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Abstract: The emergence of Digital Twin (DT) technology presents unique opportunities for soci-
ety by facilitating real-time data transfer from the physical environment to its digital counterpart.
Although progress has been made in various industry sectors such as aerospace, the Architecture,
Engineering, Construction, and Operation (AECO) sector still requires further advancements, like the
adoption of these technologies over traditional approaches. The use of these technologies should
become standard practice rather than an advanced operation. This paper aims to address the existing
gap by presenting a comprehensive framework that integrates technologies and concepts derived
from purpose-driven case studies and research studies across different industries. The framework is
designed to provide best practices for the AECO sector. Moreover, it aims to underscores the potential
of DT for optimization through overseeing and digital management of the built environment across
the entire life cycle of facilities, encompassing design, construction, operation, and maintenance. It is
based on an extensive literature review and presents a holistic approach to outlining the roles of Build-
ing Information Modelling (BIM), Geographic Information Systems (GIS), Internet of Things (IoT),
and other key enablers within the DT environment. These digital tools facilitating the simultaneous
evaluation of associated benefits, such as resource savings and future prospects, like monitoring
project sustainability objectives.

Keywords: Digital Twin (DT); virtual model; Building Information Modelling (BIM); Geographic
Information System (GIS); Internet of Things (IoT); smart cities; artificial intelligence (AI)

1. Introduction

The impact of the built environment, which includes infrastructure, buildings, and
urban spaces, on our daily lives cannot be overstated. It is responsible for nearly 40% of
global energy consumption and carbon dioxide emissions, making it a crucial area for
sustainability efforts (UN Environment, 2018) [1]. To make necessary improvements in
sustainability, efficiency, and occupant comfort, building owners, facility managers, and
city planners require precise and comprehensive information about the performance of
the built environment. To obtain this information, Digital Twin technology can be utilized
in order to create a virtual replica of a physical system allowing for real-time monitoring,
analysis, and optimization.

The continuous evolution of technology has played a vital role in providing quick ac-
cess to vast amounts of information, bringing about considerable advancements in several
fields, particularly digital technology [2]. With the increasing development of virtual mod-
eling and data collection technology, the Digital Twin (DT) concept has become increasingly
feasible as it involves the creation of a digital model of the physical environment that adapts
to real-time changes and provides optimal outcomes quickly. Digital Twin (DT) platforms
have the capability to improve and advance themselves by utilizing data gathered from
installed sensors that update and simulate information from the environment [3]. In the
first phase, virtual models of the physical environment are used to create DT platforms,
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and the gathered physical data are integrated to establish a unified connection with the
physical environment, enabling real-time monitoring. Therefore, DT platforms manage
and supervise the physical conditions of the environment through their corresponding DT.

In addition, DT platforms offer features that can increase efficiency, prolong lifespan,
and lower operational expenses of the targeted physical environment through proactive
and predictive monitoring and maintenance tools [4]. Furthermore, the latest mapping
technologies utilizing data gathered from the physical environment and remote sensing
from Earth Observation (EO) satellites are integrated into the built environment tools
within DT platforms [5,6]. While still in their early phases, DT platforms have already
demonstrated numerous capabilities in various scientific domains.

A review of published articles on DT platforms has revealed a significant gap in
the implementation of DT platforms in the construction sector. Although DT platform
applications have been explored in multiple sectors, including construction, the industry
has not fully adopted the DT paradigm. This can be attributed to the various stakeholders
involved. The goal of this article is to conduct a thematic analysis to provide an up-to-date
review of DT platform applications. It will examine the extent of DT implementation
in the AECO sector, define the principal concepts and significant enablers, and identify
recommendations from other industrial sectors.

Recent studies have highlighted the benefits of implementing DT technology, which
includes monitoring facility performance and operation, as well as cost analysis and reliable
scenarios for maintenance. Although significant investment is required for launching and
developing digital platforms, it can provide a long-term return on investment [6].

Digital platforms offer several benefits, such as effective data management, anomaly
detection in maintenance and control stages, and management of different departments.
Parrott et al. [7] reported that digital platforms increase quality, reduce warranty, ser-
vice, and operational costs; introduce new digital products; and create opportunities for
capital growth.

The practical advantages of digital platforms in the construction and urban develop-
ment sector include real-time monitoring of construction progress; updated use of maps
and models; appropriate planning for resource support; monitoring safety departments
and structure quality; equipment optimization monitoring, supervision, management,
and operation of facilities; improved decision-making; and sustainable development of
buildings and cities [8].

The construction industry has not fully utilized the advantages of digital platforms yet,
but there is hope that it will soon take full advantage of the potential of DT by implementing
it as much as possible in the construction industry. Additionally, the growing trend of
intelligent building construction and big data can significantly impact the mandatory
growth of DT platforms in this industry. Digital platforms have made many advances
in other industries, which can show significant benefits. However, compared to other
industries, the growth of digital platforms in the construction sector has not been very
impressive due to different factors [9].

To fully realize the potential of digital platforms, it is essential to aggregate and
utilize vast datasets from diverse sources in an objective manner. The slow growth and
development of digital platforms in the construction industry can also be attributed to
the nature of the industry, where each project differs from another. The use of different
standards in the development of digital platforms can effectively help the growth and
development of DT technologies. Therefore, increasing the development of standardization
in this sector can significantly help produced valuable digital products.

According to a study by Siemens, another limitation of adopting digital platforms in
the construction industry is the lack of defined budgets for developing these platforms in
“digital” planning and simulation to reduce costs in the long term [10].

According to several studies conducted in the United States, 89% of IoT platforms
will contain some form of Digital Twin capacity by 2025 [11]. As a result of the COVID-
19 pandemic, 31% of companies are using Digital Twin systems to improve employee
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safety, such as using remote asset monitoring systems to reduce the need for in-person
monitoring [12]. According to a report by Markets and Markets [13], the global value of
the Digital Twin market was estimated at $3.1 billion in 2020 and is expected to reach $48
billion by 2026.

From literature analysis, the absence of a holistic and comprehensive perspective on
the implementation of Digital Twins within the built environment, as a definitive reference
point, emerges. Consequently, this paper endeavors to bridge this gap by presenting a
framework that integrates technologies and concepts derived from purpose-driven case
histories and extensive research studies. Through this approach, the paper seeks to make
a valuable contribution to the field by establishing a structured framework aligning with
the multifaceted requirements of Digital Twin implementation in the built environment
and beyond.

Based on the findings obtained from the examination of definitions, key enablers, and
successful Digital Twin implementations across various domains, along with the explo-
ration of BIM-GIS integration and IoT and smart cities as pivotal catalysts for the Digital
Twin foundation within the built environment domain, this paper presents a proposed con-
ceptual framework for DT developments. The framework aims to facilitate comprehension
of essential components and potential system architectures pertinent to the deployment of
Digital Twins in the built environment.

The implementation of DT-based systems in the building sector can have significant
spill-over effects on society. These include improvements in the efficiency of building
projects, reductions in operating costs, the promotion of sustainability, stimulation of
technological innovation, improvement of quality of life, and development of technical
skills. In summary, implementing decision-tree-based systems in the building sector can
lead to significant improvements, contributing to the overall progress of society.

1.1. Definitions and Key Enablers

The concept of “twinning” was initially introduced in the aerospace industry during
the NASA Apollo project of 1960 [14]. The project required the spacecraft to communicate
with its Earth-bound twin, as if it were on a space mission [15]. Later, Dr. Michael Grieves
coined the term “Digital Twin” related to Product Lifecycle Management (PLM) [16].

PLM is an all-encompassing strategy for managing every aspect of a product, and
it entails the use of several tools, technologies, and procedures to streamline product
development and management. In this context, Kritzinger et al. [17] describe DT as a digital
information system that can be employed to simulate and optimize various stages of a
product’s lifecycle. The various definitions and applications of DT have characterized this
idea as a digital model connected to a physical entity using smart devices and a stable
real-time communication network.

Different authors have provided diverse definitions to explain the meaning and ob-
jectives of DT technologies. Grieves defined DT as an information model that reflects the
product’s lifecycle management [18] Similarly, other authors have also given their own
descriptions of DT. For instance, Rosen et al. [19] defined DT as a combination of physical
and virtual spaces that can mirror each other to evaluate physical lifecycle operations.
Boschert and Rosen [15] asserted that DT includes all valid physical and functional data
of a system, with their definition focusing on data exchange and algorithms controlling
physical behavior and virtual models. However, this definition only concentrates on DT
data and disregards its components and purpose. Grieves [17], on the other hand, presented
DT as a set of virtual information structures in product lifecycle management, with the
ability to represent data linked to a possible or actual physical product.

Regarding the engineering design of the physical environment, the objective of DT is
to achieve the final product quality using digital design while reducing the gaps between
design and implementation.

According to Liu et al. [6], a digital twin is a model of a system that dynamically
adapts to changes in the physical environment by using collected data and information to
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predict future changes. Digital Twin (DT) employs a spectrum of technological methodolo-
gies, tools, and internet systems to acquire real-time data from the physical environment,
subsequently employed for simulation and virtual modeling purposes. As explained by
Madni et al. [20] a DT serves as a virtual representation of the performance, maintenance,
and health of a physical environment, continuously updated throughout the system’s
lifecycle. Liu et al. [21] further suggested that a DT can operate over time to enhance its
performance by utilizing the information received from the physical environment.

The emergence of DT platforms has opened new avenues for more precise and accessi-
ble functions and services in various fields. The domain of DT platforms can be defined
by the interaction principles between the physical and virtual worlds that enable data
analysis and system monitoring [4]. This interaction between the physical environment
and virtual modeling is greatly facilitated by communication platforms that are enhanced
using real-time data and dataset updates. In this context, the Internet of Things (IoT) can be
mentioned as a highly dependable communication system that operates on sensors, cloud
computing, and data analysis. Therefore, the continuous flow of data and information
transferred between the physical and virtual environments is a crucial element of DTs,
enabling the platform environment’s lifecycle [22].

The Digital Twin (DT) platform possesses the capability to forecast the future state
of the physical environment by continuously adapting to operational variations through
real-time data collection and information assimilation. Therefore, the DT platform consists
of integrating systems from data sources and datasets, supported or formed by embedded
sensors, wireless sensor networks, and digitized lifecycle systems and integration with
cloud services and data providers [23]. Advancements in sensor design and fabrication
make it easy to synchronize the DT platform with collected information from the physi-
cal environment. These sensors immediately receive information and enable the virtual
model’s continuous ability. Based on this, the DT paradigm can be divided into three
parts: (a) Physical product; (b) Virtual product; (c) Communication infrastructure and data
collection systems. As such, one of the critical aspects of the DT is the connection between
“Physical Twin” and “Digital Twin” environments, which involves various approaches and
sub-components at each stage (Figure 1).

Figure 1. Main Digital Twin components.

1.1.1. Internet of Things (IoT)

The concept of the Internet of Things (IoT) [24] is a key element in the context of DT
for the built environment. IoT refers to the interconnected network of physical devices
equipped with sensors, actuators, and communication technologies that enable them to
collect and exchange data. This interconnection of physical objects provides a fundamental
substrate for the creation of dynamic and informed Digital Twins. Objects in the built
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environment can be enhanced using a variety of advanced devices that enable automation
and remote control of a wide range of systems, including temperature, humidity, motion,
and more. These sensors provide real-time data that feeds the Digital Twin, enabling an
accurate representation of environmental conditions. They can also act autonomously
thanks to distributed intelligence [25] provided by embedded algorithms and processing
systems. This enables rapid and adaptive response to changing environmental conditions.
The IoT provides ubiquitous connectivity, enabling continuous communication between
devices. This network of connections helps keep the DT up to date [26], ensuring that
information is timely and reliable. L. Sciullo et al. [27] presented research that introduces
the Relativistic Digital Twin (RDT) framework. This innovative approach is characterized
by the automatic generation of general-purpose DTs for IoT entities, whose adaptability
over time is ensured by continuous observation of real-life behavior.

L. Cecere et al. [28] propose an application case where data from IoT sensors fits the
big data paradigm [29], which is generally characterized by a significant size that makes it
difficult to analyze using traditional methods. In order to extract new information from
historical data, deep learning techniques have been employed. These methods demonstrate
the ability to intuitively analyze and identify relationships between data that may elude
traditional analysis methods.

Data security in the IoT context is a critical issue [30] due to the vast landscape of
interconnected devices. Limited device resources present challenges in securing data
in transmission, potentially exposing it to threats such as man-in-the-middle attacks or
security compromises at the device or network level. Considerations include implementing
robust encryption practices, secure identity and access management, and protecting the
privacy of sensitive data. Adopting standard protocols, incorporating cybersecurity best
practices, and providing ongoing user training are essential approaches to addressing IoT
data security challenges. Constant adaptation to evolving threats requires a vigilant and
proactive approach to secure IoT operations. A. K. Singh et al. [31] highlight the challenges
and issues envisaged in the area of security in the context of the Internet of Things (IoT),
with the aim of providing guidance on authentication procedures to ensure the security of
IoT services. M. Kiran et al. [32] present the Ownership Transfer Protocol (OTP) to ensure
the secure transfer of digital ownership of IoT objects, using Physically Unclonable Function
(PUF) and blockchain. This process eliminates the reliance on trusted third parties and
supports partial transfer of ownership and is notable for its innovative use of blockchain.

1.1.2. Lighting Systems

Numerous studies have explored methods to reduce energy consumption in lighting
technology and its control systems [33]. The incorporation of LED lights has been identified
as one such approach, capable of reducing energy consumption by 10–25%. Furthermore,
the integration of sensor control technology can reduce lighting energy consumption by
over 50%. Juntunen et al. [34] utilized passive infrared (PIR) sensors to intelligently track
pedestrian movement and dynamically control lighting devices, resulting in savings of
over 60% compared to traditional street lighting systems. Optical sensors may also be
implemented to optimize the sensor installation location and adjust brightness, which can
potentially reduce energy consumption by 45–61%.

A mathematical model based on a matrix was constructed using a Radial Basis Func-
tion (RBF) neural network. The utilization of genetic algorithms facilitated the refinement
of sensor allocation by Gao et al. [35]. Van De Meugheuvel et al. [36] proposed a distributed
lighting control system that makes use of sensors to adjust lighting levels efficiently in
response to ambient lighting. In addition, Wagiman et al. [37] suggested a new technique
for optimizing optical sensors by using particle swarm optimization (PSO) algorithms to
minimize light and energy consumption. Sun et al. [38] integrated several technologies
such as routers, databases, and servers to create a distributed multi-agent framework for
multiple sensors. This integration augments the capacity to interact with the environment
and bolster intelligent control within lighting systems.
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1.1.3. Computer Vision

The technology of computer vision and the tools used for processing and analyzing
images can be seen as an emulation of biological vision, and it includes various subsets,
such as object detection, scene reconstruction, 3D pose estimation, video tracking, image
recovery, and 3D scene modeling. These technologies are extensively employed in everyday
life due to significant advancements in computer vision and smart city construction [39].
Various industries have made significant progress in enhancing efficiency, safety, and
smartness, particularly within the domain of remote computer vision. This progress is
evident in the areas of facial recognition [40], smart locks [41], and entrance and exit control
in office buildings [42].

Computer vision has the potential to significantly contribute to energy conservation
in buildings, in addition to its various applications. For instance, deep learning techniques
have been employed by researchers to detect equipment and heat increase in office build-
ings [43] and forecast heating energy demand in residential buildings [44]. Moreover,
computer vision has a great potential for intelligent lighting systems, as demonstrated
in several studies. Zawadzki et al. [44] suggest the use of a microprocessor controller
for image analysis and remote control of light beam direction. Carrillo et al. [45] utilized
a digital camera to improve the environment’s lighting by adapting it to artificial light,
providing a better effect on the buyers while also saving energy. Wu et al. [46] presented a
method for adaptive adjustment of light brightness using quasi-real calculations of ambient
brightness for high dynamic range (HDR) imaging. Motamed et al. [47] conducted research
on visual sensors with a high dynamic range to monitor lighting systems, while Liu et al. [6]
used infrared image processing for intelligent control of library lighting devices. Finally,
Shanmugam et al. [48] employed computer vision and integrated deep learning algorithms
for video stream processing to investigate warehouse material transfer in their intelligent
lighting control. Computer vision has significantly contributed to many fields, such as
calculating ambient light, assessing lighting quality, and controlling intelligent lighting
systems, resulting in substantial energy savings.

1.1.4. Building Information Modelling (BIM)

The process of simulating physical models and updating data in multidisciplinary
and multiscale domains can be accomplished through digital platforms [48]. To accurately
represent real-world information in a virtual environment, these platforms use powerful
models. In a study by Yue Pan et al. [49], a digital platform framework for advanced project
management was built using BIM and IoT. Similarly, Zhao et al. [50] employed IoT and BIM
technology to develop DT platforms for designing intelligent storage systems and managing
goods safety. Additionally, Digital Twins have been utilized by researchers to monitor the
management of smart urban infrastructures [51]. Digital Twins have also proven useful in
the field of damage detection in smart city infrastructures [52]. By identifying damages to
the built environment, Digital Twins enable risk-based decisions and reduce environmental
stress using smart management approaches [53,54]. BIM and DT technologies have a deep
relationship, and BIM adds engineering support to digital platforms. Several researchers
have explored the concept of BIM technology in digital platforms and presented case
studies [54]. Combining BIM models and IoT has also been beneficial [55], as the models
provided by BIM technology utilize different sensors for dynamic collection and integration
of data and operations within the BIM environment [56].

BIM models contain real-time building information, enabling the ability to make quick
decisions and respond to emergencies. Srinivasan et al. [57] used BIM models to examine
the combination of 3D heat transfer analysis results. Additionally, BIM models are utilized
for other applications such as monitoring construction facilities [57], emergency evacuation
of buildings [58], and developing prefabricated buildings [59].
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1.1.5. Systems and Data Integration

Effective collaboration among stakeholders is crucial for the success of construction
projects as it enables the use of new and updated data. Outdated or incorrect data can
impede both building upkeep and operations, emphasizing the criticality of timely and
precise information. Facility management (FM) provides a fitting example of the benefits
of using building maintenance systems data, which can save up to 80% of efficient time
compared to paper reports or Excel spreadsheets [60]. In contrast, traditional transmission
methods can lead to lengthy maintenance services and processes [61]. In facility manage-
ment, Digital Twin technology has garnered significant attention due to its potential to
enhance asset performance, operational efficiency, and reduce maintenance costs. Numer-
ous scientific research studies have supported the benefits of Digital Twin implementation
in facility management:

• Predictive maintenance: Digital Twin technology enables facility managers to predict
equipment failure, resulting in proactive maintenance scheduling. Digital Twin tech-
nology can reduce maintenance costs by up to 40% by predicting maintenance needs
and preventing unexpected equipment downtime.

• Improved energy efficiency: Digital Twins can monitor and optimize energy consump-
tion in buildings, which can lead to a 20–30% reduction in energy usage and cost
savings, as well as reduced carbon emissions, according to Jamil S. et al. [62].

• Improved occupant comfort: DT technology enables facility managers to enhance
occupant comfort by controlling and fine-tuning environmental conditions like tem-
perature, air quality, and lighting. A study by [63] found that the use of Digital Twins
in HVAC systems can improve thermal comfort by up to 20%.

• Improved asset management: digital Twin technology can provide facility managers
with real-time information on the status and performance of building assets, resulting
in increased productivity, reduced costs, and improved asset utilization [64].

In building maintenance operations, BIM models can serve as a source and repository
of information alongside other services. Due to their compatibility with various technolo-
gies and support for all stakeholders’ activities, BIM models can offer robust solutions
in a short amount of time during the building’s lifespan [65]. Effective integration of
these models into digital platforms can help maintain the system’s achievements. There-
fore, it is crucial to develop techniques that use BIM data combinations according to data
specifications (COBie and IFC) to achieve these objectives [66,67].

2. Research Methodology

The research employed a scientometric analysis approach [68], utilizing the Web of
Science database, to focus on pertinent keywords: (“digital twin” OR “digital twinning”
OR “digital twins”) AND (“built environment” OR “AECO”). This methodology aimed to
retrieve pertinent sources within the context of the built environment as reported in Table 1.
In pursuit of a comprehensive comparison across diverse industries, a similar methodology
was adopted for the manufacturing, aerospace, and energy sectors. For each respective
sector, the keywords (“digital twin” OR “digital twinning” OR “digital twins”) were
combined with the appropriate industry-related terms: (“industry” OR “manufacturing”),
(“aerospace”), and (“energy”).

The developed image (Figure 2) facilitates comprehension of the proposed research
methodology. The hierarchical structure visually represents the main concepts related to the
research methodology, its application fields, and features, enabling prompt visualization of
their interrelationships. The visual representation aids in comprehending the relationship
between research methodology and the previously mentioned areas, as well as its relevance
in digital contexts. This graphical depiction is especially beneficial as it presents a concise
overview of the methodology and its practical usage, clarifying the context in which the
research methodology is implemented. Following this comprehensive analysis, a screening
phase was conducted. This phase involved a detailed assessment of alignment with the
research’s objectives and goals, resulting in the identification of 69 studies. As a result,
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a total of 46 keywords were identified and subsequently categorized into four primary
clusters within distinct domains:

1. Modeling and Digitalization.
2. Advanced Technologies.
3. Lifecycle and Sustainability.
4. Information Management.

Table 1. Clusters and keywords from co-occurrence based scientometric analysis.

Cluster Keywords Number

1. Modeling and digitalization

3d model; agent; connection; data collection; dataset; digital
twin model; digitalization; digitization; machine learning;
pointcloud; prediction; scenario; urban environment; virtual
environment; virtual representation; visualization;

110

2. Advanced Technologies
Artificial intelligence; augmented reality; blockchain; cloud;
communication; digital environment; digital transformation;
internet; iot; metaverse; smart city; web;

93

3. Lifecycle and Sustainability
Automation; cyber physical systems; energy; energy
consumption; energy efficiency; interoperability; lifecycle;
manufacturing; sustainability;

65

4. Information Management
Bim; bim model; building information modeling; digital
representation; digital twins; facility management; gis;
information modeling; lifecycle;

68

Figure 2. Visual representation of methodology workflow.

The specifics of these clusters are outlined in detail within Table 1, while the graphical
representation can be found in Figure 3. This approach allowed for a structured and
comprehensive exploration of the interrelated dimensions of the research, enhancing the
depth and breadth of insights gained from the study.
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Figure 3. Scientometric analysis conducted using co-occurrence methods. Source: VOSViewer.

Based on the findings of the scientometric analysis (Figure 3) conducted using co-
occurrence methods, three sub-areas of investigation have emerged, holding significant
relevance and offering essential insights into the potential and challenges of implementing
Digital Twins in the built environment:

1. GIS-BIM integration.
2. IoT and Smart cities.
3. Other industries applications.

The details of these subcategories are outlined below, this section offers a more specific
understanding of the various sub-areas explored in the study process.

1. GIS-BIM integration

The identified keywords such as “bim”, “gis”, “3D model,” “point cloud,” and “urban
environment” highlight the spatial dimension of Digital Twins as BIM (Building Informa-
tion Modeling) and GIS (Geographic Information Systems) integration. According to the
definition provided in Figure 1, it is related to the multiscale digital counterpart’s domain.
While BIM focuses on representing the physical and functional characteristics of a built
asset, GIS deals with spatial data analysis and mapping. The integration of BIM and GIS,
often referred to as BIM-GIS integration, is a logical step in enhancing the understanding of
built assets’ spatial relationships and dynamics. Investigating the application of Digital
Twins within this integration addresses how real-time data from physical assets can be
merged with spatial data, creating a holistic digital representation that facilitates improved
decision-making, maintenance, and asset management.

2. IoT and Smart cities
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The identified enabling technology keywords like “smart city”, “internet of things
(IoT)”, “augmented reality”, “communication”, and “data collection” emphasize the role
of advanced technology in shaping urban environments. According to the definition
provided in Figure 1, IoT and smart cities represent the enablers for communication between
physical and digital counterparts. Smart cities represent a burgeoning field wherein urban
infrastructure is equipped with advanced technologies to enhance the quality of life for
residents and optimize resource utilization. Digital twins have immense potential in this
domain, as they allow for a comprehensive simulation of the entire urban environment,
incorporating various interconnected systems, such as transportation, energy, water, and
waste management. Investigating the application of Digital Twins within smart cities
delves into how these virtual representations can aid in urban planning, predictive analysis,
resource optimization, and efficient governance.

3. Other industries applications

The identified sustainability-related keywords like “energy consumption”, “lifecy-
cle”, and “automation” underscore the relevance of other industries applications such as
manufacturing and energy in terms of resource efficiency and long-term viability.

As these industries have already embraced Digital Twins for optimizing operations,
predictive maintenance, and resource efficiency, the literature review seeks to uncover
transferable strategies and lessons that can be adapted to the built environment. As a result,
the integration of spatial data with BIM, the evolution of urban spaces into smart cities,
and the lessons from successful Digital Twin implementations in diverse industries were
identified as primary areas of investigation to achieve a comprehensive understanding.

2.1. GIS-BIM Integration

The management of cities and districts is highly dependent on the use of GIS soft-
ware layers [69]. BIM models can offer crucial data and layers that are indispensable for
infrastructure planning and construction procedures. The integration of GIS software and
BIM models is a fundamental requirement for software function integration, including
co-ordinate systems, semantic standards, data formats, and other parameters. To enhance
the performance of models, several researchers have focused on maximizing their inte-
gration. Integrating GIS software and BIM models can save time and allow for more
precise monitoring of construction and post-construction processes. Numerous studies
have demonstrated the successful utilization of GIS software and BIM model integration
for developing and visualizing a range of functions [70,71].

The availability of updated information models is essential to retrieve information and
obtain a comprehensive view of different stages of urban construction. Such information can
assist urban planners in estimating and analyzing urban sustainability more scientifically
and accurately. The support of GIS and BIM technologies is crucial in this regard, and their
practical development is necessary to understand, recognize, develop, and improve urban
laws on a large scale. The development of these technologies and integration of GIS and
BIM have provided a more scientific and practical approach to urban planning [72]. Prior
studies have shown how to extract information from BIM and 3D urban models to urban
information models [73].

GIS and BIM have been instrumental in effectively overseeing urban data. The creation
of the City Information Models (CIM) registry database is crucial for the development
and expansion of urban information [73,74]. Integrating GIS and BIM technologies with
urban registry management can help increase and expand the standardization of the BIM
modeling process and unify the information data formats used to facilitate it [70,75].

A Digital Twin system architecture has been proposed to merge Building Information
Modeling (BIM) and Geographic Information System (GIS) data as well as relevant static
and operational data associated with assets. The ultimate aim of this proposal is to facilitate
building management. The system’s layout is displayed in Figure 4. A summary of the
literature review based on main objectives is presented in Table 2.



Energies 2024, 17, 436 11 of 27

Figure 4. Integrating BIM and GIS for multi-scale Digital Twins.

Table 2. Review summary on BIM-GIS integration use cases.

Objective Summary Reference

Infrastructure Design

BIM models provide essential layers and data for infrastructure design and
construction, while GIS software is integral for managing cities and districts.
The seamless integration of these technologies is fundamental, ensuring
coordinated functions, semantic standards, data formats, and other crucial
parameters.

[69]

Urban Sustainability Analysis

Updated information models are pivotal for understanding various stages of
urban construction. The integration of GIS and BIM is essential for accurately
estimating and analyzing urban sustainability. This combination provides a
more scientific and practical approach to urban planning, enabling the
development and improvement of urban laws on a larger scale.

[72,76]

Urban Registry and City
Information Models (CIM)

The synergy between GIS and BIM is instrumental in managing urban
information effectively. The creation of the City Information Model (CIM)
registry databases is vital for urban information expansion and
standardization. Integrating these technologies further facilitates the
standardization of the BIM modeling process and unifies information data
formats.

[70,73–75]

Building Management

The proposed Digital Twin system architecture involves combining BIM and
GIS data with asset static and operational data for building management. This
integration has diverse benefits, including energy consumption reduction,
optimized construction sites, and improved architectural designs. Ongoing
research explores integrating GIS software and BIM model technology across
sectors like water projects, tunnels, and bridges, indicating its broad
applicability.

[77–79]

2.2. IoT and Smart Cities

Advanced technologies are utilized for efficient and timely analysis and integration of
crucial information systems in urban areas [80] to facilitate data-driven decision making
in various domains like environmental management, public safety, and city services [81].
Digital platforms have many potential applications in urban planning for immediate,
medium-term, and long-term improvement of people’s quality of life. One such application
is the use of a Digital Twin (DT) platform for water supply management in Carson, Nevada
that can increase water efficiency and prevent wastage [82].

Virtual Singapore is another notable project in this field that integrates 3D maps and
urban models into one platform, providing detailed information on building materials, tex-
ture, and facility components. This platform is instrumental in enhancing decision making
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in managing resources and responding to emergencies, enabling citizens, businesses, and
research communities to test new ideas [82].

The city of Amaravati, located in India, is a noteworthy project in this field. A DT
platform is being developed covering various facilities, such as metro networks, main roads,
hospitals, schools, universities, and buildings [83,84]. Similarly, the Australian government
has launched a project to create a DT platform near Melbourne that visualizes real-time
data on public transport, building sectors, and traffic analysis and forecasts electricity and
water consumption [85].

Moreover, digital platforms can be utilized for emergency response management
during disasters [54,86]. For example, White et al. [87] state that river level data can be used
to predict flooding and warning citizens about possible flooding can help minimize the
damages. Historical information about flooding in smart cities can be used for long-term
prevention of future flooding. The extensive use of DT platforms can change people’s
perspectives on cities and living spaces, providing ample opportunities for urban design-
ers, architects, engineers, builders, property owners, and citizens to analyze the city in
various scenarios [87]. Thus, with the participation of all stakeholders, cities can become
more democratic [88]. These outcomes collectively underline the significance of fostering
innovation, sustainability, and efficient resource utilization in modern urban environments
as shown and summarized in Table 3.

Table 3. Review summary on Smart cities use cases.

Objective Summary Reference

Efficient Data-Driven
Decision-Making

The integration of advanced technologies within urban areas is facilitating efficient and
data-driven decision making across domains such as environmental management,
public safety, and city services. This intersection empowers cities to address challenges
more effectively and enhance overall operational efficiency.

[80,81]

Innovative Urban Planning

Digital platforms are ushering in a new era of urban planning by offering immediate,
medium-term, and long-term improvements in the quality of life for city residents. The
utilization of Digital Twin platforms for specific purposes, like water supply
management in Carson, Nevada, underscores their potential to optimize resource
utilization and minimize waste.

[82]

Enhanced Resource Management

The Virtual Singapore project showcases the potential for Digital Twins to enhance
resource management. By integrating 3D maps and urban models into a unified
platform, this initiative provides detailed insights into building components, textures,
and materials. This approach empowers decision makers to manage resources more
effectively and respond swiftly to emergencies, while also providing an environment for
innovation and testing.

[89]

Transformative Urban Infrastructure
Projects

Major urban infrastructure projects, like the Amaravati development in India, highlight
the transformative potential of Digital Twin platforms. Such projects, which encompass
diverse facilities like metro networks, roads, hospitals, and educational institutions,
showcase the significance of Digital Twins in orchestrating large-scale urban
transformations.

[83,84]

Real-Time Data Visualization and
Forecasting

The initiatives launched by the Australian government near Melbourne exemplify the
practical applications of digital twins in real-time data visualization and forecasting. By
providing insights into public transport, building sectors, traffic patterns, and resource
consumption, these platforms offer a holistic understanding of urban dynamics.

[85]

Disaster Preparedness and Long-Term
Urban Planning

The integration of digital platforms is crucial in emergency response management
during disasters. Through predictive analysis and historical data utilization, these
platforms assist in flood prediction, minimizing damage and enabling long-term urban
planning for disaster prevention.

[90]

Empowering Stakeholders and
Fostering Innovation

The extensive use of digital twin platforms empowers various stakeholders, from urban
designers and architects to citizens and property owners, to analyze cities in diverse
scenarios. This homogenized of insights fosters innovation, collaboration, and a more
comprehensive approach to urban development.

[87,88]

Based on the insights arising from the literature review, Table 4 provides a compre-
hensive overview of the primary attributes and essential components for the successful
realization of BIM-GIS integration, as well as for the efficient acquisition and management
of data within the context of IoT and smart cities towards intelligent urban environments.
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Table 4. Main characteristics of Digital Twins were reported in each area by different studies.

Aim and Characteristics Year Reference

BIM-GIS Integration

Application integrations 2022 [3]

Ontology-based data integration 2022 [91]

BIM, GIS, and IoT collaboration 2022 [92]

Data intersection from systems 2021 [93]

Geos-spatial management through parametric modelling and visual programming 2021 [94]

IFC common geo-referencing approach 2021 [95]

Linking GIS and BIM local coordinates 2020 [96]

Bidirectional transformation methods and data aggregation 2020 [80]

IoT and Smart Cities

Integrated energy systems 2022 [90]

Integration of AI and IoT 2022 [42]

Big Data Analysis on IoT data 2022 [97]

Urban Facility Management 2021 [98]

Smart cities monitoring 2021 [99]

2.3. Other Industries Applications

The continuous progress of technology has paved the way for the integration of
DT platforms in various industrial and commercial sectors. These platforms can offer
numerous benefits to society, particularly in industrial settings. For instance, DT platforms
can create a virtual replica of the actual industrial environment in real-time, allowing for
better and more precise monitoring of the final products [100]. To further understand
the viability of DT platforms in different industries and showcase their accomplishments,
several industrial sectors with significant growth in DT platform development and design
have been analyzed. This comparison can aid in assessing the potential application of DT
platforms in different industries.

2.3.1. Aerospace

In the US Air Force Research Laboratory, the aerospace industry is utilizing digital
platforms to create a precise flight model. This virtual model’s data is combined with the
data from the physical models to produce highly accurate predictions [7]. Using digital
platforms can be helpful in predicting the structural life re-engineering process of an
aircraft [101]. Design systems and components manufacturing for aerospace and defense
organizations have been implemented with a dedicated Digital Twin approach for test
equipment. Moreover, Digital Twin platforms can be used for damage detection in aircraft
structural health management, assessing and updating the latest damage status and flight
status in real-time [102]. In the aerospace industry, Digital Twin platforms are currently
being used in various stages of product and service delivery and maintenance.

2.3.2. Industry and Manufacturing

The automotive industry, which produces cars in various models and designs, requires
advanced capabilities to ensure the quality of final products. In recent years, there has been
significant growth in car design technology, with more cars moving towards automatic control
systems. Lane monitoring systems, hands-free driving, and alarm sensors that detect objects
in proximity are some examples of automatic systems used in designing new cars [103]. In the
near future, DT’s digital platforms can play an important role in the success of autonomous ve-
hicles. The first step is to design a digital version of the car, which is then analyzed using data
obtained from actual test drives in simulation models to determine how the car will perform
before designing. The simulation uses data such as aerodynamic data, engine specifications,
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body design, and materials to be used. The use of digital technology in this process can
help the automobile industry grow even further. With the progress of the Internet of Things,
cloud computing, and artificial intelligence, more manufacturing industries are expected to
benefit from intelligent technologies in their production processes [95]. Roy et al. [104] have
reviewed the evolution of the manufacturing industry after the industrial revolution, exam-
ining the different stages and discussing their integration. Digital platforms with real-time
data management enable intelligent production in industries, leading to more opportunities
for automated data collection and optimization. Digital Twin platforms have the potential to
enhance supply chain effectiveness, optimize energy usage, and enhance the steps involved
in product assembly. They can also be used for monitoring and control in production stages
and have other advantages, such as multi-objective optimization and machine simulation and
monitoring [105].

2.3.3. Energy

In the present era, there is a noticeable rise in the number of newly constructed energy
farms being established and operated to diminish air pollution and combat global warming.
The integration of DT technology in the energy sector has multiple advantages, which
include enhanced efficiency, decreased expenses, and improved safety measures. One
of the significant benefits of DT is its capability to simulate real-life situations, enabling
energy firms to optimize their activities and minimize the likelihood of costly downtime.
Yu et al. (2020) [106] examined the use of DT technology in the maintenance of power
plants. The study found that the deployment of a DT system in a power plant led to a
reduction in unexpected downtime, increased safety measures, and improved efficiency.
Furthermore, the DT system provided valuable insights into the plant’s operation, enabling
the maintenance teams to recognize potential issues before they arose.

According to Bortolini research (2021) [107], the use of digital technologies (DTs) can op-
timize energy systems and improve their efficiency, resulting in reduced energy consumption.
DTs can monitor and manage renewable energy sources, such as wind turbines and solar
panels, improving their performance and reducing maintenance costs. To meet the growing
demand for electricity, clean energy farms, including wind and wave farms, are being installed
and operated in offshore areas worldwide. Remote digital platforms that are affected by
weather conditions such as wind, waves, water level, or temperature can reduce the operation
and maintenance costs of marine turbines and wave converters by up to 25% [108].

In this industry, developing digital platform technology is crucial. These platforms can
help facility management and improve the performance of built projects by monitoring and
controlling their health status in real-time. In order to make necessary improvements in
sustainability, efficiency, and occupant comfort, building owners, facility managers, and city
planners require precise and comprehensive information about the performance of the built
environment [2]. To obtain this information, Digital Twin technology can be utilized, which
creates a virtual replica of a physical system and allows for real-time monitoring, analysis,
and optimization. The continuous evolution of technology has played a vital role in providing
quick access to vast amounts of information, bringing about considerable advancements
in several fields, particularly digital technology [2]. With the increasing development of
virtual modeling and data collection technology, the Digital Twin (DT) concept has become
increasingly feasible. DT technology involves the creation of a digital model of the physical
environment that adapts to real-time changes and provides optimal outcomes quickly.

DT platforms can improve their performance by using data from installed sensors
that update and simulate information from the surrounding environment. This enables
the platforms to refine their performance over time. The Digital Twin turbine displays all
the data needed to determine the physical turbines’ performance based on wind power
and turbine engine temperature, and sensors connected to the turbines display the data
virtually on the platform. A software application for monitoring and predicting turbine
and wave converter temperatures could be developed and utilized in the subsequent phase.
The outcomes underscore how Digital Twin platforms are transforming various industries
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by facilitating accurate predictions, optimizing operations, enhancing decision making, and
improving overall efficiency. The application of Digital Twins in aerospace, manufacturing,
and energy sectors showcases the potential of these platforms to drive innovation and
transformative change across different domains (Table 5).

Table 5. Review summary on aerospace, industry, manufacturing, and energy use cases.

Objective Summary Reference

Aerospace

Digital Twin platforms are making substantial contributions to the aerospace industry. They
enable the creation of precise flight models by combining virtual and physical model data,
resulting in highly accurate predictions. These platforms aid in predicting aircraft structural
life re-engineering processes and have been successfully used for developing dedicated
Digital Twin approaches in test equipment.

[101,102,109,110]

Industry and Manufacturing

In the automotive industry, Digital Twin platforms are playing a pivotal role in the
advancement of self-driving cars. These platforms facilitate the design and analysis of cars
through simulation models, ensuring performance evaluation before actual manufacturing.
Additionally, Digital Twins are contributing to the evolution of Industry 4.0, enabling
intelligent production processes, supply chain optimization, energy consumption reduction,
and enhanced product assembly.

[103,111]

Energy

The energy sector is witnessing the integration of Digital Twin technology to enhance
efficiency, reduce expenses, and improve safety. These platforms simulate real-life scenarios,
optimizing energy operations and minimizing downtime. They find application in power
plant maintenance, monitoring renewable energy sources, and managing energy systems.
Digital twins play a crucial role in enhancing facility management, improving performance,
and optimizing energy consumption in built environments.

[107,108,112–116]

Based on the information gained from the literature review, Table 6 presents a thorough
analysis of the key features and critical elements required for the effective implementa-
tion of digital twins with a cross-domain perspective encompassing aerospace, industry,
manufacturing, and energy applications.

Table 6. Various studies in different fields have reported the main characteristics of digital twins.

Aim and Characteristics Year Reference

Aerospace

Quality management in assembly process 2022 [117]

Information management 2022 [118]

Geometrical variation prediction 2022 [119]

Multi-input loads monitoring 2022 [120]

AR-based Learning Speed and Task Performance. 2021 [121]

Multi-dimensional machining process data 2021 [122]

Condition Based Maintenance 2021 [123]

Modelling simulations 2020 [103]

Industry and Manufacturing

Model-driven engineering 2021 [124]

DTs and CPS 2019 [125]

Production control optimization 2019 [126]

Real-time feedback from virtual to real space 2021 [51]

Planning and commissioning optimization 2021 [127]

Smart Manufacturing System early detection 2021 [108]

Energy

DT-based energy optimization solutions 2019 [128]

Distributed real-time process data 2017 [129]

Performance predictions 2020 [130]

Continuous tracking and simulation 2020 [131]

Hybrid modelling performance monitoring method 2020 [114]
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3. Results: Digital Twin Framework for Built Environment

According to the literature review, Digital Twins for the built environment can be
composed of multiscale modelling such as BIM-GIS-integrated information models, real-
time data sources, and digital platforms. As such, below are some DT key elements and
system architecture proposed with reference to the management of built assets during
design, construction, delivery, operation, maintenance, renewal, and end-of-life stages
(Table 7).

Table 7. Key outcomes of DT implementation in the built environment lifecycle.

Lifecycle Stage Objective

Design

Model, simulate, and conduct what-if scenarios.
Improve and optimize design.
Environmental impacts analysis.
Individual asset scale, district, or city level analysis.
Design informed by data, information, and connected ecosystems.
Improve the built environment’s operational efficiency (traffic flow, occupancy, energy, etc.).

Construction

Site-based process enhancement (sensors, drones, and laser scanning).
Supply chain allowing real-time inventory tracking.
Prefabrication and industrialised construction.
Benefits in production management, work performance, health, safety, and wellbeing of workers,
materials, and equipment tracking.
Streamline the management of data and information during construction.

Operation and
maintenance

Predictive maintenance (monitoring of health of building systems and equipment in real-time,
enabling predictive maintenance and reducing downtime and repair costs);
Improved energy efficiency optimizing building systems and operations.
Better asset management (track the location, condition, and performance of building assets);
Enhanced safety and security (simulation of emergency scenarios, identification of potential safety
and security risks, and proactive measures);
Reduced operational costs (identification of inefficiencies and areas of waste).
Improved occupant experience (tracking occupant behaviour);
Increased sustainability (track and reduce the environmental impact of buildings).

Decommissioning

Planning and executing the decommissioning process safely and efficiently.
Simulate and optimize different decommissioning scenarios and identify potential risks.
Reducing the potential for unexpected delays or operational complications.
Facilitate collaboration and communication between different stakeholders.
Progress tracking and monitoring.
Improved sustainability and resource efficiency.

3.1. Key Elements

Virtual representation: refers to a digital copy of the construction elements and pro-
cesses under consideration (ISO 23387 [132]). This digital representation comprises a series
of interconnected digital assets, such as computer-aided design (CAD) models, building
information models (BIM), geographic information systems (GIS), as well as images, videos,
point clouds, documents, and spreadsheets to capture the as-built construction condition.
Additionally, virtual representation is supported by data coming from the construction
phase including information related to products, systems, materials, elements, entities, pro-
cesses, work performances, and more. The utilization of digital resources and supportive
data is aimed at managing past, present, and future potential statuses of assets from the de-
sign stage to the end-of-life or decommissioning stage. Redundant data and information are
continuously updated, overwritten, or archived as appropriate. This data can be employed
to enhance the entire comprehension of the asset or to plan out particular scenarios.

Entities and processes in the real world: Can be categorized into three levels—(I)
Construction elements such as products, systems, spaces, or components; (II) Built assets
such as bridges, industrial plants, or buildings; (III) Asset portfolios such as, highway
networks, wind farms or architectural structures. The physical environment related to the
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entire lifecycle of entities is also relevant as DTs are driven by purposes, and driving the
development of the DT and helping DT developers define the system architecture and
technical specifications according to the scope and the asset’s lifecycle phase is essential,
(e.g., pre-design, design, or operation).

Synchronization: The connection between virtual and real-world entities which is
critical and sets DTs apart from other digital models as it enables a loop between the virtual
and physical worlds for management, forecasting, optimization, and simulation processes.
Synchronization allows one-way connections with sensors providing data on real-world
entity performance as well as bidirectional flows with control systems to actuators with
or without human intervention. It also plays a relevant role in the design, development,
distribution, and use of DTs, which need to be regularly updated. The synchronization
mechanism is also relevant in creating DT connected ecosystems linking other external data
sources such as local weather, environmental, and economic data.

Frequency of synchronization: Determines the timing of synchronization between
virtual and physical entities as the digital asset needs to represent the actual state of
connected assets and processes. Frequency synchronizations is related to the DT use case,
available resources, real-world assets type, and real-time data acquisition methods. Regular
updates are necessary to prevent the virtual representation from becoming obsolete and
limiting the usefulness of the Digital Twin. Without proper monitoring and maintenance of
synchronization frequency, confidence in the DT’s ability to meet requirements and provide
benefits will decrease.

Fidelity: Pertains to the precision and accuracy of the virtual representation and the
synchronization mechanisms used. It is also an indicator of the data governance and
information management framework that ensures accurate data collection, tracking, and
maintenance for the model. The level of fidelity varies based on the intended use of the
DT. The degree of fidelity is driven by the granularity of the synchronized information.
For instance, some applications may only require time-series data on a building’s overall
energy consumption, while others may need data on specific equipment, systems, and
devices on each floor of the same building. Just like frequency, if the data source is not
accurately maintained, it impacts the trustworthiness of the DT. In the context of the built
environment industry, frequency and fidelity pertain to the amount of effort needed to
keep the virtual representation current and accurate.

The development and administration of a Digital Twin model for Built Environment
Management requires the integration of numerous linked elements that form a Digital
Twin platform.

3.2. System Architecture

According to the selected DT key elements, the system architecture for a typical Digital
Twin system for Built Environment Management is proposed below.

Digital Twin Model: The core component of the system, consisting of mathematical
models that simulate the physical behavior of the real-world system. These models can
be based on first principles, empirical data, or a combination of both, and can represent
various aspects of the built environment, such as energy consumption, indoor air quality,
and occupant behavior [133] which can be updated in real-time based on data collected
from various sensors and IoT devices.

Data Acquisition and Integration: Another critical component of the Digital Twin
system, responsible for collecting data from sensors, IoT devices, and Building Management
Systems (BMS). This data is then processed and integrated into the Digital Twin Model to
provide a more accurate representation of the real-world system.

Data Analytics and Machine Learning techniques: Used to analyze the data and
extract valuable insights, such as energy consumption patterns, equipment performance,
and occupant behavior [134]. This component also includes data pre-processing and
filtering algorithms to ensure that the data is accurate and reliable. The Data Analytics and
Machine Learning component processes the data collected by the Data Acquisition and
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Integration component. This element employs various data analytics and machine learning
techniques to extract meaningful insights from data. These insights can be used to optimize
the performance of the physical system, predict maintenance requirements, and identify
anomalies or faults.

Visualization and User Interface: Provide a user-friendly interface for interacting with
the Digital Twin system. This component enables users to view and analyze the data
collected from the real-world system and make informed decisions regarding optimization
and maintenance. The interface can be in the form of a web application, dashboard, or
augmented reality (AR) visualization [135].

Communication and Interoperability: Enable the Digital Twin system to communi-
cate with external systems and platforms, such as BIM (Building Information Modeling)
software, GIS (Geographic Information System), and energy management systems. This
component facilitates data exchange and interoperability, allowing for more comprehensive
and accurate analysis and optimization [134]. A conceptual representation of the proposed
Digital Twin framework for a building asset portfolio is displayed in Figure 5, which
demonstrates main components and data aggregation from multiple sources.

Figure 5. Digital Twin conceptual architecture for multidomain data management.

4. Discussions

With the progress of technology and transformative trends in the ICT sector facilitating
investment in emerging areas such as smart buildings and smart cities, a diverse range
of possibilities arises to redefine the attributes and qualities of the built environment.
A primary objective is meeting the growing need for innovative strategies to counter
contemporary issues like urbanization, population expansion, and urban management.

The present study aimed at identifying relationships between the key components
of Digital Twins in the context of the built environment and their applicability in various
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other industries. The study was conducted through an extensive examination of the
existing literature, highlighting multiscale modeling and real-time data acquisition and
management as essential attributes for the successful deployment of Digital Twins across
the entire lifecycle of built assets.

The framework proposed within this study is designed to showcase the need for
the integration of diverse components, enabling technologies, and essential capabilities
within a holistic system architecture. This comprehensive framework serves to illustrate
how these elements converge to form an effective digital twin system. The outcomes
presented in this section show the findings derived from the literature analysis concerning
the conceptualization and mechanisms underpinning the digital twin paradigm.

Definitions and Scientometric Analysis

By conducting a systematic analysis, the fundamental catalysts behind the digital twin
concept emerged. In order to define these core catalysts, a thorough scientometric evalua-
tion of the pertinent literature was conducted. Utilizing the VOSviewer application, the
examination sorted through the literature according to a co-occurrence analysis, discerning
potential keywords associated either directly or indirectly with a specific theme.

A correlation diagram depicting Interconnected concepts extracted from the literature
is generated. Findings of the scientometric assessment of the articles under review are
presented in Figure 6.

Figure 6. Scientometric analysis. Systematic review timeframe.

As indicated by the outcomes, the ensuing concepts were identified as interrelated
factors steering the development of the Digital Twin paradigm: Simulation environment,
decision making, digital transformation, artificial intelligence, smart city, BIM model,
visualization, and information modeling are some of the main emerging keywords. Within
the scope of the literature review, these concepts were articulated to exert a significant
impact on shaping the definition, structure, and attributes of the digital twin paradigm.
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Although the concept of Digital Twinning emerged within various contexts in the
literature during the early 2000s related to engineering domains, particularly in areas
like manufacturing and production [136], definitions of the term “Digital Twin” varied
in the literature based on their application, usage, and disciplinary context. According
to the studies analyzed, DT emerges as a highly promising technology with the potential
to facilitate a diverse spectrum of applications aimed at augmenting the overall quality,
performance, and living experience within physical built assets. However, it is recog-
nized in the literature that a Digital Twin constitutes a virtual representation of a tangible
object [136–138]. For this representation to be dynamically functional, it necessitates inno-
vative applications that establish a real-time connection between the physical and digital
realms [136,138] serving as one such application, generating a digital counterpart of the
physical world, and facilitating a continuous real-time exchange of information between
the physical and digital domains [138,139]. Three primary forms of digitalization within
the realm of the built environment emerged from the study. To comprehend the opportuni-
ties related to Digital Twinning in this context, it is necessary to differentiate among the
three domains of digitalization processes and methods—building information modelling
(BIM), geographic information systems (GIS) [140], and smart cities (DT) [136]—as distinct
enablers in terms of tools and processes needed depending on the scale and degree of data
integration [136,137,140].

At the scale of individual structures, the utilization of BIM applications has gained
significant traction in recent years. BIM serves as a process for creating a digital replica
of a tangible asset, facilitating an efficient methodology for designing, managing, and
sustaining physical structures [137]. BIM encompasses both geometrical and statistical
data of a physical asset. However, it lacks a real-time linkage between the tangible asset
and its virtual representation, requiring periodic “manual” updates to synchronize any
modification made to the digital replica of the physical entity [137].

At the urban scale, GIS introduces an additional layer of information, specifically
through the integration of geospatial data [140], where urban components are incorporated
into a digital model and enhanced using geospatial information acquired through ICT
solutions. These data points are interlinked with the digital portrayal of the city and are
harnessed for purposes such as urban planning, urban analysis, and city management
applications configuring CIMs [136,140]. As demonstrated in the literature, the integration
of GIS software and BIM model technology can benefit buildings in various fields, such
as reducing energy consumption, optimizing the construction site, and improving archi-
tectural designs [141]. Research on using the integration of GIS software and BIM model
technology is ongoing and can be applied in many sectors, such as water and hydropower
protection projects [77], tunnels [78], and bridges [79]. Given its extensive range of uses,
the incorporation of GIS software technologies and BIM models can serve as a Digital Twin
tool to facilitate digital transformation in large-scale projects.

Moreover, the concept of Digital Twinning is connected to the conceptualization of
smart cities. In this regard, the urban Digital Twin is viewed as an integral component in the
realization of digital smart cities [140,142]. As DT is described in the literature as having the
capability to establish a real-time link between the tangible and virtual environments, the
digital replica is connected to the physical asset through a dynamic and even bidirectional
exchange of information. This connection is made possible through the deployment of
sensors as a general approach. These sensors are designed to perceive, engage with, and
measure the conditions prevailing in the physical realm. Concurrently, they transmit data
to the digital twin, where the digital counterpart has the potential to assimilate and evaluate
the incoming information. Subsequently, it can provide potential solutions, responses, or
recommendations [137,139].

This relationship underscores how the urban Digital Twin operates as a linchpin,
bridging the gap between physical urban realms and their virtual counterparts, while
enabling a new realm of possibilities for urban planning, management, and transforma-
tion [140,142]. The urban Digital Twin, in its role as an integral component of the digital
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smart city vision, serves as a catalyst for innovation and efficiency, facilitating real-time
insights, predictive modeling, and informed decision making that collectively contribute
to the holistic advancement of urban life. The emerging outcomes focusing on the rela-
tionship between smart cities and Digital Twins reveal a multifaceted synergy that spans
several critical areas of urban development and technology integration. In summary, the
emerging outcomes of the smart city and Digital Twin relationship encompass a wide array
of areas, demonstrating the transformative potential of integrating advanced technologies
into urban planning, management, and development. In such a dynamic scenario, users
emerge as co-creators, engaging with the urban digital twin to shape their environment,
influence decision making processes, and enhance their daily lives. The urban Digital Twin,
as a fundamental component of digital smart cities, empowers users by providing them
with unprecedented access to real-time data, insights, and interactive interfaces that foster a
deeper understanding of the urban built environment. This user-centric approach not only
facilitates informed choices but also encourages a sense of ownership and responsibility,
ultimately leading to the co-development of more efficient, sustainable, and responsive
urban spaces. By integrating the urban digital twin as an essential link between physical
and virtual realms, digital smart cities harness the collective intelligence and creativity of
their inhabitants. This active involvement of users generates a harmonious synergy where
data-driven innovations and human aspirations converge, shaping urban environments
that cater to the evolving needs of citizens. As users become active agents in the transforma-
tion of their surroundings, the urban Digital Twin evolves into a platform for meaningful
collaboration, driving the holistic realization of smarter, more inclusive, and adaptive cities.

5. Conclusions

The purpose of this article was to conduct a systematic review of recent studies around
digital technology applied in various industries, with a focus on the construction sector.
The systematic review focused attention to the design and main enabling technologies of
Digital Twins for managing the built environment across the entire lifecycle from designing,
constructing, operating, and maintaining facilities [143]. As the use of digital technologies
and platforms in construction sectors increases, data collected in real-time can provide
essential information to various purposes, aiding in monitoring and controlling assets,
optimizing processes, and creating economic value. Despite the significant expansion
of online platforms in many sectors, including construction, their full potential has not
been realized.

The review of the existing literature underscores that the conceptualization of the Digi-
tal Twin concept often revolves around isolated technologies like BIM, GIS, and smart cities.
This highlights a notable deficiency in adopting a holistic and synergistic purpose-driven
approach that integrates these technologies comprehensively. A conceptual framework is
proposed to address the gap and identify essential elements and key enablers to ensure
successful implementations. Through the analysis of successful studies, the opportunity
arises to enhance the utilization of DT platforms across various industries and domains,
thereby outlining their intended objectives. The rise of advanced technologies such as BIM,
GIS, 3D reality capture, artificial intelligence, machine learning for data analysis, and IoT,
combined with the seamless integration of DT platforms within the construction sector,
serves as catalysts for the successful implementation and DT deployments.

The application of DT platforms in the realm of construction can prove instrumental
in multiple aspects. It can facilitate the analysis of design feasibility, ensuring alignment
with set objectives. Moreover, these platforms can aid in monitoring project progress as
per established schedules, while also overseeing building performance and effectively
managing facilities. The systematic review presented an in-depth analysis conducted based
on the literature related to BIM-GIS integration, IoT, smart cities, and insights from other
industry applications as the main enablers for DT implementation in built environment.
The outcomes suggest future developments analyzing the impact and role of artificial
intelligence (AI) in Digital Twins for the AECO industry as it enhances virtual replicas
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by enabling advanced data analysis, predictive modeling, and real-time decision making.
Combining AI into DT is a crucial area for future research, as it can significantly enhance
functionality. This involves sophisticated data analysis to gain a deeper comprehension of
building performance and operational efficiency.

It is expected that there will be an expansion of bidirectional interaction capabili-
ties. This implies a smoother transmission of information and data between the physical
environment and its digital representation, further enhancing real-time decision making
capabilities. Another direction of development could be the evolution of industry reg-
ulations and standards, which may influence the future developments of Digital Twins.
The adoption of common standards could promote greater coherence and interoperability
among different projects and systems, promoting a more harmonized and resilient built
environment over time. The outcomes also result in practical applications of the proposed
framework for the configuration of DT platforms addressing different issues currently
faced by the industry, to enhance building performance and integrate artificial intelligence
and automation systems supporting and optimizing decision making processes.
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