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Abstract: The industrial sector accounts for a huge amount of energy- and process-related
CO2 emissions. One decarbonization measure is to build an energy concept that provides
electricity and heat for industrial processes using a combination of different renewable
energy sources, such as photovoltaic, wind turbine, and solar thermal collector systems,
integrating also energy conversion power-to-heat components such as heat pumps, electric
boilers, and thermal energy storage. The challenge for the industries is the economic aspect
of the decarbonization, as industries require a cost-efficient solution. Minimizing cost and
emissions together is a complex problem, which requires two major tasks: (I) modeling
of components and (II) multi-objective coupled design and operation optimization of the
energy concept. The optimal design and capacity of the components and optimal system
operation depend majorly on component modeling, which is either physics-driven or
data-driven. This paper shows different types of physics- and data-driven modeling of
energy components for multi-objective coupled optimization in order to minimize costs and
emissions of a specific industrial process as a case study. Several modeling techniques and
their influence on the optimization are compared in terms of computational effort, solution
accuracy, and optimal capacity of components. The results show that the combination
of physics- and data-driven models has a computational time reduction of up to 37% for
an energy concept without thermal energy storage and 29% for that with thermal energy
storage, both with high-accuracy solutions compared to complete physics-driven models
for the considered case study.

Keywords: energy concept; renewable energy sources; coupled optimization; data-driven
modeling

1. Introduction

Sustainable development is one of the most pressing challenges for the industrial sector
today. The industrial sector accounts for 34% of the end-energy-related CO2 emissions in
Europe [1]. A very crucial hurdle that needs to be overcome for a sustainable future is
the immense use of fossil fuels. The associated greenhouse gas emissions require urgent
solutions to mitigate their effects on climate. Renewable energy sources (RES) such as wind
and solar can be promising alternatives to fossil fuels as they are abundantly available
and provide cleaner means of energy [2]. Energy transition concepts such as integrated
energy systems (IES) combining RES, conversion components, and fuel-based energy
generation components could effectively improve the utilization of RES, as well as promote
the mitigation of CO2 emissions. The energy efficiency of such concepts plays a vital role in
reducing CO2 emissions. Efficient design and operation decisions of IES combine ecological
and economic aspects, i.e., it does not only have the potential for reducing CO2 emissions,
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but it also supports significant cost savings, as shown in various studies of industrial energy
systems [3–5], district and urban energy systems [6–8], and building energy systems [9,10].
The design decisions are determined before and implemented during the development of
the energy concept, such as the capacity of the energy components involved. The operation
decisions are implemented after development of the energy concept, such as the physical
conditions under which the system is operated [11]. However, complex energy component
capacity configurations and various operation strategies make further development of such
energy concepts for minimizing cost and emission difficult [12].

Multi-objective design and operation optimization is one of the most effective methods
for solving such problems [13]. This optimization problem falls under the coupled opti-
mization category, where the design and operation of the IES have to be optimized together
in order to minimize CO2 emissions and costs. The authors of [14–16] showed coupled
optimization solved with different methods, such as bi-level and single-level optimization.
A bi-level solution strategy is where an upper-level problem decides the capacity of the
components and a lower-level problem decides the operation strategy based on the design
decisions from the upper level. A single-level solution strategy integrates design and
operation optimization in a single mathematical problem. The authors in [7] showed a
mixed-integer linear program (MILP) of bi-level coupled optimization of district energy
systems (DES) for minimizing overall cost as a single objective. In [14], a multi-objective,
nonlinear coupled optimization with bi-level problem formulation is presented. In [15],
single-level MILP multi-objective coupled optimization for buildings is discussed. In [16],
the topology optimization of DES as MILP single-level formulation with scenario-based
operating conditions is presented. The above discussed studies have not majorly focused
on industrial processes with multi-objective single-level coupled optimization. However,
in this paper, the multi-objective coupled design and operation optimization problem of an
energy concept with and without a storage system is solved using single-level as well as
bi-level methods.

Modeling is an important aspect of an energy system’s design and operation optimiza-
tion. Physics-driven modeling of energy components is majorly nonlinear, involving a large
number of variables and constraints, which makes the coupled optimization computation-
ally expensive [16]. Data-driven models have opened new possibilities for energy system
modeling [17]. Data-driven models could imitate the same physical relations hidden in
the data sets without focusing on the physical description of the process, which makes
them quite flexible to use in an optimization problem [18]. The recent advancement in
machine learning (ML) has a capability to handle the high complexity of such energy
system modeling, arising from the nonlinearity of the physics [17]. The study in [19]
modeled Greek long-term energy consumption using linear regression and support vector
machines (SVM). The authors in [20] showed the use of artificial neural networks (ANN)
and SVMs in building energy consumption modeling. Studies in the field of using neural
networks for energy system modeling and control also include optimization of the thermal
comfort control of HVAC systems and absorption chiller systems using ANN methods [21].
According to [22], data-driven modeling approaches to resource and energy efficiency are
expected to have an 18% reduction in energy consumption. McKinsey & Company [23]
estimates that data-driven approaches would improve productivity in the technical profes-
sion by 45 to 55%, which results eventually in energy savings. In this paper, data-driven
models for solar thermal (ST) collector systems such as flat plate collectors and heat pumps
(HP) are used to formulate a reduced-order optimization problem and are compared with
the physics-driven counterparts in terms of accuracy, computational efforts and optimal
capacity of components. ST collects heat by absorbing sunlight. ST converts solar energy
into useful thermal energy. HP converts electricity into heat with high efficiency compared
to conventional fossil-based technologies. A comparison is carried out for both single-level
and bi-level multi-objective optimization problems to show the optimization results’ con-
sistency and to find the methodology that offers a lower time-consuming calculation with
accurate results.



Energies 2024, 17, 350 3 of 17

2. Methods

The coupled design and operation optimization problem in this paper is formulated
for a case study energy concept of a small- to medium-sized food and cosmetic industry,
Sanddorn GmbH in Brandenburg state of Germany, as a partner in European Union’s
Horizon Europe Project SINNOGENES. Figure 1 shows the proposed initial energy concept
for the case study. It includes RESs such as photovoltaic (PV), wind turbine (WT) and ST
RESs; energy conversion components such as HPS, gas boilers (GB) and electric boilers
(EB); storage components such as thermal energy storage (TES); and electric grids (EG)
and gas grids (GG) to suffice the consumption demand of the production. Heat is required
for the steam generation, which is further used for heating and pasteurizing the products
in batches. Electricity-producing components and electricity-consuming components are
connected to an electricity hub (EH). In the same manner, heat-producing and -consuming
components are connected to a heat hub (HH). Battery storage (BAT) is not considered
in this paper for optimization, but can be integrated in future energy concepts for higher
flexibility of operation.

GG

GB

ST

EB

WT

PV

EG

BAT
HP

Demand

HH

EH

TES

Electricity Heat Gas

Figure 1. Concept of IES.

The coupled optimization problem of the energy concept shown in Figure 1 is complex
due to a large number of continuous variables such as capacity of the components, power
consumption of the components, etc., and binary variables such as existence of components
in the energy concept are involved with nonlinear modeling of the energy components
consisting of a large number of constraints. It falls under the general category of mixed-
integer nonlinear programming (MINLP) nonconvex problems, which is computationally
very expensive to solve [24]. Different types of physics- and data-driven models are
integrated into multi-objective coupled optimization. Physics-driven modeling of the
components is majorly followed as described in [25]. Solution accuracy and computational
efforts of different models in optimization are compared later in Section 3.

The time horizon for the operation optimization is 1 year with an hourly time-step.
The operation of the plant takes place for 5 days in a week daily for 8 h. A total of 21 days
in a month are working days and 9 days are assumed to be off-days. The operation of
the plant is assumed to be scenario-based for the optimization, where 1 working day and
1 off-day in each month are taken as the representative days. The heat demand at Sanddorn



Energies 2024, 17, 350 4 of 17

GmbH for a working day is shown in Figure 2b. It can be seen that heat demand is divided
into 4 operating scenarios for different operating hours on a working day for different
batch processes. Off-days have base load requirement of 200 kWh of electricity. Monthly
electricity demands are shown in Figure 2a.
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Figure 2. Monthly electricity and daily heat demand of the case study considered. (a) Electricity
demand, (b) heat demand.

2.1. Problem Formulation

This case study problem has two objectives to minimize: total annualized cost (TAC)
and global warming impact (GWI). TAC includes investment cost C and operational cost
OC. The production facility of the case study is already built; therefore, the investment cost
for building the facility is excluded. GWI is the measurement of the CO2 emission. Thus,
the minimization problem is formulated as

min
x,y

[TAC(x, y), GWI(x, y)], (1)

with TAC and GWI as the minimization objectives. The first minimization objective TAC
includes the operational cost of the energy concept and the investment cost of each compo-
nent, which is defined as

TAC(x, y) = OC(x, y) + ∑
i∈S

Ci(xi), (2)

where the operational costs depend on the net electricity and gas bought from the grids,
which is shown as

OC(x, y) = ∑
m∈M

(pel
buy · Eel

in,m − pel
sell · Eel

out,m) + pgas
buy · Egas

in,m), (3)

and the investment cost Ci of each component is represented as

Ci =

(
(β + 1)τ · β

(β + 1)τ − 1
+ α

)
· CAPEX, (4)

which includes capital expenditure CAPEX, maintenance cost factor α, interest rate β, and
time horizon τ for financing cost [25]. CAPEX is calculated based on reference capacity xi

of each component as

CAPEX = CAPEX0 ·
(

xi

x0

)γ

, (5)

where γ represents the scaling exponent for the nominal capacity [25]. The second mini-
mization objective GWI is presented as

GWI(x, y) = ∑
m∈M

(gel · (Eel
in,m − Eel

out,m) + ggas · Egas
in,m), (6)



Energies 2024, 17, 350 5 of 17

where M = [Jan, Feb...., Dec] and S = {PV, WT, SH, GB, EB, HP, TES}. M is the vector that
includes the months of the year and S considers the components of the energy concept.
x = [APV , PWT

nom, QGB
nom, QEB

nom, QHP
nom, QTES

nom ] are the design variables and y = [Eel
in,m, Eel

out,m, Egas
in,m]

are the operational variables for the objective function. GWI is calculated based on the net
buying of electricity and gas from the grid. Each net consumed unit of electricity Eel

in,m −
Eel

out,m and gas Egas
in,m has been given corresponding CO2 factors gel and ggas, respectively,

for the calculation of GWI. Parameters for the OC and GWI are shown in Table 1. Table 2
shows the parameters for calculating the investment cost of each component, and it also
shows the minimum part load requirement λmin for the components.

Table 1. Cost and emission parameters for grids taken from [25,26].

Name Parameter Value

electricity buying price pel
buy 0.31 [e]

electricity selling price pel
sell 0.06 [e]

gas buying price pgas
buy 0.15 [e]

CO2 factor for net consumed electricity gel 0.349 [kg-CO2eq/kWh]
CO2 factor for consumed gas ggas 0.244 [kg-CO2eq/kWh]

The heat demand constraint is shown as

Qdem − (QST
out + QGB

out + QEB
out + QHP

out + QTES
out − QTES

in ) ≤ 0, (7)

which indicates that the net heat generated from ST, GB, EB, HP, and TES should fulfil
the heat demand of the production in each time step. Constraint on the capacity of the
components is shown as

xi
min · zi ≤ xi ≤ xi

max · zi ∀i ∈ x and zi ∈ {0, 1}, (8)

where xi
min and xi

max are the lower and upper bounds of the capacity of each components.
z is the binary variable, which is linked to the existence of the component in the concept.
Equations (1)–(8) represent single-level multi-objective coupled design and operation
optimization problem.

Table 2. Component parameters for investment costs and part-load constraints [25].

Components Reference Capacity x0 CAPEX0[e] γ α β τ[a] λmin

PV A0 [m2] 1400 0.95 0.01 0.03 10 0
WT P0

nom [kW] 5000 0.95 0.03 0.03 10 0.33
ST A0 [m2] 400 0.95 0.02 0.03 10 0
GB Q0

nom [kW] 2700 0.45 0.02 0.03 10 0.2
EB Q0

nom [kW] 70 0.95 0.01 0.03 10 0
HP Q0

nom [kW] 1655 0.66 0.02 0.03 10 0
TES Q0

nom [kWh] 200 0.86 0.01 0.03 10 0

2.2. Modeling of Components

Modeling of the components is a crucial part of the optimization problem. In this
subsection, for each component integrated in the energy concept, either a physics-driven
and/or data-driven model are explained. List of all variables, constant parameters, and
input parameters for physics-driven component modeling is presented in Table 3.
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Table 3. Component variables, including binary variables, parameters, and inputs for single-level problem.

Components Design Variables x Operational
Variables y

Constant
Parameters c

Input Parameters in
Each Time-Step

Total Number
of Variables

PV APV
nom PPV

out ηPV ,PPV
nom I 3

WT PWT
nom λWT ,PWT

out - v 4

GB QGB
nom λGB, Egas

in η0 - 4

EB PEB
nom λEB, PEB

in ηEB - 4

ST AST
nom Tw

out, Tout, Tin IAM, η0, ṁST I, Tamb, ṁw 5

HP QHP
nom

λHP, hw
out, Tw

out,
PHP

in
a, b, c, d, Tc

in, Tw
in ṁw 6

TES QTES
nom QTES

in ,QTES
out ηTES

out , ηTES
in , τTES

in , τTES
out - 4

Electric grid - Eel
in, Eel

out - - 2

Gas grid - Egas
in - - 1

2.2.1. Photovoltaic

The electrical power PPV
out generated by the PV unit is mostly dependent on the solar

irradiance I, the efficiency of PV unit ηPV and total area APV
nom of the PV system. It is

represented by
PPV

out ≤ APV
nom · ηPV · I. (9)

The case study facility already has 55 kWp capacity PV panels built on the terrace, with a
tilt angle 5° for the PV model. Moreover, PV unit has the maximum output power limited
to its nominal capacity, which is presented as

PPV
out ≤ APV

nom · PPV
nom, (10)

where PPV
nom is chosen as 0.171 kWm−2 [25] and efficiency ηPV is chosen to be 0.09 in order

to meet the actual output data of PV panels built on the case study facility. PPV
out is an

operational variable and APV
nom of the unit is a design variable. Total number of variables in

Table 3 shows number of design, operational, and binary variables to be computed in each
time step in optimization problem.

2.2.2. Wind Turbine

The power output PWT
out of WT is majorly limited by the Betz limit, which in turn

determines the part-load behavior of WT and its nominal power [27]. The output power of
WT is given by

PWT
out ≤ ηWT(λWT) · PWT

nom, (11)

where PWT
out is an operational variable and PWT

nom of the wind turbine is a design vari-
able. Operational variable λWT depends on the wind velocity (λWT = v/vre f , where
vre f = 12 m/s [25]). The efficiency of wind turbine ηWT(λWT) is given by

ηWT(λWT) =


0 if λWT ≤ 0.33
1.5393 · λWT − 0.5091 0.33 ≤ λWT ≤ 1
1 λWT ≥ 1.

(12)

2.2.3. Gas Boiler

Heat output of the GB is determined by the part-load efficiency, which is given as

ηGB(λGB) =
21.75378 · λ3 − 7.00130 · λ2 + 1.39731 · λ − 0.07557
20.66646 · λ3 − 5.34196 · λ2 + 0.67774 · λ + 0.03487

· η0, (13)



Energies 2024, 17, 350 7 of 17

where η0 is chosen to be 0.8 [1], which is called nominal efficiency. The heat output depends
on the efficiency shown in (13), consumed gas power to heat up the incoming fluid Pgas

in ,
and nominal capacity QGB

nom, which is presented as

QGB
out = ηGB(λGB) · Pgas

in , QGB
out = λGB · QGB

nom. (14)

Here, heat output QGB
out, consumed power Pgas

in , and the part-load λGB are operational variables,
and nominal capacity QGB

nom is the design variable. The integration of consumed power Pgas
in

over the operation horizon delivers the total energy Egas
in consumed from gas grid.

2.2.4. Electric Boiler

EB is modeled in the same manner as GB. Efficiency ηEB for EB is assumed to be
constant at 0.95. The operational variable heat output of the EB depends on operational
variables such as consumed electric power PEB

in , part-load λEB, and design variable nominal
capacity QEB

nom. It is shown as

QEB
out = ηEB · PEB

in , QEB
out = λEB · QEB

nom. (15)

2.2.5. Solar Thermal Collector

There are two kinds of ST collectors generally used in the market: flat plate and
evacuated tube. For this case study, flat plate collectors with tilt angle of 40° are chosen
to be integrated in the energy concept [28]. ST model is based on the quadratic efficiency
model developed by [29], which is shown as

ηST = η0 −
a1 · ∆T

I
− a2 · ∆T2

I
, (16)

where η0 represents optical collector efficiency; a1 and a2 are loss coefficients related
to linear and quadratic terms; ∆T represents temperature difference between collector
fluid temperature and ambient temperature; and I, as mentioned before, is global solar
irradiance on the collector surface. European EN 19275 standards prescribe the collector
fluid temperature as average collector temperature of its inlet and outlet temperature [30].

Complete hourly weather data for the location of the case study plant has been gathered
from European commission photovoltaic geographical information system [31]. The global
solar irradiance and ambient temperatures are the important data for the ST collector model.
Complete physical ST collector model is shown in (17)–(20). The ST collector efficiency is
shown as

ηST = η0 · IAM − a1 · (Tm − Tamb)

I
− a2 · (Tm − Tamb)

2

I
, (17)

where IAM represents incidence angle modifier, which corrects the optical efficiency for
the irradiation not perpendicular to the surfaces [28]. Tm is the average collector fluid
temperature, which depends on inlet and outlet temperature TST

in and TST
out, respectively.

The optical collector gain is represented by

Q0 = η0 · IAM · I · AST
nom, (18)

and thermal losses due to temperature difference between average fluid temperature and
ambient temperature are modeled as

QL =
(

a1 · (Tm − Tamb)− a2 · (Tm − Tamb)
2
)
· AST

nom, (19)

where collector surface area AST
nom is the design variable.

Qu =

{
Q0 − QL, if Q0 > QL

0 if Q0 ≤ QL
(20)
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Equation (20) shows the useful solar gains with the condition of positive net solar gains.
The authors in [28] compared this simplified physical model with detailed simulation
model in TRNSYS. The parameters for the physical models are collected in [32], in which
extensive research has been carried out for different ST flat collector manufacturer data
in Germany and related parameters. Parameters chosen for the case study are shown in
Table 4. Figure 3a shows the ST collector with the heat exchanger (HEX) used in the energy
concept. The heat transfer over HEX is given by

QST = ṁw · cw
p · (Tw

out − Tw
in). (21)

For calculating the operational variable heat transfer QST over HEX in each time step,
5 different Equations (17)–(21) must be solved in the physical model, which consist of
3 additional operational variables such as collector inlet temperature TST

in , collector outlet
temperature TST

out, water/steam outlet temperature Tw
out, and one design variable, area AST

nom
of the collector surface. Large number of variables and constraints make the optimization
expensive. In order to reduce the number of variables and constraints, data models are
trained and used in the optimization.

Data-driven approach to model ST collector could have some advantages over physical
model. Proposed data-driven approach is presented as

QST = f (Tw
in, ṁw, I, AST

nom), (22)

where operational variable heat output of the whole ST collector system depends on
4 inputs. These inputs include only one design variable, AST

nom; 3 input parameters, Tw
in,

ṁw, I; and none of the operational variables shown before. f in (22) represents a generic
data-driven model. This data-driven model represents the relationship between the given
input parameters, including the design variable area AST

nom with the output variable heat
output QST .

Table 4. Parameters for ST flat collector.

Collector η0 a1 [W/(m2K)] a2 [W/(m2K)] IAM

Flat plate 0.79 4.03 0.0078 0.86

HEX

Solar Thermal Collector

(a)

HEX

HEX

(b)
Figure 3. ST collector and HP schematic diagram. (a) Solar flat plate collector with HEX, (b) HP
consisting of a compressor, 2 HEX, and a turbine.

2.2.6. Heat Pump

HP can use industrial waste heat as a thermal energy source as well as renewable
electricity as power input to decarbonize industrial thermal processes, which makes it an
essential technology [33]. In this case study, constant waste heat is considered. Renewable
electricity is generated from PV and WT. There are many different physical models to
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describe the performance of the HP. The authors in [33] investigated different case studies
of different types of HPs and came up with different coefficient of performance (COP)
regression models. Figure 3b shows a heat pump consisting of two HEXs (condenser
and evaporator), a compressor, and a turbine. Tc

in and Tc
out represent input and output

temperatures on the cold side, whereas Tw
in and Tw

out are the input and output temperatures
on the hot side, respectively. The heat output of the HP depends on its nominal capacity
QHP

nom and part-load λHP, which is shown as

QHP
out = λHP · QHP

nom. (23)

The output temperature Tw
out on the hot side depends on the outlet pressure of water/steam

pw
out on hot side and enthalpy hw

out of water/steam, which is a function of heat output QHP
out

and inlet temperature Tw
in of water on the hot side, shown as

Tw
out = f (hw

out(Q
HP
out , Tw

in), pw
out). (24)

The COP is calculated based on the model

COP = a · (∆Tli f t + 2b)c · (Tw
out + b)d, (25)

suggested by [33]. The coefficients a, b, c, and d of this model are chosen according to the
suitable temperature ranges of the case study (80 °C < Tw

out < 160 °C). The heat output is a
function of COP and the consumed electrical power PHP

in , as well as the input and output
enthalpy hw

in and hw
out of water/steam on hot side, which is shown as

QHP
out = COP · PHP

in , QHP
out = ṁw · (hw

out − hw
in). (26)

Equations (23)–(26) represent the physics-driven model of HP. A detailed list of design
and operational variables of HP is shown in Table 3. As seen from the physical model,
5 different equations need to be solved in each time step, which include 5 operational
variables, QHP

out , COP, PHP
in , λHP, Tw

out; and one design variable, QHP
nom. Data-driven approach

for HP is shown as
COP = f (ṁw, Tc

in, λHP, QHP
nom), (27)

which includes 1 design variable QHP
nom, 1 operational variable λHP, and 2 input parameters

ṁw and Tc
in as inputs to compute the output variable COP without any constraints. Table 5

shows the total number of variables and constraints over the whole time horizon for the
single-level multi-objective coupled optimization. It is evident from Table 5 that the total
number of variables and constraints involved in coupled optimization problem decreases
with the use of data-driven models compared to the complete physics-driven models of
ST and HP. Data-driven models for ST and HP reduce the number of variables by 388 and
constraints by 504, which are 22% and 18% lower than the complete physics-driven models.

Table 5. Total number of variables and constraints in single-level multi-objective coupled optimiza-
tion problem for different combinations of physics-driven and data-driven models of HP and ST
(without TES).

ST HP Total Number of Variables Total Number of Constraints

Physics-driven Physics-driven 1741 2748
Data-driven Data-driven 1353 2244
Data-driven Physics-driven 1525 2316

Physics-driven Data-driven 1669 2676

2.2.7. Thermal Energy Storage

TES plays a crucial role in the energy concept where renewable energy sources such
solar energy are involved, because the time of the energy availability and the time of the
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consumption of this energy differ frequently [34]. In this study, a lumped model of hot
water storage is considered. The energy balance of such a TES model is represented as

dQTES

dt
= ηTES

in · QTES
in − 1

ηTES
out

· QTES
out − 1

τTES
loss

· QTES (28)

where QTES represents thermal energy stored in hot water storage; QTES
in and QTES

out rep-
resent charging and discharging heat transfer rates, respectively. ηTES

in and 1
ηTES

out
are the

charging and discharging efficiencies, which are considered to be constant at 95% [25].
The storage capacity is limited by the minimum and maximum capacities as shown in
Equation (8). The heat transfer rates depend also on maximum charging and discharging
rates, which are shown as

0 ≤ QTES
in ≤ 1

τTES
in

· QTES
nom ,

0 ≤ QTES
out ≤ 1

τTES
out

· QTES
nom .

(29)

3. Results
3.1. Data Analysis

As shown in Table 5, the data-driven models have fewer variables and constraints
to compute in coupled optimization. In this paper, data-driven models such as linear
regression (LR), polynomial regression (PR), and artificial neural networks (ANN) are
considered. These data-driven models are trained with the input and output data generated
from the physical model. In this manner, operational variables to be optimized are reduced
in each time step and all other constraints are eliminated. Table 6 shows the inputs, outputs,
number of parameters, and number of data samples. These data-samples are divided into
training and validation data. A total of 75% of the data samples are used for training the
models and 25% of the data samples are used for validating the trained models. Table 7
shows the training time and comparison of accuracy between physical models (actual
values) and different data-driven models (predicted values) based on the coefficient of
determination R2 method [35].

Table 6. Data-driven models’ input, output, and number of samples.

Component Inputs Output Number of Data Samples

ST Tw
in, ṁw, I, A QST 439,199

HP ṁw, Tc
in, λHP, QHP

nom COP 206,054

Three types of data-driven models: LR, PR, and ANN, are trained for ST and HP.
In particular, PR models have two variants, such as second-degree PR (PR-1) and third-
degree PR (PR-2) models. Furthermore, ANNs are feedforward neural networks with two
different specifications: (I) two hidden layers, five neurons in each hidden layer (ANN-1);
(II) three hidden layers, seven neurons in each hidden layer (ANN-2). The number of
hidden layers and the number of neurons in each hidden layer are optimized using the
hyperparameter tuning technique. ANNs are trained with the k-fold cross-validation
method with k = 4 [36].

It can be seen from Table 7 that the R2 score of ST is less for ANN-2 compared to
ANN-1. See also Figure 4b, where for ANN-2, the predicted output data do not match
properly with the actual output data. In contrast, Figure 5 shows results for the two different
ANN models of HP, where ANN-2 shows better fitting performance compared to ANN-1.
Therefore, the optimized ANN for ST is ANN-1, and for HP is ANN-2. As expected, LR
and PR models for HP have lower values of R2 score compared to ANN models. On the
other hand, ST has a relatively higher R2 score for LR and PR models. The training time
for LR and PR models is shorter than their respective ANN models. The training time for
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ANN is higher due to the large number of weights and biases involved in the ANN model.
The ANN-1 model and ANN-2 model have 35 and 112 such coefficients (and constants),
respectively, which makes them time-expensive to compute when these ANN models are
integrated into the coupled optimization.

Table 7. Data-driven models’ training time and accuracy.

Model Specification Training Time for ST [s] Training Time for HP [s] R2 for ST R2 for HP

LR degree 1 2.12 1.82 0.96 0.45
PR-1 degree 2 5.33 4.31 0.972 0.68
PR-2 degree 3 11.26 9.25 0.986 0.825

ANN-1 2 hidden layers 5 neurons each 1254 1008 0.999 0.862

ANN-2 3 hidden layers 7 neurons each 1852 1369 0.845 0.982
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Figure 4. Comparison of ANN models’ output prediction to actual output of ST. (a) ANN-1 (2 layers,
5 neurons each); (b) ANN-2 (3 layers, 7 neurons each).
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Figure 5. Comparison of ANN models’ output prediction to actual output of HP. (a) ANN-1 (2 layers,
5 neurons each); (b) ANN-2 (3 layers, 7 neurons each).

3.2. Optimization Results
3.2.1. Without Tes

Figure 6 shows several Pareto-fronts of TAC and GWI as results of multi-objective
coupled design and operation optimization of the case study energy concept. These Pareto-
fronts are formed by various combinations of physics- and data-driven models. In particular,
Figure 6a shows the single-level optimization results and (b) shows bi-level optimization
results for different combinations of ST and HP models. The optimal Pareto-front of the
complete physics-driven model (black dots) of the IES is used as the reference solution to
evaluate the accuracy and computational effort of the different model combinations.
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Figure 6. Comparison of the optimization results for different model combinations of ST and HP
(without TES). (a) Single-level coupled optimization; (b) bi-level coupled optimization.

The original multi-objective MINLP optimization problem is linearized and converted
into an MILP optimization problem. The MILP problem is solved with the GUROBI
solver [37] on the PYOMO platform included in COMANDO [27]. More specifically,
the single-level multi-objective Pareto-front is generated by the augmented ϵ-constraint
method [38]. The bi-level problem is not linearized and solved on the PYMOO platform
with the non-sorting genetic algorithm (NSGA-II) on the design level and differential
evolution on the operation level [39]. Both optimization problems, single-level and bi-level,
are solved on an 11th Gen Intel(R) Core(TM) i7-1185G7 with 16 GB RAM. It can be seen
from Figure 6a,b that the physics-driven model of HP with the ANN-1 data-driven model of
ST (blue dots) gives the most accurate results, which is close to the complete physics-driven
model. The second most accurate result is provided by the physics-driven model of HP
and the PR-2 data-driven model of ST (violet dots). This trend applies to both single-level
and bi-level optimization.

Figure 7 shows the comparison of computational time and solution accuracy of the
coupled optimization results for combinations of different models. Accuracy is calculated
based on the R2 method, where a complete physics-driven model is reference. It can
be seen that the best trade-off between computational time and accuracy is found for
the HP physics-driven model and the ST PR-2 model (violet dots). This combination of
models reduces the coupled optimization computation time up to 37%, with optimization
results being approximately 90% accurate compared to complete physics-driven models.
In contrast, the ST ANN-1 model with the HP physics-driven (blue dots) model in coupled
optimization is also very accurate, but the computational time for solving the coupled
optimization problems with ANN-models is very high due to a large number of weights
and biases.

Physics

CPU time (s) Accuracy (%) Scale

HP-LR, ST-LR

HP-PR, ST-PR-2

HP-PR, ST-ANN-1

HP-Physics, ST-LR

HP-Physics, ST-PR-2
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Figure 7. Time and accuracy comparison for different combination of models in single-level multi-
objective optimization (without TES).

Figure 8 shows the optimal capacity of the components for the total physics-driven
models and the best trade-off combination of physics- and data-driven models, which
is chosen based on best trade-off between computational time and solution accuracy
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according to Figure 7. Both Figure 8a,b show that for minimum TAC, small HP and
large GB are required to meet the heating demand, while for minimum GWI, large HP
is required. The size of ST and PV remains almost constant in all of the Pareto-results.
In some solutions, EB is needed when HP and GB are not sufficient to provide the required
heat. The optimal capacity of the components follow a similar trend for complete physics-
driven and combined physics-data-driven models, demonstrating the credibility of the
combined models.
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Figure 8. Capacity of components for reference solution and best trade-off solution for single-level
coupled optimization. (a) Complete physics-driven model; (b) HP-Physics, ST-PR-2 model.

3.2.2. With TES

The best trade-off combination models of ST and HP from Section 3.2.1, which are
ST-PR-2 and HP-Physics models, are considered to optimize the design and operation of the
energy concept, including TES. As shown in Table 8, the number of variables and constraints
are reduced by 10% and 13%, respectively, compared to the full physics-driven model of the
energy concept. The inclusion of TES increases the overall computational time for coupled
optimization as the number of decision variables and constraints increases compared to the
energy concept without TES. Computational time with the use of combination of physics-
and data-driven models is 29% less than the full physics-driven model.

Table 8. Total number of variables and constraints in single-level multi-objective coupled optimiza-
tion problem for different combinations of physics-driven and data-driven models of HP and ST
(with TES).

ST HP Total Number of Variables Total Number of
Constraints Computational Time [s] Accuracy [%]

Physics-driven Physics-driven 2175 3325 18,025 100
PR-2 Physics-driven 1959 2893 12,671 90.3

Figure 9 shows the comparison of coupled optimization results with the full physics-
driven model and the combination of HP physics-driven and ST PR-2 data-driven model.
The accuracy, as mentioned, is achieved up to 90%. Due to the inclusion of TES, GWI
decreases as thermal energy generated from ST can be stored in TES for later use and the
usage of gas and electricity from the grid can be reduced. But at the same time, the TAC
increases because of the addition of a new component.
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Figure 9. Comparison of the optimization results for different model combinations of ST and HP
(with TES).

4. Conclusions and Outlook

This paper shows a multi-objective coupled design and operation optimization of an
energy concept of a food and cosmetic industry as a case study. Single-level optimization
for minimizing TAC and GWI, as well as the design and operation variables for each
component involved, is described. The aim of this paper is to compare different types of
physics- and data-driven models and to integrate them into a coupled optimization problem
to reduce the computational time while maintaining the accuracy of the optimization
results. The ANN models of HP and ST showed a relatively higher accuracy, but the
computational effort for the optimization was also relatively quite higher compared to the
other combinations. The full physics-driven model of IES was also computationally very
expensive to optimize. The results show that the combination of the data-driven PR model
of ST and the physics-driven HP model is better than all other combinations in terms of
computational time and solution accuracy. The accuracy of the optimization result is up
to 90% compared to the complete physics-driven model, and the computational time is
reduced by 37% without TES. The integration of TES increased the computational time due
to increased flexibility and degree of freedom. The accuracy has been achieved up to 90%
and computational time is reduced by 29%.

These results have specifically considered the constraints related to the use case
selected for the food and cosmetic industry. The results might change under different
constraints. Future work for this case study is to develop and optimize different scenarios
such as retrofit designs, greenfield designs, cost-neutral solutions, and complete emission-
free solutions for the given case study, and to provide different design operation solutions.
The combination of physics–data models can be very useful in optimizing these scenarios,
while requiring less computational effort and producing high accuracy. The modeling
fidelity can be increased to obtain more accurate results and reduce emissions and costs
accordingly. The use of high-performance computing and further reduced-order models
can be utilized to achieve the above-mentioned objectives.
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Abbreviations
The following abbreviations are used in this manuscript:

DES District Energy Systems
IES Integrated Energy Systems
RES Renewable Energy Sources
TES Thermal Energy Storage
PV Photovoltaic
WT Wind Turbine
ST Solar Thermal
GB Gas Boiler
GG Gas Grid
EG Gas Grid
EB Electric Boiler
EH Electric Hub
HH Heat Hub
HP Heat Pump
MINLP Mixed-Integer Nonlinear Programming
MILP Mixed-Integer Linear Programming
TAC Total Annualized Cost
GWI Gloabl Warming Impact
OC Operational Cost
CAPEX Capital Expenditure
Nomenclature
Letter symbols
x design variables
y operational variables
ṁ massflow, kg/s
A area, m2

a annum
C investment cost
c specific heat capacity, kJ/kgK
E energy, kWh
g CO2 emission factor, g-CO2eq/kWh
GWI global warming impact, g/kWh
I solar irradiance, kW/m2

M set of months
OC operational cost
P power, kW
p price
Q thermal capacity, kW
S set of components
s seconds
T temperature, K
TAC total annualized cost
z binary variables
Greek symbols
α maintenance cost factor
β interest rate
ϵ numerical limit
η efficiency
γ scaling exponent
λ part load
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τ time horizon
Subscripts and superscripts
0 reference
amb ambient
buy electric boiler
EG electricity grid
el electricity
gas gas
GB gas boiler
GG gas grid
HP heat pump
i index for components
in inlet
L loss
nom nominal
out outlet
PV photovoltaic
sell selling
ST solar thermal
u useful
w water
WT wind turbine
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