using the random tree (RT) technique [80]. It is a member of the class of forests
called tree estimators. Before extracting the category mark with the most votes, the random
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tree classifier takes the vector input property and classifies it for each tree in the forest.
Model trees are decision-generating frameworks that show the linear process for each leaf,
specific to the local subdomain it represents. The RT uses a combination of random forests
and model trees for division criteria [81]. This facilitates balanced trees with an environment
of spherical ridges passing through every leaf, which facilitates optimization [82]. A process
of trial and error was utilized to create an RT-based model for WTOP estimation.

2.4.4. Reduced Error Pruning Tree (REPT) Model

Using the logistic regression technique, the reduced error pruning tree (REPT) ap-
proach is a fast classification tree logic strategy that creates several trees via a series of
calculations [83]. In order to strive for the shortest representation of the optimal precision
tree logic, it considers backward over-fitting complexity and applies the post-pruning
technique [84,85]. REPT’s main advantages are its ability to precisely minimize decision
tree complexity and its ability to minimize variance-related error [86]. In the present analy-
sis, a REPT-based approach was also implemented as a competitive decision tree method
through a process of trial-and-error for the estimation of WTOP.

2.4.5. Artificial Neural Network (ANN) Model

As reviewed by Sheela and Deepa [87], several researchers have offered different
deterministic and heuristic techniques to establish the ideal number of hidden neurons in
multi-layer neural networks. In this study, the number of hidden neurons (nh) required for
the proposed three-layer ANN model was searched between the following lower and upper
bounds [88]: (1.5)(2ni )(ni + 1)−1 ≤ nh ≤ (3)(2ni )(ni + 2)−1, where ni is the number of in-
puts (ni ≥ 3). The suggested multi-layer perceptron model was implemented with a typical
sigmoidal activation function

(
f (x) = (1 + e−x)

−1
)

to simulate inter-node interactions.

2.5. Description of the Statistical Performance Indices

The current computational analysis includes a number of key statistics, such as slope
of the best-fit line (herein b or s), intercept (a), determination coefficient (R2), adjusted
coefficient of multiple determination (R2

adj), mean absolute error (MAE), mean bias error
(MBE), mean absolute percentage error (MAPE), root mean squared error (RMSE), system-
atic and unsystematic RMSE (RMSES and RMSEU, respectively), proportion of systematic
error (PSE), standard error of the estimate (SEE), index of agreement (IA) (or known as
Willmott’s Index (WI)), fractional variance (FV), the factor of two (FA2), coefficient of
variation of RMSE (CV(RMSE) (or known as scattering index (SI) or normalized root mean
squared error (NRMSE)), Durbin–Watson statistic (DW), Nash–Sutcliffe efficiency (NSE),
Legates and McCabe’s index (LMI), mean fractional bias (MFB), mean fractional error
(MFE), Akaike information criterion (AIC), t-statistic, and overall accuracy score (ψ) (with
varying weighting factors of 3, 1, 1, 1, and 1 for s, R2, RMSE, MBE, and MAE, respectively),
which were calculated to measure the degree of agreement and to make detailed compar-
isons between the applied soft-computing techniques for the training, testing, and overall
datasets. Detailed descriptions and formulae of these measures (not presented here due to
space limitations) can be found in the previous investigations [64–68,89–95].

3. Results
3.1. Assessment of the Prediction Accuracy for the Nonlinear Regression-Based Model

In the present computational analysis, three multiple regression-based models (ERM,
PRM-1, and PRM-2) were established using the training dataset (n = 25,759) within the
computational framework of DataFit® software for the forecast of WTOP: (a) an expo-
nential regression model (ERM) (SEE = 96.6287 kW, R2 = 0.9783, NNI (number of non-
linear iterations) = 8), (b) a polynomial regression model with a constant term (PRM-1)
(SEE = 113.0784 kW, R2 = 0.9702, NNI = 5), and (c) a polynomial regression model without
constant term (PRM-2) (SEE = 118.4587 kW, R2 = 0.9672, NNI = 11). The corresponding
results for the best-fit multi-regression model (ERM) are summarized in Table 2. The best-fit
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regression-based model (ERM) described as a function of seven independent variables is
expressed in Equation (1) (the units of the model variables are as given in Section 2.3).

WTOP = exp [
(
3.52 × 10−2)(WT)−

(
2.21 × 10−5)(WD)−

(
6.11 × 10−3)(AT)

−
(
1.17 × 10−4)(PA) +

(
4.95 × 10−3)(GT) +

(
2.52 × 10−3)(RSG)

+
(
3.97 × 10−4)(VN) + 2.3115]

(1)

Table 2. Regression variable findings and model components for the best-fit multiple regression-based
approach (ERM) in estimating WTOP.

Regression Coefficients and
Constant Term Input Variables Standard

Error t-Ratio p-Value

a = 3.52 × 10−2 X1: Wind speed (m/s) 5.73 × 10−4 61.5091 0.0000
b = −2.21 × 10−5 X2: Wind direction (◦) 2.94 × 10−6 −7.5289 0.0000
c = −6.11 × 10−3 X3: Air temperature (◦C) 1.34 × 10−2 −45.6246 0.0000
d = −1.17 × 10−4 X4: Pitch angle (◦) 3.66 × 10−6 −32.1099 0.0000
e = 4.95 × 10−3 X5: Generator temperature (◦C) 7.05 × 10−5 70.2989 0.0000
f = 2.52 × 10−3 X6: Rotating speed of the generator (rpm) 6.80 × 10−6 370.7333 0.0000
g = 3.97 × 10−4 X7: Voltage of the network (V) 5.21 × 10−5 7.6171 0.0000
h = 2.3115 Constant term 3.64 × 10−2 63.4548 0.0000

The t-ratios and p-values for each parameter used in the multiple regression-based
analysis of WTOP are presented in Table 2. In this regard, RSG, GT, and WS are more
important than the other variables for the ERM in prediction of WTOP [96]. Comparative
statistical performance of the nonlinear regression-based methodology (NRM) and other
soft-computing approaches are presented in Table 3. Figure 3 illustrates the linear correla-
tion between the observed and predicted values of WTOP using the best-fit NRM for the
training and testing phases.

Table 3. Comparative indicator performance of the implemented soft-computing models considering
various quantitative statistics (boldface values show superior statistical outputs in the comparison of
relevant datasets among themselves).

Statistics Set NRM RF RT REPT ANN

Number of data (n)
TRA 25,759 25,759 25,759 25,759 25,759
TES 11,039 11,039 11,039 11,039 11,039
ALL 36,798 36,798 36,798 36,798 36,798
TRA 0.9783 0.9995 0.9994 0.9979 0.9973
TES 0.9789 0.9982 0.9960 0.9971 0.9974R2

ALL 0.9785 0.9991 0.9983 0.9976 0.9974

b (slope: s)
TRA 0.9697 0.9986 0.9994 0.9979 1.0042
TES 0.9666 0.9975 0.9986 0.9973 1.0048
ALL 0.9688 0.9983 0.9991 0.9977 1.0044
TRA 33.7679 1.3956 0.6450 2.0973 70.2112
TES 36.7948 2.9319 2.2995 2.9327 70.0002a (intercept)
ALL 34.6830 1.8577 1.1396 2.3483 70.1452

R2
adj

TRA 0.9783 0.9995 0.9993 0.9979 0.9973
TES 0.9789 0.9982 0.9960 0.9971 0.9974
ALL 0.9785 0.9991 0.9983 0.9976 0.9974
TRA 77.4032 10.7843 12.1422 19.1817 76.0789
TES 77.3617 16.8908 25.1978 21.6661 76.5227MAE (kW)
ALL 77.3908 12.6161 16.0587 19.9270 76.2120

MBE (kW)
TRA 3.6799 0.0400 −4.32 × 10−5 2.37 × 10−6 74.3916
TES 3.3816 0.3802 0.8517 0.2168 74.7765
ALL 3.5904 0.1420 0.2555 0.0650 74.5071
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Table 3. Cont.

Statistics Set NRM RF RT REPT ANN
TRA 73.8172 7.0737 7.1107 8.8677 34.7264
TES 73.4223 7.5597 8.2325 8.9620 33.9020MAPE (%)
ALL 73.6988 7.2195 7.4472 8.8960 34.4791

RMSE (kW)
TRA 96.6137 15.3417 16.6843 30.0867 81.8426
TES 96.4472 27.7217 41.8067 35.6662 82.0540
ALL 96.5638 19.8821 26.8175 31.8632 81.9061
TRA 20.1804 0.8949 0.4254 1.3831 74.4427
TES 22.3181 1.7271 1.2803 1.8062 74.8430RMSES (kW)
ALL 20.8242 1.1407 0.6368 1.5077 74.5626

RMSEU (kW)
TRA 94.4825 15.3155 16.6789 30.0549 34.0074
TES 93.8294 27.6679 41.7871 35.6204 33.6360
ALL 94.2916 19.8494 26.8100 31.8275 33.8972
TRA 94.4862 15.3161 16.6795 30.0560 34.0087
TES 93.8379 27.6704 41.7908 35.6236 33.6391SEE (kW)
ALL 94.2942 19.8499 26.8107 31.8284 33.8982

PSE
TRA 0.0456 0.0034 0.0007 0.0021 4.7918
TES 0.0566 0.0039 0.0009 0.0026 4.9510
ALL 0.0488 0.0033 0.0006 0.0022 4.8385
TRA 0.9944 0.9999 0.9998 0.9995 0.9961
TES 0.9945 0.9996 0.9990 0.9993 0.9962IA (WI)
ALL 0.9944 0.9998 0.9996 0.9994 0.9961

FV
TRA 0.0198 0.0011 0.0003 0.0011 −0.0055
TES 0.0233 0.0017 −0.0006 0.0013 −0.0060
ALL 0.0209 0.0013 0.0001 0.0011 −0.0057
TRA 0.9670 0.9976 1.0000 1.0000 0.8742
TES 0.9652 0.9982 1.0011 1.0010 0.8741FA2
ALL 0.9665 0.9978 1.0003 1.0003 0.8742

CV(RMSE) (SI)
TRA 0.0973 0.0155 0.0168 0.0303 0.0825
TES 0.0964 0.0277 0.0418 0.0356 0.0820
ALL 0.0971 0.0200 0.0270 0.0320 0.0823
TRA 1.9780 2.0265 1.9869 2.0246 0.3517
TES 2.0106 2.0035 1.9938 2.0081 0.3396DW
ALL 1.9878 2.0131 1.9920 2.0184 0.3480

NSE
TRA 0.9782 0.9995 0.9994 0.9979 0.9844
TES 0.9787 0.9982 0.9960 0.9971 0.9846
ALL 0.9784 0.9991 0.9983 0.9976 0.9844
TRA 0.8651 0.9812 0.9788 0.9666 0.8675
TES 0.8669 0.9709 0.9567 0.9627 0.8684LMI
ALL 0.8657 0.9781 0.9721 0.9654 0.8677

MFB (%)
TRA 6.9448 0.6334 0.4565 0.5520 14.9609
TES 7.1322 0.6120 0.4650 0.4813 14.9603
ALL 7.0010 0.6270 0.4590 0.5308 14.9607
TRA 16.4711 3.0783 3.6114 4.3072 15.0623
TES 16.4707 3.6428 4.8233 4.5192 15.0649MFE (%)
ALL 16.4710 3.2476 3.9750 4.3708 15.0631

AIC
TRA 2.35 × 105 1.41 × 105 1.45 × 105 1.75 × 105 2.27 × 105

TES 1.01 × 105 7.34 × 104 8.24 × 104 7.89 × 104 9.73 × 104

ALL 3.36 × 105 2.20 × 105 2.42 × 105 2.55 × 105 3.24 × 105

TRA NS 0.4180 0.0004 1.26 × 10−5 NS
TES NS 1.4411 NS 0.6387 NSt-statistic
ALL NS 1.3703 1.8274 0.3916 NS

OAS (ψ)
TRA 4.8379 6.6967 6.6678 6.4323 4.1547
TES 4.8335 6.4797 6.2211 6.3362 4.1432
ALL 4.8365 6.6231 6.5070 6.4024 4.1512

All abbreviations are defined in the main text (see Section 2.5) and under the previous tables. The t-statistics of
some models are shown as NS (not significant) since their t values are greater than tα/2 values (or known as tcritical
values ≈ 1.96) at the α level of 0.05 and (n–1) degrees of freedom.
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Figure 3. Correlations between the measured and forecasted WTOP values using the nonlinear
regression-based model: (a) training phase (n = 25,759) and (b) testing phase (n = 11,039).

The statistical results obtained for the ERM (Table 3) suggested that the performance
of the nonlinear regression-based methodology was acceptable with R2 values as 0.9783
and 0.9789, MBE values as 3.6799 and 3.3816, PSE values as 0.0456 and 0.0566, IA (WI)
values as 0.9944 and 0.9945, FA2 values as 0.9670 and 0.9652, and NSE values as 0.9782 and
0.9787 for the training and the testing stages, respectively. Figure 3 shows that the predicted
values obtained from NRM are within the ±32% and ±30% error bands during the training
and testing phases. Moreover, DW statistics obtained for the ERM were determined to be
close enough to 2.0 (1.9780 and 2.0106 for the training and the testing stages, respectively),
suggesting that there is probably no autocorrelation among regression models’ residual
error terms [97]. Although the multiple regression-based model is better than the ANN
model for some statistical parameters (e.g., R2, R2

adj, MBE, RMSES, PSE, FA2, MFB, OAS),
its performance was much lower than the models based on decision trees (RF-, RT-, and
REPT-based models) in terms of all quantitative statistics (Table 3).

3.2. Assessment of the Prediction Accuracy for the Random Forest (RF) Model

In the present study, a number of trials were conducted using RF-based model, and
the values of user-defined parameters (not presented here due to limited space but will
be available upon request) are in line with the values reported in the previous decision
tree-based modeling studies [98,99]. Using the current dataset, the RF-based model was
built, trained, and tested for 25,759 instances in 5.64 s, 25,759 instances in 10.11 s, and
11,039 instances in 4.53 s, respectively. At the end of the analysis conducted in WEKA,
RF-based predictions on the training set (n = 25,759) produced a relative absolute error
(RAE) of 1.8789% and a root relative squared error (RRSE) of 2.3441%, whilst RAE and RRSE
values for the testing set (n = 11039) were computed as 2.9105% and 4.1946%, respectively.
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Figure 4 shows the linear correlation between the measured and predicted values of WTOP
using the RF-based model for both training and testing stages. Figure 4 illustrates that
the estimated values generated by the RF-based technique fell within the error bands of
±10% and ±15% during the training and testing phases, respectively. As observed from
the boldface statistics in Table 3, the RF-based model outperformed the other methods
in 13 of the 22 indicators (complementary statistics of n, a, and DW are excluded) for all
datasets (training, testing, and overall stages). In the case of WTOP estimation, for example,
the results showed that the RF-based method outperformed the other methods based on
decision trees (RT and REPT), according to its R2 (0.9995 and 0.9982), MAE (10.7843 kW
and 16.8908 kW), MAPE (7.0737% and 7.5597%), RMSE (15.3417 kW and 27.7217 kW),
CV(RMSE) (SI) (0.0155 and 0.0277), and MFE (3.0783 and 3.6428) values for the training
and testing phases, respectively. Moreover, using the current WT dataset, it was discovered
that the NSE and LMI values derived from the RF-based technique were superior to those
of other models (Table 3). Moreover, the calculated OAS (ψ) values (6.6967 and 6.4797 for
the training and testing sets, respectively) were much closer to 7 [92], suggesting that the
RF-based model worked better than other soft-computing-based methods. Furthermore,
the RF-based model’s AIC values were the lowest across all subgroups, demonstrating its
superior predictive accuracy in comparison to alternative modeling strategies.

Energies 2024, 17, x FOR PEER REVIEW  16  of  41 
 

 

6.4797 for the training and testing sets, respectively) were much closer to 7 [92], suggesting 

that the RF-based model worked better than other soft-computing-based methods. Fur-

thermore, the RF-based model’s AIC values were the lowest across all subgroups, demon-

strating its superior predictive accuracy in comparison to alternative modeling strategies. 

 

Figure  4. Correlations  between  the measured  and  forecasted WTOP values using  the RF-based 

model: (a) training phase (n = 25,759) and (b) testing phase (n = 11,039). 

3.3. Assessment of the Prediction Accuracy for the Random Tree (RT) Model 

A number of trials were conducted using RT-based model, and the user-defined pa-

rameters (not presented here due to space limitations but will be available upon request) 

are consistent with the RT-based hyper-parameters reported in the previous data mining 

studies conducted for modeling of reference crop evapotranspiration [100] and global so-

lar radiation [98]. Using the current dataset, the RT-based model was built, trained, and 

tested for 25,759 instances in 0.09 s, 25,759 instances in 8 s, and 11,039 instances in 3.49 s, 

respectively. The results indicated that the numerical size of the tree (or the number of 

total nodes) was 5991 after building of the model. It is noted that the visualization of the 

developed tree is not shown here due to its high size. The results of the computational 

analysis revealed that RAE and RRSE values obtained for the RT-based model were com-

puted as 2.1154% and 2.5492% for the training set (n = 25,759), and 4.3418% and 6.3258% 

for  the  testing set (n = 11,039). Figure 5 shows  the  linear relationships between  the ob-

served and estimated values of WTOP using the RT-based model for both the training and 

testing stages. As depicted in Figure 5, the estimations of the RT-based model range within 

the ±12% error line during the training stage and within the ±28% error line during the 

testing stage. The boldface statistics presented in Table 3 indicate that the RT-based model 

Actual wind turbine output power (kW)

0 500 1000 1500 2000 2500

P
re

di
ct

e
d
 w

in
d 

tu
rb

in
e
 o

u
tp

u
t p

o
w

e
r 

(k
W

)

0

500

1000

1500

2000

2500

Random forest (RF) model
Line of perfect agreement (1:1)

Actual wind turbine output power (kW)

0 500 1000 1500 2000 2500

P
re

d
ic

te
d
 w

in
d
 tu

rb
in

e
 o

u
tp

ut
 p

o
w

e
r 

(k
W

)

0

500

1000

1500

2000

2500

Random forest (RF) model
Line of perfect agreement (1:1)

WSWD

AT

PA

GT

RSG VN

WTOPRF

WSWD

AT

PA

GT

RSG VN

WTOPRF

a

b

R2 = 0.9995 (training set)
y = 0.9986 x + 1.3956

R2 = 0.9982 (testing set)
y = 0.9975 x + 2.9319

Figure 4. Correlations between the measured and forecasted WTOP values using the RF-based model:
(a) training phase (n = 25,759) and (b) testing phase (n = 11,039).

3.3. Assessment of the Prediction Accuracy for the Random Tree (RT) Model

A number of trials were conducted using RT-based model, and the user-defined pa-
rameters (not presented here due to space limitations but will be available upon request)
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are consistent with the RT-based hyper-parameters reported in the previous data mining
studies conducted for modeling of reference crop evapotranspiration [100] and global solar
radiation [98]. Using the current dataset, the RT-based model was built, trained, and tested
for 25,759 instances in 0.09 s, 25,759 instances in 8 s, and 11,039 instances in 3.49 s, respec-
tively. The results indicated that the numerical size of the tree (or the number of total nodes)
was 5991 after building of the model. It is noted that the visualization of the developed tree
is not shown here due to its high size. The results of the computational analysis revealed
that RAE and RRSE values obtained for the RT-based model were computed as 2.1154%
and 2.5492% for the training set (n = 25,759), and 4.3418% and 6.3258% for the testing set
(n = 11,039). Figure 5 shows the linear relationships between the observed and estimated
values of WTOP using the RT-based model for both the training and testing stages. As
depicted in Figure 5, the estimations of the RT-based model range within the ±12% error
line during the training stage and within the ±28% error line during the testing stage. The
boldface statistics presented in Table 3 indicate that the RT-based model outperformed
the other approaches in six of the 22 indicators for all datasets. For instance, the results
showed that the RT-based method performed better than the RF and REPT approaches in
the estimation of WTOP according to its RMSES (0.4254 kW and 1.2803 kW), PSE (0.0007
and 0.0009), FV (0.0003, −0.0006), and MFB (0.4565 and 0.4650) values for the training and
testing phases, respectively. In addition, the RT-based approach shows its superiority over
other methods (NRM, REPT, and ANN) in estimating WTOP by providing satisfactory
OAS (ψ) values (6.6678 and 6.2211 for the training and testing sets, respectively) compared
to these approaches (Table 3).
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(a) training phase (n = 25,759) and (b) testing phase (n = 11,039).
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3.4. Assessment of the Prediction Accuracy for the Reduced Error Pruning Tree (REPT) Model

In the computational analysis, a number of trials were conducted using the REPT-
based model, and the values of user-defined parameters were discovered to be consistent
with the values listed in other data-driven machine learning studies such as prediction of
groundwater level [101] and modeling the thermal conductivity of concrete [102]. Using the
current dataset, the REPT-based model was built, trained, and tested for 25,759 instances
in 0.33 s, 25,759 instances in 8.01 s, and 11,039 instances in 3.44 s, respectively. The results
indicated that the numerical size of the tree (or the number of total nodes) was 639 after
building of the model. Due to its large size, the flow network diagram of the generated
tree is not depicted here. The results of the computational analysis showed that RAE and
RRSE values obtained for the REPT-based model were computed as 3.3419% and 4.5970%
for the training set (n = 25,759), and 3.7333% and 5.3967% for the testing set (n = 11,039).
Figure 6 illustrates the linear correlation between the observed and predicted values of
WTOP using the REPT-based model for the training and testing stages. Figure 6 illustrates
that the predictions of the REPT-based model were within the ±25% and ±21% error bands
during the training and testing phases. The boldface statistics presented in Table 3 reveal
that the REPT-based model outperformed the other approaches in three of the 22 indicators
for all datasets. For instance, the obtained results indicated that the REPT-based method
performed better than other decision tree-based models (RF and RT) in estimation of WTOP
according to its MBE (2.37 × 10−6 kW and 0.2168 kW), FA2 (1.0000 and 1.0010), FV (0.0003,
−0.0006), and t-statistic (1.26 × 10−5 and 0.6387 < tcritical ≈ 1.96) at the α level of 0.05 and
(n − 1) degrees of freedom) values for the training and testing stages, respectively [103,104].
Nevertheless, the REPT-based strategy performed in third place for the current dataset
among the applied decision tree models based on all statistical indicators.
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Figure 6. Correlations between the measured and forecasted WTOP values using the REPT-based
model: (a) training phase (n = 25,759) and (b) testing phase (n = 11,039).
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3.5. Assessment of the Prediction Accuracy for the Artificial Neural Network (ANN) Model

In the present ANN-based soft-computing approach (ni = 7), the optimum nh value
was explored in the range of 24–43 using WEKA’s “multilayer perceptron” classifier that
learns a multi-layer perceptron by backpropagation. The values of user-defined parameters
(not presented here due to limited place) are consistent with the numerical simulation
conditions considered in the previous MLP-based modeling studies [76,102,105,106].

The trial-and-error results (not shown here due to the lack of space but will be available
upon request) showed that the number of neurons (nh) in the hidden layer was optimized
as 30 within the lower and upper limits searched for the three-layer ANN model. Although
the R2 values did not show a significant change for the nh values between 25 and 40 (up
to three decimal places) during the simulation process, a noticeable change was recorded
for the other statistics (i.e., MAE, RMSE, RAE, RRSE) reported by WEKA. The results of
the computational analysis indicated that RAE and RRSE values obtained for the optimal
three-layer ANN structure (ni:nh:no = 7:30:1) were computed as 13.2547% and 12.5050%
for the training set (n = 25,759), and 13.1857% and 12.4158% for the testing set (n = 11,039).
On the other hand, MAE, RMSE, RAE and RRSE values were found to be higher for other
neural network topologies (e.g., MAE = 83.1004 kW and 81.7560 kW, RMSE = 89.0069 kW
and 87.3479 kW, RAE = 14.3191% and 14.0874%, RRSE = 13.4678% and 13.2168% for the
testing stages of the ANN models in 7:25:1 and 7:40:1 structures, respectively).

Using the current dataset, the three-layer (7:30:1) ANN-based model was built for
25,759 instances 55.57 s, while the GUI window was active during the simulation. It was
trained and tested for 25,759 instances in 8.18 s and 11,039 instances in 3.56 s, respectively.
Figure 7 illustrates the linear correlation between the observed and predicted values of
WTOP using the three-layer (7:30:1) ANN-based model for both the training and testing
stages. As illustrated in Figure 7, the estimations of the ANN-based model range within
the ±24% and ±22% error bands during the training and testing phases. The statistical
results summarized in Table 3 show that the ANN-based model worked better than the
nonlinear regression-based model (NRM) in terms of some performance indicators, such
as R2

adj, MAE, MAPE, RMSE, RMSEU, SEE, IA, FV, CV(RMSE) (SI), NSE, LMI, and MFE.
Although these statistics reflected the superiority of the ANN-based model over the NRM,
the estimation performance of the multilayer perceptron-based approach on WTOP was
far behind the decision tree-based models (RF, RT, and REPT) in terms of all statistical
indicators examined (Table 3).

3.6. Inter-Comparison of the Implemented Soft-Computing Models

In this section, the inconsistency of WTOP estimation, and the comparative descriptive
statistics of absolute residual errors (ARE) between the measured and forecasted values
of the soft-computing models for the testing phase (n = 11,039) are assessed in Table 4.
The box-and-whisker plot, violin plot, and Taylor diagram are three helpful graphical
tools that were used to benchmark the prediction accuracy of all utilized soft-computing
models from the standpoint of visual comparisons. Figure 8a,b (violin plots for the training
and testing phases) and Figure 8c,d (box-and-whisker plots for the training and testing
phases) reveal the structure of the actual data against the implemented models for the
prediction of WTOP. The box-and-whisker plots summarize each variable by following
components: (1) the median value (Q2: median or second quartile) in each box acts as a
center solid line (red line for the actual dataset and blue lines for the applied models); (2) a
box represents the range of variation around this central tendency (the edges of the box are
the 25th (Q1: lower quartile or first quartile) and 75th (Q3: upper quartile or third quartile)
percentiles); (3) black diamond (♦) inside each boxplot indicates the mean value. Both the
violin plots and the box-and-whisker plots of the decision tree models show shapes that are
almost identical to the observed values based on the whole distribution of the WT dataset.
However, to visually examine the prediction performance of the applied models in more
detail, the box-and-whisker plots and spread plots of residual errors between the measured
and forecasted values are also depicted in Figure 9.
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Figure 7. Correlations between the measured and forecasted WTOP values using three-layer (7:30:1)
ANN-based model: (a) training phase (n = 25,759) and (b) testing phase (n = 11,039).
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Figure 8. Visual inter-comparison of the implemented soft-computing approaches for both the
training and testing phases, respectively: (a,b) violin plots and (c,d) box-and-whisker plots.
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Table 4. Comparative descriptive statistics of absolute residual errors (ARE) between the actual and
predicted WTOP values of the soft-computing models for the testing stage.

Statistics Set Actual NRM RF RT REPT ANN

Mean
TES 1000.9088 1004.2904 1001.2890 1001.7605 1001.1257 1075.6854
ARE - 3.3816 0.3802 0.8517 0.2168 74.7765
TES 660.8619 645.6553 659.7576 661.2278 660.0307 664.8670

Standard deviation ARE - 15.2066 1.1043 0.3659 0.8312 4.0051

Variance coefficient
TES 0.6603 0.6429 0.6589 0.6601 0.6593 0.6181
ARE - 0.0174 0.0014 0.0002 0.0010 0.0422
TES 6.2899 6.1452 6.2794 6.2934 6.2820 6.3281

Standard error of mean ARE - 0.1447 0.0105 0.0035 0.0079 0.0381

Upper 95% CL of mean TES 1013.2382 1016.3361 1013.5978 1014.0967 1013.4396 1088.0895
ARE - 3.0979 0.3596 0.8585 0.2013 74.8513
TES 988.5795 992.2448 988.9803 989.4243 988.8118 1063.2813

Lower 95% CL of mean ARE - 3.6653 0.4008 0.8448 0.2323 74.7018

Geometric mean
TES 711.4340 780.0629 716.8255 715.5859 715.9597 832.8495
ARE - 68.6289 5.3915 4.1518 4.5257 121.4154
TES 234.2000 594.3000 379.8000 369.7000 377.2000 584.0000

Harmonic mean ARE - 360.1000 145.6000 135.5000 143.0000 349.8000

Quadratic mean (RMS)
TES 1199.0000 1194.0000 1199.0000 1200.0000 1199.0000 1265.0000
ARE - 5.0000 0.0000 1.0000 0.0000 66.0000
TES 0.2757 0.3151 0.2694 0.2747 0.2694 0.2922

Skewness ARE - 0.0395 0.0063 0.0010 0.0063 0.0166

Kurtosis
TES 1.6690 1.5260 1.6594 1.6661 1.6599 1.6787
ARE - 0.1430 0.0096 0.0028 0.0091 0.0097
TES 2031.9700 2420.7424 2001.4660 2013.0900 1999.4690 2191.4470

Maximum (Q4) ARE - 388.7724 30.5040 18.8800 32.5010 159.4770

Upper quartile (Q3) TES 1660.2000 1668.0759 1660.5070 1659.9300 1660.4990 1723.1070
ARE - 7.8759 0.3070 0.2700 0.2990 62.9070
TES 866.7900 825.8791 866.5470 864.4850 857.0380 937.2570

Median (Q2) ARE - 40.9109 0.2430 2.3050 9.7520 70.4670

Lower quartile (Q1) TES 420.2900 367.6910 417.7880 414.7790 425.6550 492.9600
ARE - 52.5990 2.5020 5.5110 5.3650 72.6700
TES 0.0900 219.2158 25.7500 23.9380 30.1930 72.2940

Minimum (Q0) ARE - 219.1258 25.6600 23.8480 30.1030 72.2040

Range (Q4–Q0) TES 2031.8800 2201.5266 1975.7160 1989.1520 1969.2760 2119.1530
ARE - 169.6466 56.1640 42.7280 62.6040 87.2730
TES 1239.9100 1300.3849 1242.7190 1245.1510 1234.8440 1230.1470Interquartile range

(IQR = Q3–Q1) ARE - 60.4749 2.8090 5.2410 5.0660 9.7630

Centile 95
TES 2002.1000 1980.8696 1999.3650 1997.7430 1999.4690 2095.8200
ARE - 21.2304 2.7350 4.3570 2.6310 93.7200
TES 108.8100 262.6021 106.5400 99.5670 99.3730 184.8770

Centile 5 ARE - 153.7921 2.2700 9.2430 9.4370 76.0670
NRM: Nonlinear regression-based model; RF: Random forest model; RT: Random tree model; REPT: Reduced
error pruning tree model; ANN: Artificial neural network model. All other abbreviations are defined under
Table 1.

Upon examining Figure 9, it can be seen that the RF-based model outperformed the
NRM-, RT-, REPT-, and ANN-based models in predicting WTOP with the least amount
of variance. These conclusions are supported by descriptive statistics of ARE values. In
addition, for the testing stage, the ARE value (2.8090 kW) of the RF-based model with
respect to the interquartile range (IQR) was found to be lower than the other applied
models, indicating its superior performance than other approaches (Table 4). Moreover,
the second quartile (median) for the RF-based model (Q2 = 866.5470 kW) was more closely
aligned with the observed data (Q2 = 866.7900 kW) during the testing phase.

Lastly, one of the most well-known graphical representations used for comparing soft
computing-based techniques, the Taylor diagram, was also used to evaluate and validate
the prediction performances of the constructed models [66,67]. Figure 10 illustrates that the
RF-based approach is the best-performing model since it is closest to the observed position
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(solid blue circle on the x-axis), as can be seen from the zoomed-in sections for both the
training and testing phases. On the other hand, Figure 10 indicates that the NRM is the
worst among all models in the estimation of WTOP due to its greatest distance from the
actual data point.
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Figure 9. Visual inter-comparison of the residual errors for both the training and testing phases,
respectively: (a,b) box-and-whisker-plots and (c,d) spread plots.

3.7. Uncertainty Analysis for the Applied Prediction Models

Uncertainty analysis was employed in the present investigation to more realistically
examine the applicability and accuracy of the soft-computing methods that were utilized
to estimate WTOP. The expanded uncertainty with 95% confidence level (U95) was utilized
to evaluate the prediction accuracy of the developed models for each subset in order to
further compare the model performances. The model exhibiting a smaller value of U95
was deemed to be the more precise approach [68,89,97]. Statistical details regarding the
uncertainty analysis can be found in the literature [107–109]. The results of the uncertainty
are presented in Table 5 for all subsets of the implemented approaches.

Decision tree-based models exhibited almost comparable behavior during the testing
stage, according to the results of the uncertainty analysis (0 < em < 1), whereas NRM
and ANN models showed the opposite behavior and overestimated (em >> 0) WTOP.
Overall data confirmed that the RF-based model had the narrowest uncertainty bands
when compared to other soft-computing methods, despite the fact that the subgroups of
the REPT-based model showed the lowest mean prediction errors (em). In addition, the
narrowest prediction error intervals were observed for the RF-based model. Furthermore,
the RF-based approach fared better than the other models with the fewest U95 values. As a
result, the benchmarking findings indicated that a decision tree modeling methodology
based on RF would be helpful in accurately estimating WTOP.
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Table 5. Uncertainty estimation for the implemented nonlinear regression/decision tree/multilayer
perceptron-based soft-computing approaches (boldface values show superior statistical outputs in
the comparison of relevant datasets among themselves).

Statistics (kW) Set NRM RF RT REPT ANN

Expanded uncertainty (U95)
TRA 8.0792 7.9948 7.9952 8.0010 8.0549
TES 12.4583 12.3385 12.3524 12.3456 12.4224
ALL 6.7790 6.7099 6.7124 6.7147 6.7588
TRA 3.6799 0.0400 −4.32 × 10−5 2.37 × 10−6 74.3916
TES 3.3816 0.3802 0.8517 0.2168 74.7765Mean prediction error (em)
ALL 3.5904 0.1420 0.2555 0.0650 74.5071

Width of uncertainty band
(±1.96 Se)

TRA ±189.2290 ±30.0702 ±32.7019 ±58.9710 ±66.8745
TES ±188.9289 ±54.3319 ±81.9278 ±69.9075 ±66.2187
ALL ±189.1367 ±38.9685 ±52.5607 ±62.4526 ±66.6784
TRA −185.5492 −30.0302 −32.7019 −58.9710 7.5171
TES −185.5473 −53.9517 −81.0761 −69.6907 8.557895% PEI (LL)
ALL −185.5463 −38.8265 −52.3052 −62.3875 7.8286

95% PEI (UL)
TRA 192.9089 30.1101 32.7018 58.9710 141.2661
TES 192.3105 54.7121 82.7794 70.1244 140.9953
ALL 192.7270 39.1105 52.8161 62.5176 141.1855

PEI: prediction error interval; LL: lower limit; UL: upper limit. All other abbreviations are defined in the main text
and under the previous tables.

3.8. Sensitivity Analysis for the Best-Fit Soft-Computing Model

Ultimately, the best-performing method (RF-based model) was used to estimate WTOP,
and a sensitivity test was run to determine which predictor variable was the most significant.
As shown in Table 6, several testing datasets were constructed through the gradual removal
of each input component. The impact of each WT-related input on the output (WTOP)
was evaluated in terms of R2, MAE, and RMSE. The results from Table 6 suggest that the
rotating speed of the generator (RSG) has the most significant role in predicting WTOP. The
sensitivity test was also corroborated by the regression variable results of the best-fit model
(ERM) for the RSG with the largest absolute t-ratio (370.7333) (Table 2).

Table 6. Summary of the sensitivity analysis for the testing dataset of the best-performing approach.

Combination of Inputs a Output Statistical Indicators b

WS c

(m/s)
WD
(◦)

AT
(◦C)

PA
(◦)

GT
(◦C)

RSG
(rpm)

VN
(V)

WTOP
(kW) R2 MAE RMSE

OV + + + + + + + 0.9974 19.1727 33.9919
+ OV + + + + + + 0.9980 17.7169 29.7665
+ + OV + + + + + 0.9978 18.8213 31.2336
+ + + OV + + + + 0.9980 17.6786 29.4051
+ + + + OV + + + 0.9982 17.1856 28.6774
+ + + + + OV + + 0.9968 23.2314 37.0061
+ + + + + + OV + 0.9982 16.8222 27.4775

a The plus symbol (+) denotes that the relevant variable is included in the RF-based model. b The statistics of the
most important input variable are displayed as boldface values; OV: omitted variable. c All other abbreviations
are defined under Table 1.

4. Discussion

The purpose of this study is to forecast WTOP. Finding an appropriate soft-computing
model structure for WTOP prediction is the primary contribution of the current compu-
tational research to the relevant topic. Therefore, the emphasis was on enhancing the
performance of the WTs based on experimental parameters and WTs operational variables,
collected over one year from a 30-MW wind farm installed in the Sahelian conditions,
in Mauritania. In some cases, the visual observation of the wind farm components and
manual collection of the faults detected on some components of the WTs are used to analyze
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the wind system’s performance. This way of managing the critical state of the wind system
under stochastic parameters, such as wind speed and direction and other operational
factors (e.g., pitch angle, generator temperature, network voltage, etc.), is not feasible to
make a system of this complexity trustworthy. In addition, it is challenging to improve the
operational risk assessment and shutdown plan of a wind farm due to the lack of real mete-
orological and operating data and accurate forecasting techniques. Therefore, the purpose
of the SCADA systems consist of collecting the operational and climatic data necessary
to understand the operation of a wind farm through in-depth analysis and suggesting an
approach for fault detection in the wind system components.

The approach developed in this investigation enabled data from a 30-MW wind farm
in Mauritania to estimate WTOP by considering the meteorological parameters of the
region and the operating variables of the wind farm. Based on predictive approaches,
this analysis can better manage the operation of the system, reducing the gap between
supply and demand by considering interoperability among components and optimizing
the transmission of wind farm-generated energy to the power grid. In addition, this study
could be used as a useful tool for reducing the financial risk thanks to adapted maintenance
planning and improving wind system management.

The results in Table 3 show improved performance compared to previous studies
in the literature [40], which were dedicated to wind power forecasting. However, the
random forest (RF) model performed best for the majority of performance indicators. When
comparing the R2 for this model to the literature, it was discovered that the results (be-
tween 0.9985 and 0.9995) were better than in the previous study [26]. The MAE (which
ranged between 12.6161 and 16.8908 kW) demonstrated that the indicators outperformed
the proposed model in the workplace [22,26,40,45,49]. Furthermore, the obtained MAPE
(lies between 7.0737 and 7.5597%) was higher than those reported in the previous investi-
gations [25,38]. Overall, the RMSE (between 15.3417 and 27.7217 kW) are higher than in
the literature [22,25,28,40,42,45,46,49]. Additionally, the developed approach was subjected
to a comparative analysis against other performance indicators to refine the selection of
the most appropriate model for predicting WTOP, and most of them were the best for the
random forest (RF) model. Moreover, when compared to existing adaptive neuro-fuzzy
inference system-based models and other methods in the literature, the suggested soft-
computing strategy demonstrated improved forecasting ability and hence greater accuracy
in estimating wind power prediction.

The study’s superiority can be attributed to the use of appropriate meteorological and
operating parameters, which have the greatest influence on the operation and management
of the wind farm. Of course, it is critical to note that wind power prediction is highly
sensitive to the input variables. Wind power forecasting requires the use of appropriate
parameters. The sensitivity analysis results indicated that the parameters selected for
forecasting have a considerable impact on wind turbine prediction. It is obvious and
natural that the wind speed and the generator’s rotation speed are highly correlated,
as are the rotation speed of the generator and temperature. Of course, the greater the
speed, the faster the wind generator rotates, and the higher the speed, the higher the
generator temperature rises due to the machine’s high current output. This heating is
coupled with that caused by the ambient temperature, which is significant. However,
ignoring one of the parameters for its correlation with another will decrease the models’
performance. This study found (Table 6) that omitting only the rotating speed of the
generator (RSG) reduces the model’s performance. Indeed, Table 6 demonstrates that the
synergistic effect of all the specified parameters helps to improve the model’s performance
accuracy. Furthermore, the use of six input parameters is one of the reasons why this current
study has a lower RMSE than our previous work with ANFIS. According to the previous
analysis, the proposed approach for predicting wind power, incorporating meteorological
and operational parameters, outperforms several models.

Furthermore, there are some limitations in this research. First, the present study only
utilized some meteorological and operational variables (e.g., wind speed and direction,
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rotational speed of the generator, pitch angle, temperature of the generator, and grid
voltage) as inputs to the model and ignored other environmental aspects (e.g., air density,
pressure, humidity, solar radiation, etc.).

5. Conclusions

This study benchmarked different flexible soft-computing models (NRM, RF, RT, REPT,
and ANN) for the prediction of WTOP. It made use of meteorological and operational
parameter data that were gathered over the course of a year at the 30-MW wind farm in
Nouakchott, Mauritania. The simultaneous adoption of these data-driven methodologies
in the modeling of WTOP for the first time was the most important contribution of the
current computational investigation. A variety of visual representations and over 30 distinct
statistical performance evaluators were used for the first time in the framework of the
present subject to measure the effectiveness of the established soft-computing models.
Another noteworthy finding of this study was that the RF model outperformed the RT-,
REPT-, nonlinear regression-, and ANN-based models, as demonstrated by comparative
statistics of the testing datasets of the implemented soft-computing methods. On the other
hand, NRM performed the worst among all models used.

The performance assessment indices corroborated the superiority of the RF-based
model (R2 = 0.9982, MAE = 16.8908 kW, RMSE = 27.7217 kW, SEE = 27.6704 kW, IA or
WI = 0.9996, CV(RMSE) or SI = 0.0277, NSE = 0.9982, LMI = 0.9709 for the testing dataset)
over other data-driven approaches in estimation of WTOP. On the other hand, the RT
(R2 = 0.9960, MAE = 25.1978 kW, RMSE = 41.8067 kW for the testing dataset) and REPT
(R2 = 0.9971, MAE = 21.6661 kW, RMSE = 35.6662 kW for the testing dataset) models also
showed a competitive prediction potential over the NRM (R2 = 0.9789, MAE = 77.3617 kW,
RMSE = 96.4472 kW for the testing dataset) and the ANN (R2 = 0.9974, MAE = 76.5227 kW,
RMSE = 82.0540 kW for the testing dataset) models. While all competitive decision tree-
based models have respectable R2 values (>0.995 for the testing dataset), the RF-based
model had greater performance and higher accuracy compared to other competitive tech-
niques (MAPE = 8.2325% and 8.9620% and ψ = 6.2211 and 6.3362 for the RT and REPT,
respectively), as seen by its smaller percentile deviations (MAPE = 7.5597% < 10%) and
higher overall accuracy score (ψ = 6.4797). Although the lowest mean prediction errors (em)
were observed for the subsets of the REPT-based model, overall statistics corroborated that
the narrowest uncertainty bands were generated for all sets using the proposed RF-based
model (±1.96Se = ±30.0702 kW, ±54.3319 kW, and ±38.9685 kW for the training, testing,
and overall datasets, respectively) in contrast to alternative soft-computing techniques. In
addition, the narrowest prediction error intervals were observed for the RF-based model
(−30.0302 kW to 30.1101 kW, −53.9517 kW to 54.7121 kW, and −38.8265 kW to 39.1105 kW
for the training, testing, and overall datasets, respectively). Moreover, the RF-based strategy
surpassed the remaining models by exhibiting the lowest levels of expanded uncertainty
values (U95 = 7.9948 kW, 12.3385 kW, and 6.7099 kW for the training, testing, and overall
datasets, respectively). Furthermore, sensitivity analysis revealed that the generator’s
rotational speed was the key factor in the RF-based model’s ability to accurately estimate
WTOP. The results were also supported by the best-fitting exponential regression model’s
regression variable results (SEE = 96.6287 kW, R2 = 0.9783, NNI = 8) for the RSG with a
relatively small error value (6.80 × 10−6) and the largest absolute t-ratio (370.7333). There-
fore, the computational findings indicated that the precise calculation of WTOP could be
achieved by the application of an RF-based decision tree modeling approach.

This work highlights the importance of the soft-computing technique used to estimate
WTOP for the improved management and steady operation of wind farms in wind energy
forecasting. The proposed approach improves the accuracy of wind energy forecasts and
provides strong technical support that reduces the downtime and financial risk associated
with wind farm operation. It also offers a fairly adaptable method for calculating WTOP.
Hence, it would be intriguing to build on the existing study to integrate some further
sophisticated and hybrid algorithms. Moreover, to strengthen the stability of wind power
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system deployment and management, more meteorological characteristics will be incor-
porated into the models in future studies. Ultimately, further systematic data with new
process-related input factors must be gathered for more accurate findings.

As a result, the future research directions will be as follows: (a) including additional
climatic parameters into the model prediction scheme, (b) building efficient optimization
algorithms, and (c) incorporating certain deep learning algorithms into future study efforts
for better prediction. Moreover, in future studies, the proposed approach may be expanded
to additional complicated and challenging time series forecasting issues.
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Appendix A. Data-Intelligent Approaches Used in Wind Speed and WTOP Estimation

Table A1. Classification of various data-driven model categories related to wind speed prediction.

Model
Category

Wind Speed
Prediction Study Location Approach and Methods Used Datasets Obtained

Performance Metrics Advantages of Study Disadvantages of Study

Statistical
regression method

MSFAE [50] Xinjiang, China

A novel multi-scale feature
adaptive extraction
(MSFAE) ensemble model
for wind speed forecasting

Three different wind
speed time series
collected from
anemometers are
selected to prove the
superiority of the model.

Datasite#1
MAPE (%): 3.426
MAE (m/s): 0.146
RMSE (m/s): 0.182
Datasite#2
MAPE (%): 2.312
MAE (m/s): 0.128
RMSE (m/s): 0.166
Datasite#1
MAPE (%): 2.326
MAE (m/s): 0.142
RMSE (m/s):0.186

The proposed algorithm has the
advantages that it provided better
global search accuracy and
convergence speed than the
traditional algorithms

• Only wind speeds are considered
as input to the model.

• The training phase is
time-consuming.

• Model is applied only for wind
speed prediction.

MKSVRE-WOA [51] Shandong
Province, China

Multi-kernel SVR ensemble
(MKSVRE) model based on
unified optimization and
whale optimization
algorithm (WOA)

Wind speed datasets
(from 00:00 on 1
September 2011 to 23:50
on 20 September 2011)
for two sites (A and B).

Site A
MAE (m/s): 0.3698
RMSE (m/s): 0.4786
MAPE (%): 5.21
SAE (m/s): 53.2519
STD (m/s): 0.4796
Site B
MAE (m/s): 0.5288
RMSE (m/s): 0.6751
MAPE (%): 8.58
SAE (m/s): 76.1455
STD (m/s): 0.6773

The model provides results without
the need to select a specific kernel
function and achieves a global
parameter selection.

• Only wind speeds are considered
as input to the model.

• The training time of the SVR
model is long.

• Model is applied only for wind
speed prediction.

Machine learning

EISM, RTRD
Bi-LSTM [14] Yunnan, China

GWO-CNN-BiLSTM
(GCNBiL) networks model
with different lengths of
convolution operators

Wind speeds collected
for 91 days, from 4
January 2010 to 30 June
2010 and included
13,104 sets .

For six-step prediction
RMSE (m/s): 0.816
MAPE (%): 13.295
MAE (m/s): 0.635

The proposed model has greater
accuracy than traditional neural
network models

• Only wind speeds are considered
as input to the model.

• Model is applied only for wind
speed prediction.

MST-GNN [15] Denmark,
The Netherlands

Multidimensional
spatial-temporal graph
neural networks
(MST-GNN) model for
wind speed prediction
based on
multidimensional data

Open-source datasets for
wind speed from
Denmark and
Netherlands

Denmark dataset
MAE(m/s): 1.244
MSE (m/s): 2.616
Netherlands Dataset
MAE (m/s): 7.849
MSE (m/s): 11.851

The model performs the best,
especially in long-term prediction
tasks considering
multidimensional data

Model is applied only for wind
speed prediction.

MFMS [16] Zhangjiakou,
North China

Method based on
multi-feature and
multi-scale integrated
learning (MFMS) for wind
speed prediction

Wind speed data from 16
wind turbines in a
wind farm

For 4-h ultra-short-term
wind speed prediction
MAPE (%): 6.164
RMSE (m/s): 0.275
R2: 0.966

This method provides a reference
for the ultra-short-term wind speed
prediction of wind farms.

Model is applied only for wind
speed prediction.
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Table A1. Cont.

Model
Category

Wind Speed
Prediction Study Location Approach and Methods Used Datasets Obtained

Performance Metrics Advantages of Study Disadvantages of Study

Machine learning

CNN-LSM-NDL [17] Jiangsu
Province, China

Hybrid wind speed
prediction model based on
convolutional neural
network and long
short-term memory
network deep learning
model

Historical wind speed
dataset collected at two
sites from “22 July to 12
August 2017” and from
“22 August to 11
September 2017” are
used for this study.

Dataset #1
MAE (m/s): 0.1477
RMSE (m/s): 0.1964
MAPE (%): 3.7803
R2: 0.9702
Dataset #2
MAE (m/s): 0.1675
RMSE (m/s): 0.2461
MAPE (%): 2.9065
R2: 0.9726

Model allows denoising operation
in the data preprocessing process,
that can provide a high-quality
input data, which help to find high
prediction performance

• Only wind speeds are considered
as input to the model.

• Model is applied only for wind
speed prediction.

VMD-TCN-STL [18] Xinjiang, China

Novel wind-speed
prediction model based on
variational mode
decomposition, temporal
convolutional network, and
sequential triplet loss

Wind speed series from
the SCADA system of
the Xinjiang wind farm
includes three sets of
data are used.

MAPE (%): 4.77
MAE (m/s): 0.11
RMSE (m/s): 0.15

Prediction accuracy is effectively
improved by introducing modal
decomposition. VMD exhibits
advantages in the same type of
method

• Only original wind speeds are
considered as input to the model.

• Although the method can greatly
improve the efficiency of the wind
energy system, the problem has
not been fundamentally solved in
the process of network training
through this study.

RNN-CNN-LSTM [19] New Zealand

A novel hybrid neural
network scheme based on
convolutional neural
network (CNN) and long
short-term memory (LSTM)

Three datasets given as
Data1, Data2, and Data3:

• Data1 has 39,575
sampling records.

• Data2 has 26,135
sampling records.

• Data3 has 39,916
samples records.

Data 1
MAE (m/s): 0.4783
RMSE (m/s): 0.6480
R2: 0.9070
Data 2
MAE (m/s): 0.3193
RMSE (m/s): 0.4477
R2: 0.9414
Data 3
MAE (m/s): 0.6281
RMSE (m/s): 0.8724
R2: 0.9775

• RNN-CNN-LSTM can learn
the spatial and temporal
information of the raw data.

• It improved the accuracy of
the wind speed prediction
compared with the
traditional single neural
network model

• The models allow only the wind
speed prediction;

• Only the wind speeds were
considered as input to the model.

DRIPS-PDI [20] Nolan and Kern, US

A novel decomposition-
recognition-integration-
prediction system (DRIPS)
based on a newly
developed predictive
difficulty index

Wind dataset collected
for every 10 min for
two American sites
(Nolan and Kern).

Nolan Site
RMSE (m/s): 0.0655
MAPE (m/s): 0.3743
R2: 0.9997
Kern Site
RMSE (m/s): 0.0347
MAPE (m/s): 2.4855
R2: 0.9998

DRIPS associated to (PDI) can
provide excellent performance in
the accuracy of wind speed
prediction and the complexity of the
proposed prediction system is
acceptable to the industry with the
increase in computing power of
modern hardware devices

• The models allow only wind
speed prediction.

• Only the wind speeds were
considered as input to the model.

• The model prediction accuracy is a
difficult task in scientific research.
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Table A1. Cont.

Model
Category

Wind Speed
Prediction Study Location Approach and Methods Used Datasets Obtained

Performance Metrics Advantages of Study Disadvantages of Study

Machine learning

CNN-BILSTM-
MOHHO [21] Hebei, China

Variable short wind speed
prediction model of
Capsule Neural Network
(Capsnet) and bidirectional
Long-and Short-Term
Memory Network
(BILSTM) combined with
Multi-Object Harris Hawk
optimization (MOHHO)

Historical wind speed
information from wind
farm and
multidimensional
meteorological variables

Combined model
MAE (m/s): 0.1646
MAPE (%):2.43
RMSE (m/s): 0.1992

The proposed model combines
historical data of multiple
meteorological data, so the model
performs better than other
univariate machine
learning models.

• The study analyzed only the
effects of two typical climates on
wind speed prediction.

• The models allow only a study of
wind speed prediction.

WT-CNN-tSVR [33]

• Sotavento, Spain
• VejaMate,

Germany
• Madryn,

Argentina

Hybrid techniques
employing wavelet
decomposition transform in
tandem with convolutional
neural network and twin
support vector machine

Wind speed datasets
collected in three
different periods (three
months, 12 months, and
36 months) at the height
of 10 m over 10 min

Sotavento (36 months)
RMSE (%): 0.275
MSE (m/s): 0.0756
VejaMate (36 months)
RMSE (%): 0.1375
MSE (m/s): 0.01890
Madryn (36 months)
RMSE (%): 0.085
MSE (m/s): 0.0072

The model outperforms the classical
and simple machine learning for
wind speed prediction.

• Only the wind speeds are
considered as input variables to
the model.

• The models allow only a study of
wind speed prediction.

Artificial intelligence

EPT-CEEMDAN-
TCN [52]

Gansu, Liaoning,
Jiangsu, China

A hybrid decomposition
method coupling the
ensemble patch transform
(EPT) and the complete
ensemble empirical mode
decomposition with
adaptive noise
(CEEMDAN)

Historical wind speed
data from three wind
farms located at Gansu,
Liaoning, and Jiangsu
in China

Gansu site
MAE (m/s): 0.28890
RMSE (m/s): 0.40157
MAPE (%):0.07595
Liaoning site
MAE (m/s): 0.15659
RMSE (m/s): 0.19586
MAPE (%):0.08896
Jiangsu site
MAE (m/s): 0.17790
RMSE (m/s): 0.22361
MAPE (%): 0.09606

The proposed model has the
capability of decomposing the
nonlinear volatility completely and
allows higher
computational efficiency.

Only the wind speeds are considered as
input variables to the model.

ED-Wavenet-TF [53] Minnesota, USA A novel forecasting model
called EDWavenet-TF

Two WS datasets
collected from wind
farms in Nebraska and
Minnesota, USA (in 2012
and 2011, respectively)

MAE (m/s): 0.8018
RMSE (m/s): 1.1052
R2: 0.9135
SMAPE (%): 13.9128

ED-Wavenet-TF outperforms the
comparable models in most cases at
the 1% significance level and could
be used for the wind speed and
wind power forecasting.

Only the wind speeds and wind power
were considered as input variables to
the model.

VMD-CA-LSTM-EL-
EC [54] Hebei, China

This study proposed a
hybrid model based on the
variational mode
decomposition (VMD),
clustering analysis, LSTM
network, stacking ensemble
learning and error
complementation for wind
speed forecasting

Four original wind speed
datasets monitored from
four wind farms in Hebei
Province in China

Site#1
MRE: 0.025
RMSE (m/s): 0.65
SSE (m/s): 754.774

The approach has provided an
improvement in terms of the
predicted accuracy.

• The number of clusters is
determined by the experience,
which needs to be optimized by
artificial intelligence algorithms to
find out the information hidden in
the decomposed subseries.

• Only the wind speeds are
considered as input variables to
the model.

Description of abbreviations provided below, in footer of Table A2.
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Table A2. Classification of various data-driven model categories related to WTOP prediction.

Model
Category

Wind Speed
Prediction Study Location Approach and Methods Used Datasets Obtained

Performance Metrics Advantages of Study Disadvantages of Study

Statistical regression
method

BMA-EL [25]
Inner Mongolia
Autonomous
region, China

Hybrid wind power
forecasting approach based
on Bayesian model
averaging and Ensemble
learning (BMA-EL)

SCADA system of a
wind farm, sampled in
15-min (from August to
October 2014)

RMSE (kW): 27.8960
MAPE (%): 10.0848

• The model allows reducing
the uncertainty of the
forecasting results of a single
model by increasing the
diversity of sub-training sets.

• Three meteorological input
variables were considering:
wind speed, wind direction
and ambient temperature.

Other operations parameters should be
considering, (pitch angle, temperature of
generator, rotating speed, etc.)

TVFEMD-AE-YJQR-
GAQ [45] Germany

A hybrid probability model
for multi-step offshore wind
power prediction, including
time varying filter based
empirical mode
decomposition (TVFEMD),
approximate entropy (AE),
Yeo–Johnson Transforms
Quantile regression (YJQR),
and Gaussian
Approximation of
Quantile (GAQ)

Two datasets recorded at
15-min intervals (from 1
July 2020 to 31 July 2020
and 1 December 2020 to
31 December 2020) from
offshore wind power

Datasets #1
MAPE (%): 3.9681
RMSE (kW): 58.9924
MAE (kW): 40.8323
Datasets #2
MAPE (%): 3.3487
RMSE (kW): 46.3364
MAE (kW): 34.7261

The developed method can be used
for further model prediction. Also,
the use of the improved GAQ help
to effectively improve the reliability
and the accuracy of multi-step
interval prediction

• The wind speed was the only
parameter used as an input
variable to the model.

• The grid search method is used in
this study to determine the model
optimal parameters, leads to an
increase in the running time, and
it has been a real challenge to
improve the running efficiency.

Machine learning

SRNN-PSAF [26] China

A method based on stacked
recurrent neural network
(SRNN) with parametric sine
activation function (PSAF)
algorithm for wind
power forecasting

Data (wind power and
meteorological data)
collected from the
continental United States
(from 2007 to 2012) and
from the National
Renewable Energy
Laboratory (NREL)

MAE (MW): 0.0602
MAPE (%): 0.9360
MSE (MW): 0.0143
RMSE (MW): 0.1195
R2: 0.7847

The SRNNPSAF neural network
approach can combine the
advantages of RNN, deep learning
framework and merits of PSAF for
more accuracy prediction.

• The study did not consider other
operating parameters (pitch angle,
temperature of generator, rotating
speed, etc.).

MC-hNN [28] United States

A regional method using a
spatio-temporal, multiple
clustering algorithm and
hybrid neural network for
wind power prediction

Actual measured power
and meteorological data
from the wind
integration national
dataset (WIND)

MAPE (%): 4.86–5.58
MAE: 18.64–22.44
RMSE: 28.45–33.26

This study allows for enhancing the
recognition ability and helps with
wind power prediction.

This study focuses on the deterministic
prediction of wind farm power in
relatively stable weather. So, the
processing capacity of complex power
fluctuations in extreme weather such as
typhoons is insufficient.

BBLP-MSR [46] Mainland China

Novel bilateral branch
learning based wind power
prediction (WPP) modeling
framework, which includes
two data feature engineering
branches and one
prediction module

A SCADA dataset of a
commercial wind farm,
which contains 33 wind
turbines with rated
power of 2 MW in
Mainland China

RMSE: 130.95–255.04

The proposed model for the WPP
modeling framework consisting of a
high sampling resolution data
feature engineering branch which
allowed improved the
WPP accuracy.

• The study investigated only the
usage of data of multiple
sampling resolutions in the
short-term WPP task.

• The study did not consider other
operating parameters (e.g., pitch
angle, temperature of generator,
rotating speed, etc.).
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Table A2. Cont.

Model
Category

Wind Speed
Prediction Study Location Approach and Methods Used Datasets Obtained

Performance Metrics Advantages of Study Disadvantages of Study

Machine learning

SVR [47] Taiwan

A hybrid intelligent method
for short-term wind power
forecasting and
uncertainty analysis

The actual wind power
generation, wind speed
and wind direction data
collected for every
15-min over one year

RMSE (W): 67.2543
MRE (%): 2.8845

The proposed method provides
more accurate forecasts than other
existing methods

The proposed approach produced
different confidence levels for each
forecasting period. So, to allow more
accurate forecasting, more models could
be considered.

GA-BP-ANN [48] Beijing, China

A GA-BP hybrid
algorithm-based ANN
model for wind
power prediction

Actual datasets
correspond to records of
10-min average wind
speed and wind turbine
output power for the
period of one year (from
26 March 2014 to 25
March 2015)

MAE (kW): 45.68
MAPE (%): 7.48

• The proposed approach
demonstrated superior
performance and substantial
improvement over
persistence and feed forward
BP NN based
forecast models;

• It could be an important tool
for 1-day-ahead hourly wind
power prediction.

The study was carried out for
1-day-ahead wind power prediction
considering only the wind speed as
input data.

Artificial intelligence

LSTM-IVMD-SE [22] Dingbian and Gansu,
in China

A robust short-term wind
power forecasting model
based on Long Short-term
Memory (LSTM) with
correntropy including
improved variational mode
decomposition (IVMD) and
sample entropy (SE)

Two sets of data with
different sampling
intervals and different
scales were used for
this work.

RMSE (kW): 58.77
MAE (kW): 41.10
TIC: 0.0047

Since the hybrid model is
insensitive to outliers and noise, it
can significantly improve
prediction accuracy.

• Several interesting studies should
be conducted, such as the
non-linear weighted combination
of components forecasting
results, etc.

• Input data should be improved
with others wind turbine
operating parameters.

FCM-Clustering
algorithm [23], Northeastern China

An improved Fuzzy
C-means (FCM) Clustering
Algorithm for day-ahead
wind power prediction.

Historical data collected
from two different wind
farms of 52.5 MW
located in northeastern
China were used.

RMSE (%): 4.12–21.18
MAE (%): 5.49–23.96

The proposed approach can be used
to establish the relationship
between wind speed and
wind power.

Only the wind power is considered as an
input variable to the model.

DD-PPDL [27]
Levenmouth, Fife,
Scotland and
United Kingdom

A novel data-driven
approach by integrating data
pre-processing &
re-sampling, anomalies
detection and treatment,
feature engineering, and
hyperparameter tuning
based on gated recurrent
deep learning models is
proposed for wind
power forecasting.

Datasets recorded from
SCADA over a
nine-month period from
1 July 2018 to 31 March
2019 were used in
this study.

MSE: 0.003532
Accuracy (%): 94.06

The developed approach in this
study has the advantage of a high
degree of accuracy while retaining
low computational costs.

The study did not consider other wind
turbine operating parameters (e.g., wind
direction, pitch angle, temperature of
generator, rotating speed, etc.).
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Table A2. Cont.

Model
Category

Wind Speed
Prediction Study Location Approach and Methods Used Datasets Obtained

Performance Metrics Advantages of Study Disadvantages of Study

Artificial intelligence

ANFIS-WT-PSO-
MI [37] Portugal

New hybrid
evolutionary-adaptive
methodology for wind
power forecasting in the
short-term, successfully
combining mutual
information, wavelet
transform, evolutionary
particle swarm optimization,
and the adaptive
neuro-fuzzy
inference system

Datasets collected in
Portugal were used for
this study.

MAPE (%): 3.75
NMAE (%): 1.51
NRMSE (%): 2.66

The application of the proposed
hybrid evolutionary-adaptive
(HEA) methodology was revealed
to be accurate and effective, helping
to reduce the uncertainty associated
with wind power.

The study did not consider other
operating parameters (e.g., wind
direction, pitch angle, temperature of
generator, rotating speed, etc.) for wind
power prediction.

EMD-C-GT [38] Dongtai, China

A hybrid prediction model
with empirical mode
decomposition (EMD),
chaotic theory, and
grey theory

Power data collected
every 10 min.

MAPE(%): 18.33
NMAE(%): 5.71
NRMSE (%): 7.80

The approach can reduce the
non-stationary wind farm of the
power time series and enhance the
prediction accuracy compared to
the direct prediction method for
using the power data directly.

Only the wind turbine output power
datasets were used as input to
the model.

CapSA-RVFL [40] La Haute
Borne, France

An optimized RVFL network
using a new naturally
inspired technique called the
Capuchin search
algorithm (CapSA)

Datasets obtained from
La Haute Borne wind
turbines in France (from
2017 to 2020)

RMSE (kW):127.7821
MAE (kW): 84.6789
R2: 0.9638

The application of the CapSA has
boosted the process of the
parameter configuration to provide
the RVFL with a high performance
and high prediction accuracy and
could be used for
other applications.

The study did not consider other wind
turbine operating parameters (e.g., wind
speed, pitch angle, temperature of
generator, rotating speed, etc.).

NN-ICA-GA and
PSO [42] Alberta, Canada

Different hybrid prediction
models based on neural
networks trained by various
optimization approaches are
examined to forecast the
wind power time series from
Alberta, Canada.

Experimental data from a
wind farm in Alberta,
Canada for the year 2007

MAE (kW):
3.4320–8.7586
RMSE (kW):
4.2963–13.8326
MAPE (%):
7.3888–20.3263

The low error indices and very fast
convergence are the main
properties of the proposed
approach specifically for the hybrid
ICA–neural network model.

The study did not clearly indicate the
input variables and their influence on
the performance of the model.

ANFIS-MoW [43] Nouakchott,
Mauritania

A novel adaptive
neuro-fuzzy inference
system with the moving
window approach

Wind turbine datasets
from a 30-MW wind
farm over on year
provided by the
Mauritanian Electricity
Company (SOMELEC)
are used in this study.

NMSE: 0.0027–0.0075
NMAE: 0.0347–0.0636
RMSE (kW):
36.6973–53.9617
R2: 0.9961–0.9987

The proposed approach can be used
as a useful tool to avoid shutdown
risks in the wind farm system and is
helpful for the management of the
electricity grid.

Further research is needed to improve
the accuracy of the ANFIS-MoW model
by considering more operational
parameters and further improving the
ANFIS-MoW approach.

G-NN [44] Zhangbei, China

Short-term forecasting of
wind turbine power
generation based on a
genetic neural
network approach

Actual wind speed data
from 10 days were used
as original data to train
and validate the model.

RMSE (kW): 4.031
MAE (kW): 3.534
MRE (%): 2.38

The proposed model ranges from
the wind speed to the output power
from wind turbines.

• The proposed approaches used
predicted wind speed to generate
the output power from the WTs.

• Also, only the datasets measured
every 10 min over 10 days are
used for this study.
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Table A2. Cont.

Model
Category

Wind Speed
Prediction Study Location Approach and Methods Used Datasets Obtained

Performance Metrics Advantages of Study Disadvantages of Study

Artificial intelligence ANFIS [49] Beijing, China
An ANFIS-based approach
for 1-day-ahead hourly wind
power generation prediction

Datasets recorded for
every 10-min average
wind speed and turbine
output power for a
period of one year from
26 March 2014 to 25
March 2015

MAE (kW): 28.39
MAPE (%): 4.45
RMSE (kW): 46.06
MSE (kW): 2121.5

The validation of the proposed
model demonstrates the capability
of the approach to predict wind
power from a daily wind speed
profile at a reasonable accuracy
with superior precision over
feed-forward ANN and GA-BP
NN models.

Only wind speeds are used as input for
the proposed model.

EISM: Effective information screening module; RTRD: Real-time rolling decomposition module; Bi-LSTM: Bidirectional long short-term memory neural network; MST-GNN: Multidi-
mensional spatio-temporal graph based on the neural networks; MFMS: Multi-feature and multi-scale learning; CNN-LSM-NDL: Convolutional neural network and long short-term
memory network deep learning model; VMD-TCN-STL: Variation mode decomposition–temporal convolutional network and sequential triplet loss: RNN-CNN-LSTM: Hybrid
neural network scheme coupled to convolutional neural network and long short-term memory; DRIPS-PDI: Decomposition–recognition–integration-prediction system considering a
recently predictive difficulty index; CNN-BILSTM-MOHHO: Capsule neural network and bidirectional long and short term memory network combined with multi-object harris hawk
optimization; LSTM-IVMD-SE: Long short-term memory neural network coupled with correntropy combining an improved variational mode decomposition and sample entropy;
FCM: Fuzzy C-means clustering algorithm; BMA-EL: Bayesian model averaging and ensemble learning; DD-PPDL: Data-driven approach integrating data pre-processing and deep
learning models; SRNN-PSAF: Stacked recurrent neural network coupled with parametric sine activation function algorithm; MC-hNN: Multiple clustering algorithm and hybrid neural
network method; WT-CNN-tSVR: Wavelet transform based convolutional neural network and twin support vector regression; ANFIS-WT-PSO-MI: Hybrid and adaptable ANFIS-based
technique incorporating the wavelet transform and the PSO with mutual information; EMD-C-GT: Hybrid prediction model including the empirical model decomposition based on the
chaos and grey theories; CapSA-RVFL: An optimized random vector functional link network using capuchin search algorithm approach; NN-ICA-GA and PSO: Hybrid prediction
models based on neural networks optimized using the so-called imperialist competitive algorithm (ICA), the GA, and the PSO; ANFIS-MoW: A novel adaptive neuro-fuzzy inference
system with the moving window; G-NN: Genetic neural network (G-NN) modeling technique; hPDM-TVFEMD-AE-YJQR-GAQ: Hybrid probability density model including time
varying filter based empirical mode decomposition, approximate entropy, Yeo-Johnson transform quantile regression, and Gaussian approximation of quantiles; BBLP-MSR: Bilateral
branch learning paradigm with data of multiple sampling resolutions; Multiple-SVR: Multiple support vector regression-based model; GA-BP-ANN: Genetic algorithm trained by the
back propagation artificial neural network learning algorithm; ANFIS: Adaptive network-based fuzzy inference system; EPT-CEEMDAN-TCN: Ensemble patch transform and the
complete ensemble empirical mode decomposition with adaptive noise combined with temporal convolutional networks; ED-Wavenet-TF: Wavenet networks based encoder-decoder
framework; MSFAE: Multi-scale feature adaptive extraction ensemble model; MKSVRE-WOA: multi-kernel SVR ensemble model based on unified optimization and whale optimization
algorithm; VMD-CA-LSTM-EL-EC: hybrid model based on the variational mode decomposition, clustering analysis, long short-term memory network, stacking ensemble learning, and
error complementation.
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