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Department of Automation and Applied Informatics, Budapest University of Technology and Economics,
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Abstract: Real-time hardware-in-the-loop-(HIL) simulation integration is now a fundamental com-
ponent of the power electronics control design cycle. This integration is required to test the efficacy
of controller implementations. Even though hardware-in-the-loop-(HIL) tools use FPGA devices
with computing power that is rapidly evolving, developers constantly need to balance the ease of
deploying models with acceptable accuracy. This study introduces a methodology for implementing
a full-bridge inverter and buck converter utilising the associate-discrete-circuit-(ADC) model, which
is optimised for real-time simulator applications. Additionally, this work introduces a new approach
for choosing ADC parameter values by using the artificial-bee-colony-(ABC) algorithm, the firefly
algorithm (FFA), and the genetic algorithm (GA). The implementation of the ADC-based model
enables the development of a consistent architecture in simulation, regardless of the states of the
switches. The simulation results demonstrate the efficacy of the proposed methodology in selecting
optimal parameters for an ADC-switch-based full-bridge inverter and buck converter. These results
indicate a reduction in overshoot and settling time observed in both the output voltage and current
of the chosen topologies.

Keywords: associate discrete circuit; real-time simulation; field-programmable gate array; optimisation
algorithm; power converters

1. Introduction

The progress in power-electronics applications and the expanding range of power-
electronics converters have significantly improved their operational capabilities in the field.
Therefore, there is a substantial need to simulate and test these converters. Nevertheless,
the necessity to build the converter and conduct physical testing on both the converter
and its controller is reduced, due to many practical limitations. These limitations contain
possible hazards of harm, doubts about the robustness of the converter, and the associated
financial costs. Real-time simulation (RTS) is a common way to test how well a converter
controller works in a hardware-in-the-loop-(HIL) environment, which involves connecting
actual physical components to simulated models. Incorporating real-world hardware
effects into this integration improves the dependability of the simulation, rendering it a
viable instrument for validating control techniques and evaluating the efficiency of power-
electronics converters, which gives RTS an advantage over other simulation methods, in
regard to accuracy and reliability [1,2].

Prior to installation and commissioning, it is necessary to conduct testing and veri-
fication procedures on the controller, to ensure its functionality. Performing testing in a
real-time-simulation-(RTS)-environment setting is the most feasible approach to guarantee-
ing the system’s resiliency and to effectively evaluating its capabilities and functionality.
Moreover, utilising RTS is vital for executing random switching investigations, as it sub-
stantially reduces the total length of the study. RTS is renowned for its capacity to deliver
instantaneous reactions, enabling the dynamic simulation of power-electronics systems
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with precise timing data. RTS provides a more accurate depiction of the system’s dynamic
reaction compared to conventional time-domain simulations, which may not accurately
replicate real-time behaviour [3,4].

In order to examine the dynamics of any given system, the simulation speed must
fall within the range of tens of seconds. The process that is being referred to is commonly
known as real-time simulation. The real-time simulator effectively solves the mathematical
model of a given system by discretising time into short and defined steps. It then correctly
reproduces the desired waveforms, such as the voltage and currents of power converters.
Enhanced mathematical models yield heightened precision in voltage and current measure-
ments. The slowness of the simulation time observed in power converters can be attributed
to the inefficient switching technique employed by these devices. Furthermore, the model
needs to include the capability of observing switching characteristics and detecting and
analysing unusual events, such as switch short circuits. Additionally, the model must
account for the latency in data transmission from the converter switches and external
networks, resulting in errors. Hence, developing a stable model for switching converters
featuring many topologies is a great challenge.

A flexible numerical integration method is one approach to accurately and efficiently
modelling converters. This method allows for the appropriate level of speed and precision
in the modelling process. Additionally, interpolation techniques can be employed to correct
errors arising from the switching phenomena. It is important to note that this approach
does not fix the simulation time step and nodal matrix. Furthermore, the solution method
is characterised by its non-iterative nature. If many switching-device models require
changes in status within a single time step, the network model is accordingly adjusted to
accommodate all of these demands. The last ones are only considered in the resolution of
the subsequent time interval. Hence, the solution is deemed inaccurate for a fraction of
the time-step size after the first request. This inaccuracy can lead to the development of
switching errors, inaccurate power flows, and non-characteristic harmonics. The measures
implemented to mitigate the associated inaccuracy often entail modifications to the time-
step size and the utilisation of interpolation algorithms. Therefore, a notable drawback
to these approaches is the substantially higher levels of computing effort at specific time
intervals. This conflicts with the real-time simulation, as it demands that the solution
process be efficient in each time step [5].

Another approach to RTS modelling is the resistive model. While this method enhances
the system’s dynamic behaviour by eliminating undesirable oscillations, it also requires
changing the system’s topology for each switch state. This presents a significant challenge
when dealing with complex and large-scale systems. However, in the case of basic converter
types, it is possible to utilise a resistive model to obtain a speed advantage at the expense
of accuracy. By contrast, it is observed that nonlinear switch models exhibit significant
inefficiency when employed for CPU simulation. Moreover, their implementation on FPGA
platforms generally requires a significant allocation of hardware resources, primarily due to
the iterative nature of the solution. The time-averaging method and the state-space method
(SSM) are alternative approaches that can also be employed. The accuracy of the SSM
approach to solving equations is limited, particularly when verifying the controller linked
to the switching power converter. The asynchronous interface between the controller and
the simulator poses a significant challenge in this regard [6,7].

The utilisation of the ADC technique has various advantages. Firstly, the stability of the
network matrix is defined, making it constant and stable, hence avoiding the need for matrix
inversion calculations, leading to less computational burden and higher computational
efficiency [2]. Furthermore, the utilisation of field-programmable gate arrays (FPGAs) can
lead to enhanced efficiency, hence reducing the amount of memory space consumed within
the FPGA. However, the ADC model generates simulation losses and transients not present
in real-world scenarios. Numerical errors are considered to be the inaccuracies that arise
from the ADC-based model [4,8].
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The next parts of this paper are structured in the following manner. Section 2 provides
a comprehensive overview of the modelling process using the ADC method. Section 3 gives
the eigenvalues analysis used to select the optimal ADC parameters. Section 4 outlines the
proposed approach for the optimal calculation using the ABC, GA, and FF algorithms. The
simulation results obtained through the utilisation of the proposed method are presented
in Section 5. Subsequently, the conclusion of the study is outlined in Section 6.

2. Associated-Discrete-Circuit-(ADC) Modelling

The associated-discrete-simulation method integrates a model representing an equiv-
alent conductance and a current source. The mentioned parts are connected in a parallel
configuration, to effectively replicate the operational characteristics of the various switching
elements within the circuit, including but not limited to IGBTs, diodes, thyristors, and
related devices, as shown in Figure 1. The inductive characteristics of the power switch are
observed while it is in the ON state, and these characteristics can be measured using the
parameter Lsw. On the other hand, during the OFF state, the power switch demonstrates
capacitive characteristics, which can be symbolised by the variable Csw. A small parasitic
component can be integrated into the model, to mitigate the presence of overshoots and
oscillations in switching transients. One such element is a resistor denoted as Rsw, which
can be connected in series with the capacitor Csw. The optimal operation of these models
requires the usage of low capacitance and inductance values. As a result, this enables a
reduction in the required time interval, denoted as ∆t, to develop the discrete-time sys-
tem. Hence, this specific model is sometimes referred to as the small-time-step model in
academic literature [9,10].

Switch Discrete ModelContinuous Model 

ON 

OFF 
+ 

+ - 

+ - 
- 

𝑌𝐶 = 𝐶𝑠𝑤/∆𝑡 

- + 

𝑌𝐿 = ∆𝑡/𝐿𝑠𝑤  

Figure 1. Conceptualization of the ADC-switch-based method.

The discrete-time model of the ADC switch in the ON state can be represented as

dI(t)
dt = U(t)

d(I(t) − I(t−1)) =
∫ t

t0

U(t)
L dt

I(t) = Ih + ∆t
Lsw

·
∫ t

t0
U(t) dt

(1)

I = Jh
L + YLU. (2)

The earlier calculated inductor current, labelled Ih, can be considered a continuous
current source, represented as Jh

L = Ih. Moreover, the parallel conductance, represented as
YL = ∆t

Lsw
, determines the increase in current caused by the voltage U during the given time

step.
Equations (3)–(5) represent the discrete-time model of the ADC switch in the OFF

state, assuming we neglect the extra damping resistance. The variable Uh represents the
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voltage magnitude at the preceding time step. The variable YC denotes the conductance of
the switch in its inactive state:

dU(t)
dt = I(t)

U(t) − U(t−1) =
∫ t

t0

I(t)
C dt

U(t) = Uh +
∆t

Csw
·
∫ t

t0
I(t) dt.

(3)

Rearranging Equation (3) by expressing the current I, Equation (4) is formulated:

I = Jh
C + YCU, (4)

where
Yc = Csw/∆t

Jh
c = −YCUh.

(5)

The position of the switch, represented as S, solely impacts the current source, while
the conductance stays unaltered by the switch position. Therefore, the equation governing
the behaviour of the switch can be formulated as follows:

I = YswU + IhS − YswUhS. (6)

The logical role of the switch state S in the context of an IGBT switch with a parallel
diode is as follows:

S = G + Sh ·
{

1 if Ih < 0
0 otherwise

}
+ Sh ·

{
1 if Uh < 0
0 otherwise

}
. (7)

The variable G is utilised to indicate the turning-on signal for the power switch, such
as an IGBT. The other parts in Equation (7) describe the condition of the diode. Different
varieties of power switches necessitate an alternative form of logical operation. It is essential
to acknowledge that, in contrast to other behavioural models of power converters, the logic
functions in ADC models are specifically designed to address the switching devices on a
local level without considering the overall circuit logic.

However, it is important to acknowledge that the capacitors and inductors acquired
via the ADC method may not precisely reflect the parasitic components in real switches.
The presence of this gap presents the ability to introduce inaccuracies inside the simulation.
In the domain of transient functions, there have been notable numerical simulation mis-
takes when applying the ADC modelling method. Switching power losses arising from
numerical integration are acknowledged despite their absence in the physical domain.
During modelling, it was noted in a prior work [11] that switching losses occurred due to
inaccuracies in circuit parameters. Nevertheless, a thorough examination of this occurrence
still needs to be undertaken.

In Equation (8), it is assumed that during the n step, the switch is in the ON state.
In that instance, the switch can be considered equivalent to the inductor (Lsw), and it is
possible to determine the amount of energy stored on the inductor. As a parallel current
source represents the energy stored in the inductor:

ILsw(n) = I(n)

VLsw(n) = 0

EL = 0.5 · Lsw · I2(n)

Jh(n) = −ILsw(n − 1) = −Iload(n − 1)

(8)
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In the n + 1 time step, the switch is in the OFF state, Lsw is replaced by Csw, and the
initial energy stored in the capacitor is calculated using Equation (9). The energy stored in
the inductance goes to zero in the ON-OFF state transition of the switch:

Jh(n + 1) = YswULsw(n) = 0 (9)

In Equation (10), it is also assumed that during the n step, the switch is in the OFF
state. In that instance, the switch can be considered equivalent to the capacitor (Csw), and
it is possible to determine the amount of energy stored in the capacitor:

ICsw(n) = 0

VCsw(n) = U(n)

EC = 0.5 · Csw · U2(n)

Jh(n) = YswULsw(n − 1) = YswULsw(n − 1).

(10)

Also, in the n + 1 time step, the switch is in the ON state, Csw is replaced by Lsw, and
the initial energy stored in the inductor is calculated using Equation (11). The energy stored
in the capacitor goes to zero in the OFF-ON state transition of the switch:

Jh(n + 1) = −ILsw(n) = 0. (11)

The capacitor will change to an inductor for a switch modelled using the ADC method
to be switched to ON. The initial current flowing through the inductor must equal that
of the capacitor, which is 0 amperes. There is no abrupt alteration in the flow of electric
currents within the inductor. The charging process of the ADC switch commences, leading
to a gradual rise in the current of the equivalent inductor until it achieves a steady state.
Meanwhile, the voltage of the switch will gradually decline to zero. The multiplication of
the voltage and current values of the ADC model yields a non-zero result. Similarly, the
energy expended during this operation is also non-zero, which can be interpreted as the
energy stored in the inductor.

The same can be noticed during the switch turn-off, as the model will change from an
inductor to an equivalent capacitor. As the capacitor’s initial voltage and current are both
zero, energy will be stored in the capacitor due to the charging process, as the capacitor
voltage will reach a new non-zero steady-state value.

It is necessary to reset the current value of the inductor, in order to facilitate the
subsequent switching-on operation, which aims to replace the capacitor with a state of zero
current in a stable condition. In order to ensure proper functioning, it is necessary to reset
the voltage value of the capacitor prior to replacing the inductor during the switching-off
process. The phenomena above result in virtual switching losses inside the ADC model of
a power switch.

Finally, the calculation of virtual power loss can be determined using the following
equation:

ELost = EL + EC =
1
2

LswI2 +
1
2

CswU2. (12)

To summarise, there are several drawbacks associated with this particular model.
Firstly, the parameter settings are not universally applicable, and selecting an appropriate
parameter set can often be challenging. The non-switching circuit components and the ap-
plied integration approach influence the transient behaviours. Additionally, in applications
with high frequencies, the virtual power loss resulting from the charging and discharging
of capacitors and inductors in the model can present challenges.
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3. Eigenvalue Analysis for Optimum Switch Parameter Selection

The selection of the parameter Ysw value holds the capacity to influence the transient
spikes introduced into the performance of the ADC model, as it directly represents the
values of the switch inductance and capacitance. A non-optimized value of Ysw, for example,
could result in a negative Csw value, and the discrete-time system becomes unstable. To
examine it, initially, the derivation of the state-space equation is undertaken. Additionally,
it is necessary to convert continuous equations into discrete equations. In the end, the
eigenvalues of the matrix representing the system are calculated. The determination of the
optimal value of Ysw can be achieved by the analysis of the eigenvalues.

By utilizing continuous state space equations, where A represents the state matrix and
B represents the input matrix, and by applying the Laplace transform and then working
with the backward Euler technique, the substitution of s by (z − 1)/z∆t in Equation (13)
allows for the discretisation process:

x
′
(t) = A · x(t) + B · u(t)

s · X(s) = A · X(s) + B · U

x(t + 1)− x(t) = A · ∆t · x(t + 1) + B · ∆t · u(t + 1)

x(t + 1) = A
′
x(t) + B

′
u(t).

A
′
is the discrete state matrix and equal to

A
′
= (I − A · ∆t)−1.

(13)

This enables the formation of a relationship between the variables z and s, as indicated
in Equation (14). In this context, ∆t represents the time step, whereas s is the complex
number s = σ + jω. By employing the backward Euler integration technique, it is possible
to transform the left-hand side of the s-plane onto the z-plane, yielding a circular layout.
The circle under consideration is the red circle, centred at the complex number 0.5 + 0j and
has a radius of 0.5, as shown in Figure 2.

s =
1 − 1

z
∆t

(14)

s-plane (con�nuous) z- plane (discrete) 

Figure 2. The s-plane left-hand side mapped onto the z-plane (red circle), inside the stability region
of a discrete system (blue circle), using the Backward Euler method.

When discussing a continuous system that responds to an input of unity step, the
settling ts can be calculated using Equation (15), with a tolerance of ±2%.
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ts · σ ≈ 4 (15)

The real component of the pole, −σ, is determined when the pole lies on the s-
plane. Consequently, the discrete system transfer function can be represented as shown in
Equation (16). The variable z denotes a complex number that provides an expression of the
poles of the discrete system [12,13]:

4∆t · |z|2 ≈ (Re(z)− |z|2) ∗ ts. (16)

According to the stability criteria of a second-order system, the link between the angle
of the poles and the damping ratio can be established by means of substitution, resulting in
Equation (17):

θz√
1 − ζ2

≈ ωn∆t. (17)

The damping ratio is denoted by ζ, whereas the natural frequency of an undamped
system is represented by ωn, as mentioned in reference [12]. In analysing a system char-
acterised by eigenvalues, it is fundamental to ensure that the angle associated with these
eigenvalues tends towards zero or is minimised, as this mitigates the occurrence of over-
shoot. By taking this step, the imaginary part of the complex number z tends towards zero
(or Re(z) ≈ |z|), resulting in a modification of Equations (16)–(18) [13]:

ts ≈
4∆t|z|
1 − |z| . (18)

A stable system’s eigenvalue magnitude (|z|) is bounded within the interval of 0 and
1. It is crucial to minimise the settling time by ensuring that the magnitude of the variable
z, represented as |z|, is adequately small, as indicated by Equation (18). Therefore, the
eigenvalues must be located in close proximity to the origin point (0, 0). Figure 3 depicts the
regions in which the system exhibits a rapid settling time and low overshoot, as indicated
by Equations (17) and (18). The following is a representation of the regions situated within
the complex plane. The shaded area represents one region of interest derived from the
intersection of these two entities. As multiple minimum-overshoot and minimum-settling-
time regions do exist inside the circle, multiple Ysw proposed regions can be highlighted.
Hence, the ADC model guarantees the absence of excessive overshoot or incorrect settling
time by evaluating the discrete-state matrix’s eigenvalues (or dominating poles) and their
appropriate placement within the designated region [13].

|z|
 

Moving Toward Imaginary-Axis 

M
ov

in
g T

ow
ar

d R
ea

l-A
xi

s 

Figure 3. Approximate regions in the complex plane (z-plane) for optimal Ysw value, with minimum
overshoot (green dashed-curve) and minimum settling time ( black dashed-lines ) proposed regions.
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4. ADC Switch Model Optimum-Parameters-Value-Selection Algorithms

The methodology employed in this research focused on determining and calculating
the value of the ADC switch conductance by locating the system’s eigenvalues within a
designated region in the z-plane. The primary aim was to reduce the negative effects of
overshoot and settling time. The poles of the system were determined through the utilisa-
tion of the artificial bee colony (ABC), the firefly (FFA), and the genetic (GA) algorithms.
The main rationale behind using nature-inspired optimisation methods and comparing
their effectiveness (computation time and convergence rate) was their global exploration,
which meant that the algorithms were able to search through a wide range of solution
spaces. They were robust while dealing with complex systems and held a certain degree of
easiness during implementation. No other algorithms were considered, which opens up
the discussion to developing other optimisation methods in the future.

4.1. Artificial Bee Colony (ABC)

The ABC parameters consist of several factors, with the initial population size being
the primary consideration. The user determines this value, which serves as a reflection
of the optimisation problem’s complex nature. A larger initial population size has the
potential to enhance the search process inside the designated search space. However, it
is essential to note that an increased computing load may accompany this advantage. A
limited initial population may restrict the range of search-space exploration yet facilitate
faster convergence. The number of iterations for the second parameter is dependent
upon the difficulty of the task. The selection of a significant number of iterations in the
algorithmic process may facilitate the identification of the optimal solution. However,
this approach may also increase the overall time necessary to complete the optimisation
process. A low number of iterations could decrease the algorithm’s ability to sufficiently
navigate the search space, hence decreasing the accuracy in identifying the ideal answer. It
is customary to decide on an iteration number within a range from 100 to 1000, thereafter
adjusting it in response to performance evaluations and the availability of computational
resources [14].

4.2. Firefly Algorithm (FFA)

The firefly algorithm (FFA) is an optimisation technique that draws inspiration from
nature and emulates the flashing activity seen by fireflies to attract other fireflies. Fire-
flies employ bio-luminescence as a means of drawing in potential mates or prey, hence
generating intricate patterns of luminous flashes inside low-light environments.

The firefly algorithm employs fireflies as a representation for the solutions, and the
appearance degree of the solution is based upon its fitness value. Fireflies tend to be drawn
towards other fireflies, influenced by the brightness emitted by the latter, which is closely
linked to their overall fitness. More optimal solutions exhibit a greater degree of attraction
among other fireflies.

The fundamental procedures of the firefly algorithm start with the creation of an initial
population of fireflies, which will serve as the set of potential solutions. The fitness function
is a mathematical representation used to assess the quality or effectiveness of solutions
within the search space. The attraction of each firefly (solution) is determined by evaluating
its brightness (fitness) in relation to other fireflies. The fireflies are directed towards more
luminous fireflies inside the search region, with their positions being modified according to
their attraction and the distance between them. The current light-intensity (fitness) status
is being provided as an update. The fireflies’ light intensity (fitness) is modified per their
updated spatial coordinates.

A well-constructed fitness function, also called the cost function, that accurately
quantifies the performance of the problem in hand will ensure the solution quality by
encapsulating the desired optimisation goals and mapping the fitness to the brightness. At
the same time, the algorithm stores the optimal solution and compares it to the previous
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iteration’s best fitness solution. Ultimately, the optimal solution with the best fitness—in
other words, the best metaphorical brightness—is outputted.

The process of attraction, movement, and intensity update should be iteratively re-
peated for a certain number of iterations or until a convergence requirement is satisfied.
The utilisation of firefly migration towards brighter fireflies inside this algorithm facilitates
efficient solution-space exploration. Customizing the algorithm’s attraction function and
movement strategy is contingent upon the problem being addressed [14].

4.3. Genetic Algorithm (GA)

The genetic algorithm (GA) is a widely utilised evolutionary computation methodol-
ogy that draws inspiration from natural selection and genetics mechanisms. This algorithm
is employed for the purpose of optimising and solving search-related problems.

An initial population comprised of potential solutions, sometimes referred to as
individuals, is created. Typically, these solutions are encoded as binary strings; however,
alternative representations may be employed, based on the nature of the problem, such
as real numbers or permutations. The fitness function serves to measure the quality of a
solution in relation to the specific problem being addressed. Solutions characterised by
higher fitness values are indicative of superior performance in individuals.

The algorithm involves selecting existing population members as progenitors for
future generations. Fitness levels often determine selection, with fitter population members
being chosen. Selected parent pairs undergo a crossover process to produce children. Then,
the algorithm mutates a portion of the offspring. Natural mutations cause tiny and random
changes in the progeny’s genetic material. Genetic diversity is preserved in populations, to
avoid early convergence to suboptimal solutions. Mixing the starting population, parents,
and children creates a new generational cohort, as they replace less-fit individuals.

The GA algorithm is an effective approach to finding the optimal solution through
selection, crossover, mutation, and replacement. The selection is linked to the number of
generations, which is also linked to the number of iterations. Crossover and mutation are
expressed in the algorithm as a probability. High crossover probability will increase the
exploration by creating more diverse offspring, while low crossover probability will push
for exploration with more maintained genetic information from the parent. The mutation
probability indicates the likelihood of an individual’s chromosome going through mutation.
High mutation probability will increase the exploration by adding random genetic changes,
while low probability will set the algorithm exploration to be reliant on crossover. The
typical values for crossover probability are between 0.6 and 0.9, and mutation probability
is between 0.01 and 0.1. In our cases, the selection of 0.8 and 0.01 for the crossover and the
mutation probabilities led to achieving the optimal answer.

The process of selection, crossover, mutation, and replacement should be iteratively
performed for a certain number of generations or until a predetermined termination
criterion is satisfied, such as reaching a suitable solution [15].

For all the used algorithms implemented, by trial and error, increasing the initial
population to more than 400 will not give different optimal results. It will increase the
computation time. Decreasing the initial population to less than 400 will not give the
optimal answer. This selected initial population did not lead to premature convergence,
did not affect the algorithm’s robustness, and did not limit the search space. This stands for
the selected test cases in this study.

4.4. Algorithms Cost Function

The cost function for the three algorithms (ABC, FFA, GA) is designed to minimise both
overshoot and settling time. It is formulated based on the analysis done to the eigenvalue,
as in Section 3. The cost function is validated with the performance of real-world power
converters as implemented in [10,13]. The initial element of the cost function, as outlined
in Equation (19), seeks to surpass the overshoot by minimising the total number of the
squared eigenvalue angles:
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C1(Ysw) =
k

∑
i=1

|θλi(Ysw)|2. (19)

Similarly, the second element of the cost function, derived from Equation (20), can
be expressed as the sum of the squared magnitudes of the eigenvalues. In both instances,
K represents the number of iterations. Multiplying each component of the cost function,
denoted as θλi(Ysw) and λi(Ysw), by itself decreases the sensitivity of the eigenvalues that
are in close proximity to the origin:

C2(Ysw) =
k

∑
i=1

|λi(Ysw)|2 (20)

5. Case Studies

The typologies under investigation were full-bridge inverter, which is the basic build-
ing block for multiple-level inverters, like the three-phase nine-level CHB inverter; in this
context, we examined one cell of the inverter. The second test case was the buck converter,
to prove the diversity for the selection method for different types of switching devices. The
associated-discrete-circuit-(ADC) method was employed, in order to construct a model for
each of the cases.

The ADC approach employs an inductor and a capacitor to symbolize each switch
during its activation and deactivation phases, as stated by source [16]. The discrete formu-
lation of an electrical switch is obtained by expressing it as a composite system consisting
of a current source operating in parallel with a conductance. One significant advantage of
this methodology is that irrespective of the switch’s state the conductance may be fixed
by appropriately choosing a suitable time interval. Therefore, the circuit configuration
may remain unchanged [9,11]. Additionally, the utilisation of the backward Euler (BE)
integration method, renowned for its inherent damping characteristics, will lead to the
discretisation of the elements inside the converter circuit and the derivation of the circuit’s
matrix. The determination of nodal voltages and branch currents is an obvious outcome of
resolving the discrete circuit matrix.

Three optimisation algorithms were proposed, in order to determine the optimal
parameter values for the full-bridge and buck-converter models, which were implemented
using ADC. The purpose of these algorithms was to address the limitations and disadvan-
tages associated with the use of ADC. The primary advantage of utilising an algorithm for
optimising ADC settings is its ability to tackle difficult and discrete optimisation problems
efficiently. The utilisation of the above approach facilitated the practical examination of
a broad spectrum of potential solutions, leading to faster convergence towards the ideal
parameters [17].

By employing network modelling techniques, like modified nodal analysis (MNA),
it was possible to represent any conversion circuit equations in the form illustrated in
Equation (21). In this format, the switch admittance and its inverse were computed in
advance, and the values of current and voltage were determined at each time interval ∆t
by solving Equation (21). The matrix B(n) was subject to change based on the switch state:

Y · X(n) = B(n)
X(n) = Y−1 · B(n).

(21)

The computation of the circuit parameters occurred through a two-step process. The
initial step was the computation of X(n), whereas the subsequent phase relied on the history
of the current sources. The process of updating was reliant upon the prior values of the
voltages and currents. The utilisation of the network modelling technique allowed for the
construction and simulation of the full-bridge circuit and buck converter, incorporating an
ADC-based switch model.



Energies 2024, 17, 56 11 of 18

Figure 4 shows the process of designing a power converter with the optimal parameter
values of an ADC-switch-based model.

End 

Start 

Define a specific topology 
for the switching converter 
prior to discretization, to 
do state-space analysis 

Formulate the state matrix 
(A) and discretize it to 

achive (A') using equation 
(11) 

Utilise the ABC (Artificial Bee Colony), 
GA (Genetic Algorithm), and FFA 
(Firefly Algorithm) optimisation 
algorithms to derive the optimal 

parameters values of ADC switch-
based model.

Formulate the inverse of 
nodal matrix (Y) as in 

equation (21)

Figure 4. Steps of the design of a power converter with the optimal parameter values of an ADC-
switch-based model.

5.1. Full-Bridge Inverter

A block diagram of a full-bridge circuit with a resistive load is seen in Figure 5. Matlab
Simulink allowed us to conduct a simulation of the circuit, wherein the switch conductance
was set to a value of 1. The switching frequency utilised in this study was 2 kHz. The
modulation signal employed was a sine signal characterised by an amplitude of 0.95 and
a frequency of 100π. This signal was compared to a triangle signal with a frequency of
2 kHz, to generate the gate signals. Additionally, the parameters used in the present study
included a resistance value of 10 ohms (R), an input voltage of 100 volts (E), and a time
interval of 200 nanoseconds (∆t). The effect of the resistance value on the output result
was recorded, but no further sensitivity analysis was conducted, while the selected value,
R = 10 ohms, ensured a minimum effect in our test case. The simulation results are depicted
in Figures 6 and 7. The occurrence of transient spikes in both the output voltage and current
was noted, resulting in notable virtual power losses inside the ADC model.
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S2 

R 

S4 S3 

S1 

Figure 5. Full-bridge inverter, represented using an ADC-switch-based model.

16 

116 

Figure 6. Full-bridge output voltage with Ysw = 1 admittance and optimal admittance value
Ysw = 0.1.

6 

6 

Figure 7. Full-bridge output current with Ysw = 1 admittance and optimal admittance value
Ysw = 0.1.
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The full-bridge circuit can be simplified into two distinct topologies. The first topology
occurred when switches 1 and 4 were closed, whereas the second topology occurred
when switches 2 and 3 were closed. The state-space matrix of the circuit was constructed
and subsequently discretised using the backward-Euler-integration approach. Additional
details regarding the derivation and discretisation procedure can be found in the publication
referenced as [13]. Equation (22) displays the state-space matrix of the full bridge:

A =

0 −1
L

1
C − 2

RC

. (22)

The discrete-state-space matrix could be obtained based on the variable Ysw as stated
by backward Euler, as in Equation (23). According to the eigenvalues of Equation (23), the
ABC, GA, and FFA algorithms were employed to find the optimal values of Ysw:

A
′
=

 1 Ysw

−1
Ysw

1 + 2
YswR

−1

. (23)

Table 1 shows the optimized values for Ysw, for which the eigenvalues of the A
′

matrix
are located in the marked area as described in Section 3. Within the boundaries of Ysw,
an optimum answer for Ysw was found for each run of all the algorithms, resulting in
an adequate outcome. Table 2 gives a performance comparison between the algorithms,
while locating the conductance optimal value for the full-bridge inverter. Even when
changing the number of iterations, as this was one of the primary factors that influenced the
computational speed and the convergence rate, it can be seen that the FFA had the lowest
convergence rate—hence, the highest computation time. By contrast, the GA algorithm
achieved the most down computation time and the highest convergence rate. ABC stood
in the middle with both values. Changing the number of iterations did not change the
optimal value achieved, it was observed to be between 0.09966 to 0.10098, with no effect on
the output voltage and current.

Table 1. The obtained values of parameter Ysw for the ADC-switch-based full-bridge inverter model,
using the ABC, FFA, and GA algorithms with a particles band between 0 and 1.

ADC Parameters Ysw Initial Population Iteration

Optimum value by (ABC, FFA, GA) 0.1 400 1000

Table 2. Algorithms performance comparison while locating the conductance optimal value for the
full-bridge inverter.

Algorithm Ysw Number of Iterations Computation Time Convergence Rate

ABC 0.10098 1500 1.3557 0.0011667
0.1 1000 1.8056 0.00094392

0.09986 500 2.208583 0.00074035

FFA 0.1 1500 70.9361 0.00012665
0.1 1000 92.205 0.00010374

0.09966 500 115.385 0.000077332

GA 0.1085 1500 0.763534438 0.004452068
0.1 1000 1.0306 0.0037614

0.0999 500 1.3414 0.003032621

Figure 8 show the presence of two light-blue poles on the z-plane within the positive
and negative Imaginary axis with non-optimal settings resulting in an overshoot. On the
other hand, the green poles located on the Real axis were associated with ideal parameters.
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The specified region within the complex plane might be considered an approximate area.
Therefore, not all poles were expected to be situated in a precise and specific location.

Non-optimized  
Optimized 

z-Plane 

Figure 8. Pole locations of full-bridge inverter with Optimum and non-optimum Ysw values, in
s-plane left-hand side mapped onto the z-plane (red circle), inside the stability region of a discrete
system (blue circle).

5.2. Buck Converter

As shown in Figure 9, a buck converter was modelled using ADC, a switch (T1),
and a diode (D1), with no dead time. We can use Equation (24) to represent the buck
converter state-space matrix, capturing the switches in the ON state and OFF state. In
the steady-state analysis, there were two cases: the first case included the upper switch
(T1) to be turned on and the diode (D1) turned off; in the second case, the upper switch
(T1) to be turned off and the diode (D1) to be forward biased, which signified, in ADC
modelling terms, that the model would change from capacitor to inductor, to indicate that
the diode was in the ON state and, as stated previously, a virtual power loss would take
place. The state-space matrix of the buck converter is shown in the following equations,
where the discrete-state-space matrix can be obtained based on the variable Ysw, as stated
by backward Euler, as in Equation (25). Figure 10 shows the circuit’s output voltage and
current, with non-optimal conductance value.

D1 

T1 

Figure 9. Simplified ADC circuit model of the switching components of the buck converter.



Energies 2024, 17, 56 15 of 18

A =

0 −1
L

1
C − 1

RC

 (24)

A
′
=

 1 Ysw

−1
Ysw

1 + 1
YswR

−1

(25)

180 

-24.5 

Figure 10. Transistor voltage, output current, and voltage of the buck converter while admittance
value Ysw = 0.1.

Table 3 shows the optimized obtained values of parameter Ysw for the ADC-switch-
based model of the buck converter using the ABC, FFA, and GA algorithms. Figure 11
shows the circuit’s output voltage and current, with the optimal values achieved by all
three algorithms. Table 4 gives a performance comparison of the algorithms while locating
the conductance optimal value for the buck converter. Once again, the ABC is set in the
middle, regarding the computational-time and convergence-rate values, while the FFA was
the slowest to complete the process to locate the optimized value, and the GA was the
fastest to converge to the optimal value. The case remained the same, even when changing
the number of iterations.

114 

-24.5 

Figure 11. Transistor voltage, output current, and voltage of the buck converter while admittance
value Ysw = 0.5.
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The values for percentage overshoot (PO) and settling time are provided in Table 5.
When both systems were configured with optimum values (Ysw = 0.1) for the full-bridge
inverter and (Ysw = 0.5) for the buck converter, the full-bridge circuit exhibited reduced
overshoot and settling time for both the output voltage and current compared to the
arbitrarily chosen non-optimal parameters. The outcome obtained through the utilisation of
these optimal values bears a resemblance to an inverter circuit with ideal switch behaviour.
The buck-converter circuit exhibited significantly reduced overshoot and settling time of
the transistor voltage, with a percentage overshoot reduction of around 64% and settling
time decreased from 1.5 µs to 0.5 µs, which brought the buck converter to more realistic
behaviour.

Table 3. The obtained values of parameter Ysw for the ADC-switch-based model of the buck converter,
using the ABC, FFA, and GA algorithms with a particles band between 0 and 1.

ADC Parameters Ysw Initial Population Iteration

Optimum value by (ABC, FFA, GA) 0.5 400 1000

Table 4. Algorithms performance comparison while locating the conductance optimal value for the
buck converter.

Algorithm Ysw Number of Iterations Computation Time Convergence Rate

ABC 0.5008 1500 1.3995 0.00042871
0.5 1000 1.8247 0.0003486
0.5 500 2.2319 0.00028385

FFA 0.501 1500 170.87 0.000294945
0.5 1000 219.39 0.00024274

0.4999 500 274.54 0.00019066

GA 0.4999 1500 0.8861 0.009874301
0.5 1000 1.1734 0.0084309

0.4999 500 1.5272 0.006798

Table 5. The percentage overshoot and settling time for the ADC-based switch model optimal and
non-optimal parameter Ysw

Topology Ysw Overshoot % Settling Time µs

Full-bridge inverter
Optimal 0.1 ≈0 0.9

Non-optimal 1 16 1.1

Buck converter
Optimal 0.5 14 0.5

Non-optimal 0.1 80 1.5

More test cases need to be conducted to confidently generalize this method. Although,
based on the literature and the result in this paper, we can apply the method to not only
power converters but also to transmission lines [10]. The limitation to this method is the
complexity of the system, as it will be harder to obtain the system’s state-space matrix with
ADC implementation and to move forward with the optimisation.

6. Conclusions

This paper presents a novel approach to selecting appropriate switch settings for the
ADC-switch-based model, widely used in the simulation of real-time power-electronics
converter circuits. This paper thoroughly examined and analysed the two key aspects
crucial to determining the optimal selection of the switch parameters. One of the primary
considerations was to reduce the nearness of the eigenvalues of the state-space matrix
system to the origin point (0,0) on the z-plane. This practice was implemented in order
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to reduce the settling time required by the system to arrive at a condition of stability. The
second factor referred to the angle reduction formed by the system matrix’s eigenvalues.
This action was undertaken to increase the system’s damping factor. The artificial bee
colony, firefly, and genetic algorithms were utilised to effectively place the eigenvalues of the
system’s discrete model within the specified region on the z-plane. It was observed that the
genetic algorithm was the fastest algorithm to converge and give an optimal solution, while
the firefly algorithm needed the most computational time to convergence. The artificial bee
colony showed balanced behaviour between computation time and convergence rate, even
with changing of the number of iterations to effect the computational time and convergence
rate. The proposed technique was validated by employing full-bridge-inverter and buck-
converter topologies. The simulations demonstrated that the proposed methodology
effectively mitigates overshoot and reduces the output voltage and current settling time in
an ADC-based switch model full-bridge inverter and buck converter.
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