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Abstract: At present, microchannel heat exchangers are widely applied in the fields of air-conditioning
and heat pumping applications given their high heat transfer performance, compact size, and low
material cost. However, designing and optimizing the channel geometries remain challenging, as
they require balancing multiple competing objectives to achieve the optimal performance. This study
investigates various parameters, including the channel count, wetted perimeter, cross-sectional area,
and mass flow rate for each channel, to achieve the optimal efficiency. The optimization objectives
include maximizing the heat transfer rate, minimizing the refrigerant convective thermal resistance,
maximizing the refrigerant heat transfer coefficient, and minimizing the pressure drop. A multi-
objective genetic optimization algorithm, in conjunction with artificial neural network (ANN)-based
machine learning models, was used to predict the heat transfer rate to speed up the calculation
process during the optimization. We identified that a gradient reduction in the wetted perimeter
from the air inlet along the airflow direction could enhance the heat transfer rate. Additionally,
the results indicate that an increase in the number of channels leads to an enhanced heat transfer
efficiency rate. However, with the increase in the number of channels, the cross-sectional area of
each channel is correspondingly reduced to maintain a consistent overall cross-sectional area. This
reduction increases the fluid resistance, leading to an increased pressure drop across the system.
This observation is critical for a microchannel design optimization, highlighting the importance of
attaining a balance between achieving a higher heat transfer efficiency and maintaining a favorable
fluid dynamic performance.

Keywords: microchannel heat exchanger; multi-objective optimization; heat transfer enhancement;
artificial neural networks; flow distribution

1. Introduction

Microchannel heat exchangers (MCHXs) have been extensively applied in electronic
device cooling systems, automotive air conditioning systems, refrigeration systems and
heat pumps. The key characteristic of this class of heat exchangers is the small dimensions
of its channels, often featuring a hydraulic diameter smaller than 1 mm. This design
affords an exceptionally high surface-area-to-volume ratio, thereby substantially boosting
the heat transfer efficiency. The studies on sub-millimeter-scale engineering and heat
transfer principles have presented exciting new prospects in the field of fluid mechanics
and heat transfer science [1]. In most heat exchanger designs, the paramount objective is
to achieve a high heat transfer rate while maintaining a balance between the material cost
and pumping power. The heat transfer rate is collectively determined by the heat transfer
coefficient, the surface area of the microchannel, and the temperature difference during the
fluid flow process. These factors work in concert to optimize the thermal energy exchange,
representing a sophisticated balance of thermodynamics, fluid mechanics, and design
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strategy [2]. As the world is facing an urgent energy crisis, there is an immediate need to
conserve energy and improve the efficiency of energy utilization [3]. In addressing this
challenge, other primary design goals include reducing pressure losses for working fluids
and 2achieving cost-efficiency outcomes without compromising their performance [4,5].

Various modeling and optimization methods have been applied in previous heat
exchanger optimization studies. Knight et al. [6,7] and T. Bello-Ochende et al. [8] used the
finite element modeling (FEM) method to determine the optimal aspect ratio and channel
shape. Husain [9] employed the response surface approximation method to optimize the
design of microchannel heat exchangers, considering the microchannel width, depth, and
fin width, aiming to minimize thermal resistance. Furthermore, Garcia [10] conducted a
multi-objective optimization of plate microchannel heat exchanger structures to decrease the
volume and fan power requirements of fan coils at fixed capacities, focusing on variables,
such as the tube height, width, length, fin height, and spacing. Li et al. [11] optimized the
number of channels, along with their widths and heights, to minimize the overall thermal
resistance. Furthermore, Huang et al. [12] applied a multi-objective genetic algorithm
to create a variable geometric optimization design, aiming to reduce material mass and
maximize the heat exchange capacity.

The selection of geometric parameters as variables in the optimization problem plays a
major role that affects the optimized solutions. Among the different geometric parameters,
many studies have explored the effect of microchannel cross-sectional shapes on heat
exchanger performance. Gunnasegaran et al. [13], Wang et al. [14], and Chen et al. [15]
studied the effects of microchannel cross-sectional shape on the fluid flow and heat transfer
performance of rectangular, triangular, and trapezoidal microchannels through numerical
methods. The conclusion was that the cross-sectional areas with small hydraulic diameters
presented low thermal resistance and pressure drop results. Gunnasegaran et al. [13] and
Wang et al. [14] discovered the optimal performance of rectangular-shaped microchannels
over the others. Chen et al. [15] found that triangular microchannels had high thermal
efficiency behavior because they required less pump power. Huang et al. [16] designed
a grooved microchannel layout for heat sinks and conducted numerical studies on the
flow and heat transfer characteristics of three different types of grooved microchannel
radiators. These three types were a rectangular parallel slot, rectangular staggered slot,
and trapezoidal staggered slot. The results showed that the size of the rectangular slot
and the degree of the trapezoidal bottom angle considerably influenced the flow and
heat transfer characteristics. The specific microchannel geometries considered in previous
research were all regular shapes. Based on a wide range of operating conditions and size
constraints, the hydraulic and thermal performances of differently shaped microchannels
should be studied, prior to generating a variety of irregular shapes. Further exploring the
optimal structure of the microchannel in the design of microchannel heat exchangers is of
great significance.

This study uses the number of channels, wetted perimeter, and cross-sectional area as
variables, and a multi-objective optimization is performed on the premise of the uniform
distribution of refrigerant in each channel. The optimization objectives include maximizing
the heat transfer rate, maximizing the refrigerant heat transfer coefficient, minimizing the
refrigerant convective thermal resistance, and minimizing the pressure drop. To reduce
the computational cost, an artificial neural networks (ANNs) model is used to assist in
accelerating the computation speed. The generated parameters following optimization
are used for the shape optimization to construct the channel shape. The purpose of this
study is to develop a feasible approach to optimizing the performance and efficiency of
microchannel heat exchangers’ channel geometry through the implementation of ANN
models as part of the optimization process.
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2. Heat Exchanger Modeling
2.1. An Introduction to the Modeling of Heat Exchangers

A microchannel heat exchanger is a highly efficient, compact heat exchange component.
The design of a microchannel heat exchanger optimizes its performance, mainly due to
its large surface area-to-volume ratio. The heat exchanger model for the microchannel
heat exchanger, shown in Figure 1a,b, illustrates the calculation unit optimized in this
study, which is also the baseline of the optimization process. According to Du et al. [17,18],
models that calculate the heat transfer rate in heat exchangers can be broadly grouped into
three categories: lumped, numerical, and zone models. Lumped models use representative
parameters to determine heat transfer efficiency, but they might miss specific mass transfer
details, such as moist areas on fins. Numerical models offer a detailed perspective of heat
and mass transfer by dissecting the heat exchanger and utilizing aggregate parameters
for each section. While these models are precise, they require significant computational
resources, making rapid predictions a challenge. Zone models offer a balance between
precision and the computational cost, bridging the gap between lumped and numerical
methods. These models divide the heat exchanger into several sections based on the wetting
conditions and employ lumped approaches for calculations. This technique provides
greater accuracy than solely using lumped models and is quicker than relying entirely on
numerical methods. In this study, considering the issues of computational accuracy and
methodology, we chose to use the results generated from numerical models to establish a
database for training the ANN models.
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Figure 1. (a) The microchannel heat exchanger; (b) segment calculation unit of this model (one
fin) [17].

2.2. Heat Exchanger Modeling

On the refrigerant side, we applied the empirical correlation formula by Shah [19]. On
the airside, this study employed a 2D numerical solution model [17,20] of the microchannel
heat exchanger to build a database, which was then utilized to apply the machine learning
method. As for the calculation of the pressure drop, we utilized the homogeneous [21]
pressure drop correlation. The detailed calculations are explained below.

2.2.1. Heat Transfer Rate

For the numerical model we used, the semi-explicit method for wall temperature
linked equations (SEWTLE) [18,22] was implemented. The purpose of this method was to
offer a comprehensive numerical approach for heat exchangers with an intricate geometry.
The method solves heat transfer occurring during the fluid cell phase (air cells or refrigerant
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cells) and wall cell phase (either fin cells or tube wall cells). The governing equations are as
follows [22]:

.
m f luCp, f ludTf lu =

n

∑
j=1

Ulocal(Tw,cell − Tf lu)dAcell (1)

The variable n stands for the count of wall cells enveloping the fluid cells. Heat
conduction along the wall cells is represented by the two-dimension Laplace equation [22]:

∇(klocaltlocal∇Tw,cell) +
2

∑
i=1

Ulocal(Tw,cell − Tf lu)dAcell = 0 (2)

In accordance with the numerical models, fluid temperatures can be determined by
Equation (1) using the temperatures of the surrounding wall cells. Equation (2) represents
the heat conduction along the wall cells by the two-dimensional Laplace equation, which
can generate wall cell temperatures based on the temperatures of nearby wall and fluid
cells. In this study, the heat transfer rate can be solved according to 2D numerical models.

The numerical scheme and the cell discretization diagram are depicted in Figure 2a,b.
Figure 2a demonstrates that the air layers are divided into an equal number of elements as
those on the fin. To maintain a two-dimensional simulation, the tube wall is segmented
into only three cells. The tube cells on either side facilitate heat and mass exchange with the
air layers, while the central tube cell conducts heat transfer with the fin cells. The number
of refrigerant cells is aligned with that of the tube cells for simplicity.
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The discretized points, such as wall cells, which include tube and fin cells, are repre-
sented by a central point, shown as a gray point in Figure 2c. Conversely, fluid cells, which
encompass air and refrigerant cells, are depicted by two points along their flow directions,
as indicated by the red points in Figure 2c.

The boundary conditions were specified at the point where the fluid entered the sys-
tem, with known temperature and velocity profiles [17]. Furthermore, when the heat loss
through the heat exchanger’s walls was minimal enough to disregard, it was necessary
to apply a condition such that the temperature gradient at the boundaries of the heat
exchanger, in a direction normal for these boundaries, was zero. This led to the establish-
ment of a Dirichlet condition for the temperature of the incoming fluid, while a Neumann
condition was applied to the exterior edges concerning the wall temperature. In addition,
the outer walls at the termini of the heat exchanger were typically insulated to a degree
that made the heat loss to the external environment trivial, thus allowing us to treat the
walls as if they were adiabatic [17]. The main calculation process for the heat transfer rate
is presented below [17].

The temperature of the wall can be calculated through the numerical scheme, which is
expressed as:

Tw =
∑n2

i=1
.

qt + ∑n1
k=1(λk · Tw,k)

∑n1
k=1 λk

(3)

λk =
kw Ak

δk
(4)

Tw represents the wall temperature,
.

qt represents heat fluxes, Ak is the cross-section
area between two cells, and δk is the distance from the central point of one wall cell to
another. kw is the thermal conductivity of the material. n1 is the number of adjacent
wall cells. Taking the example of the central tube cell in Figure 2b, n1 is five and n2 is
one, indicating there is only one refrigerant cell that is surrounded, which is indicated in
Figure 2c.

Refrigerant and air cells are both categorized as fluid cells, and therefore, their tem-
perature values are calculated using Equation (1). ol represents the outlet and i represents
the inlet.

Tf lu,ol =

[
1 −

(
1
2 ∑n1

k=1 NTU f lu,k

)]
· Tf lu,i + Tw · ∑n1

k=1 NTU f lu,k[
1 +

(
1
2 ∑n1

k=1 NTU f lu,k

)] (5)

where

NTU f lu =
α f lu Acell

Cp, f lu
.

m f lu
(6)

This study considers the heat transfer rate under dry conditions; therefore, the heat
transfer rate between the air and wall cells can be expressed as:

Q = Aw,ins

(
Tw − (Tr,i + Tr,ol)

2

)
(7)

α is the heat transfer coefficient, ins represents the inside, and r represents the refriger-
ant cell.

2.2.2. Pressure Drop

For microchannel heat exchangers, factors that predominantly affect their performance
include the internal friction resistance, the physical properties of the fluid (such as density
and viscosity), the flow rate of the fluid, the flow state (whether laminar or turbulent), and
the geometric shape and surface condition of the channel.

In this study, the pressure drop of the microchannel heat exchanger were calculated
based on the homogeneous model [21]. The Reynolds number (Re) is a dimensionless quan-
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tity in fluid dynamics that characterizes the nature of fluid flow, particularly distinguishing
between laminar and turbulent flows. The formula for calculating the Reynolds number is
typically given as:

Re =
ρ ∗ u ∗ L

µ
(8)

The hydraulic diameter (hyd) is represented as:

hyd =
4 ∗ A
WP

(9)

where ρ is the fluid density. u is the mean velocity of the fluid. L is the characteristic length.
µ is the dynamic viscosity of the fluid. A is the cross-sectional area of the channel. WP is
the wetted perimeter of the shape.

According to the homogeneous model, when the Reynolds number (Re) is less than
2300, it is indicative of a laminar flow condition. In such a case, the formula for calculating
the pressure drop is [21]:

∆P =
32 ∗ L ∗ ρ ∗ u2

hyd ∗ Re
(10)

When the Re is equal to or above 2300, it indicates a turbulent flow condition. Under
such circumstances, the formula for calculating the pressure drop is [21]:

∆P =
0.315 ∗ L ∗ ρ ∗ u2

2 ∗ hyd ∗ Re0.25 (11)

2.2.3. Refrigerant Side Calculation

The refrigerant heat transfer coefficient of horizontal tubes is addressed when calculat-
ing the parameters. According to Shah [19], there are three regime correlations. Figure 3
indicates the boundaries of the three heat transfer regimes. The mist, annular, and inter-
mittent flow patterns consistently align with regime I, based on the current correlation’s
prediction. The association with the stratified wavy and stratified flow patterns, however,
is less distinct. While most data in the stratified wavy pattern fall under the projected heat
transfer of regime II, numerous others are categorized under regime III, and a handful in
regime I. Data points within the stratified flow pattern can be found in both regimes II and
III [19].
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Regime I:
hTP = hI (12)

Regime II:
hTP = hI + hNu (13)

Regime III:
hTP = hNu (14)

Regime I occurs when:
Jg ≥ 0.98(Z + 0.263)−0.62 (15)

Otherwise, regime III occurs when:

Jg ≤ 0.95(1.254 + 2.27Z1.249)−1 (16)

Otherwise, regime II occurs.
The relevant parameters are defined as [19]:

hI = hLS(1 +
3.8

Z0.95 )(
µ f

14µg
)(0.0058+0.557pr) (17)

hNu = 1.32Re−1/3
LS [

ρl
(
ρl − ρg

)
gk3

f

µ2
f

]1/3 (18)

hLS = 0.023Re0.8
LSPr0.4

f k f /D (19)

Jg =
xG

(gDρg(ρl − ρg))0.5 (20)

Z = (
1
x
− 1)0.8 p0.4

r (21)

In this study, the shape of the refrigerant channel was an irregular polygon, but the
wetted perimeter was different; the contact area between the refrigerant and the wall
inside the channel was different for each channel. The refrigerant convective thermal
resistance considers both the heat transfer coefficient of the refrigerant and the contact
area between the refrigerant and the exchanger channel, both of which affect the heat
exchange performance.

2.3. Calculation of the Flow Maldistribution

The methodology used to quantify the flow rate distribution within a microchannel
heat exchanger primarily depends on the following assumptions:

(1) Uniform airflow distribution: the airflow is taken to be uniform in terms of the velocity
and temperature in the model. However, this assumption can be modified in future
iterations of the model by incorporating velocity and temperature distributions.

(2) Uniform pressure drop across different flow paths: according to the research con-
ducted by Tuo and Hrnjak [23], this assumption is rooted in their demonstration of
how the header pressure drop influences the distribution across various flow paths.
In the context of their study, a ‘path’ is defined as a specific segment starting from the
inlet header, passing through a microchannel tube, and ending at the outlet header.
The pressure drop across this path includes the cumulative loss induced by friction,
acceleration, gravity, and the contractions and expansions at the interaction points
between the header and microchannel tube. As a result, for a microchannel heat
exchanger, each flow path within the evaporator experiences a uniform pressure drop
from the inlet to the outlet.

Based on the assumptions, the pressure drop is the same across each microchannel
within the flat tubes. Therefore, this study proposed a pre-allocation of the refrigerant
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distribution across each channel when generating the variables for the multi-objective opti-
mization (assuming the same inlet pressure initially). As shown in Figure 4, by minimizing
the sum of the pressure differences between each pair of adjacent channels, the pressure
at the outlet of each channel was made uniform, thereby enhancing the heat exchange
efficiency of the heat exchanger.
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3. ANN-Based Machine-Learning-Assisted Optimization Model

Due to the time-consuming nature of calculating the heat transfer rate of microchannel
heat exchangers using numerical methods, we employed ANN models to speed up the com-
putation. We surveyed a spectrum of the design of experiment (DOE) techniques, spanning
from random and Latin hypercube sampling methods [24] to the full factorial design [25].
For the objectives of this research, we applied the random sampling paradigm, where the
channel’s structure experienced stochastic variations within the specified parameters.

The methodology for machine-learning-assisted modeling based on ANNs comprised
four stages in this study. The entire procedure is presented in Figure 5. Firstly, the initial
phase involved identifying the design domain for the HX simulation. This domain repre-
sents all the possible channel structures of the microchannel heat exchangers, considering
the design constraints. In the subsequent step, the database of the models was constructed
with a random distribution of this identified domain. For the third step, the heat transfer
rate was calculated using the numerical method introduced in the previous section. Lastly,
the output from the numerical calculation was used to create machine-learning-assisted
models employing ANNs.
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Figure 5. Diagram illustrating the method of modeling with the help of machine learning techniques.

This innovative approach markedly expedited the computation process, offering
advancements that traditional numerical models simply could not compete with. The input
layer includes certain variables, three for each microchannel, each symbolizing an essential
parameter: the hydraulic diameter, cross-sectional area, and refrigerant mass flow rate. As
a result, with N representing the number of channels, the total input features amount to
30 × N. The model consisted of one hidden layer with 20 neurons, with each neuron adept
at receiving information from its previous-layer counterparts, processing the data, and
forwarding the results to the subsequent layer. The configuration, especially the number of
neurons in the hidden layer, was determined through experimental adjustments to achieve
a balance between the learning capacity and the risk of overfitting. According to Figure 6,
we chose 20 neurons in the hidden layer as this offered an optimal balance between the high
predictive accuracy and manageable computational time, effectively mitigating the risk of
overfitting. A single hidden layer sufficed, given the model’s uncomplicated input–output
mapping, negating the need for additional complexity. Increasing the number of hidden
layers in an artificial neural network (ANN) typically results in a polynomial growth in the
time complexity. Mathematically, if L represents the number of layers and N represents
the number of neurons per layer, the computational complexity can be approximated
as O (N2·L) for fully connected layers. As L and N increase, both contribute to a rise
in the computational demand of neural networks. We utilized a single hidden layer and
20 neurons in the hidden layer because, in this model, one single hidden layer was sufficient
to provide a high prediction accuracy.
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We selected tansig (hyperbolic tangent sigmoid function) as the activation function
for the hidden layer, suitable for forward-feed neural networks, while the output layer
employed purelin (linear function). We adopted the Levenberg–Marquardt algorithm
for training due to its proven efficiency for rapid convergence and increased accuracy,
particularly within the scope of small- to medium-sized networks [26]. Through extensive
testing with various structures, we ascertained that the current architecture provided an
optimal balance of performance for our dataset, offering high predictive accuracy results
while avoiding overfitting.

This intricate network culminated in a singular neuron at the output layer, responsible
for calculating the predicted heat transfer rate based on the cumulative information it
received. Model training was pursued by minimizing the discrepancy between predicted
and actual values, an approach that resulted in impressive model accuracy and stability
results [27]. Consequently, our ANN model was not only adept at swiftly predicting heat
transfer rates, but also ensured that these predictions were highly accurate, showcasing the
transformative potential of machine learning in such optimization contexts.

In the error testing set, there were five groups of data (8, 9, 10, 11, and 12 channels),
each consisting of 1000 data points. We selected 5% of the data in the dataset for validation.
The x-axis test sample index referred to the case used in the error analysis for machine
learning, which indicated the total number of cases that were involved in the validation
of the ANN model. As demonstrated in Figure 7, the graph depicts both the predicted
and actual values, and it provides a 5% error bar. In addition, we computed the mean
squared error (MSE) and mean absolute error (MAE). The model’s validation process results
corroborate the ANN’s capability for high-precision predictions.

Figure 8 presents the comparison of the predicted and actual values of the heat transfer
rate for the Pareto optimal solutions in the results post-optimization. The outcomes indicate
that the prediction accuracy exceeds 97%. This high level of accuracy further validates the
effectiveness of the machine-learning-assisted optimization based on machine learning in
this context, providing robust results with minor discrepancies between the predicted and
actual values.
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4. Optimization Methodology and Problem Statement
4.1. Methodology

The overall optimization flow is shown in Figure 9. This study aimed to improve the
performance of microchannel heat exchangers by strategically selecting diverse objective
functions, which led to the generation of a series of Pareto optimal solutions. These
solutions represent the most efficient geometric configurations of the channels, optimized
under varying operational conditions. The employed optimization model facilitated the
selection of an amalgam of objectives that collectively defined the target function for
optimization, culminating in the derivation of a Pareto optimal curve. This curve epitomizes
the optimal trade-offs among the chosen objectives, reflecting the best possible balance in
the microchannel’s performance under the specified constraints.
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4.2. Baseline Case

The method addresses the condensation scenario of a microchannel heat exchanger, as
depicted in Figure 10a, with 10 channels. A single-fin microchannel unit was selected as the
baseline for the comparison. This baseline microchannel heat exchanger has 10 channels,
the parameters involved in the computational unit are shown in Figure 10b, and the specific
details of the parameters are presented in Table 1. In the optimization process, the database
was generated based on the numerical solutions, which were discussed in Section 2.2.1.
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parameters employed in the optimization process [17].

Table 1. Baseline microchannel heat exchanger unit (10 channels).

Metric Unit Value

Fin height m 0.01
AHTC KW/m2 K 0.06104
Vair m/s 1.5
Ta,i K 300
Fin depth m 0.02
.

mre f Kg/s 1.0 × 10−4 (total)
Tref,i K 350
RHTC KW/m2 K 8.6521
Half spacing m 2.955 × 10−4

Refrigerant vapor quality - 0.5
Fin thickness m 0.0001
Wall thickness m 0.0005
Material (aluminum) - -

The baseline case was modeled numerically and the heat transfer rate for each channel
in the air flow direction is shown in Figure 11. According to the results, it can be observed
that the heat transfer rate delivered by each channel from the air side shows a decreasing
trend along the air inlet, with a total heat transfer capacity of 0.5593 W. Through the
abovementioned iterative approach used to distribute the refrigerant flow rate, the resulting
pressure drops were also identical, each being 360.52 Pa. The outlet temperature of the air
was 346 K, while the refrigerant maintained a constant temperature of 350 K. Due to the
high heat transfer coefficient of the refrigerant and the substantial thermal conductivity of
the wall, the wall’s temperature was 349 K, closely mirroring the refrigerant’s temperature.
By examining the heat exchanger’s outlet, a remaining heat transfer potential of 3 K could
be explored further. The opportunity to increase the heat transfer rate lies in reducing the
temperature difference between the wall and the air, thereby enabling the heat exchanger
to exchange more heat with the air.
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Figure 11. The heat transfer rate and pressure drop along with the air inlet of each channel of
the baseline.

4.3. Problem Statement

In this study, the parameters studied included the hydraulic diameter, cross-sectional
area, and number of channels. Each channel was subjected to geometric constraints for
different numbers of channels, as shown in Table 2. The number of channels (8, 9, 10, 11,
and 12) indicates the variable; in addition, the total mass flow rate for each case is equal to
the baseline case: 1.0 × 10−3 kg/s. Moreover, for a simple polygon, given a certain wetted
perimeter or circumference, the area of the polygon is always larger than or equal to the
area of a circle with the same hydraulic diameter as that polygon. This is because, among
all planar closed shapes, a circle has the smallest perimeter-to-area ratio; as a result, the
following formula needs to be satisfied for its hydraulic diameter and wetted perimeter
as indicated in Equation (22). For each case, considering the constraint of each channel,
the hydraulic diameter and cross-sectional area are different because of the same design
domain, as shown in Figure 10a.

π(
hyd

2
)2 ≤ A (22)

Table 2. Geometric constraints on the number of different channels.

8 9 10 11 12

Hydraulic diameter (hyd) (mm) 0.1–1.7 0.1–1.6 0.1–1.4 0.1–1.3 0.1–1.2
Cross-sectional area (A) (mm2) 0.4–2.4 0.4–2.2 0.4–2.0 0.4–1.8 0.4–1.6

The objective functions include the refrigerant heat transfer coefficient, heat transfer
rate, refrigerant convective thermal resistance, and pressure drop. The multi-objective
optimization conducts three distinct multi-objective optimization experiments. These
experiments aim to satisfy two conflicting objectives simultaneously. Table 3 presents
detailed explanations for three scenarios: maximize the heat transfer rate and minimize
the pressure drop; maximize the refrigerant heat transfer coefficient and minimize the
pressure drop; and minimize the refrigerant convective thermal resistance and minimize
the pressure drop. Finally, to minimize the refrigerant convective thermal resistance, in
this study, we used the maximization of the inverse of the refrigerant convective thermal
resistance as the optimization objective.
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Table 3. Three multi-objectives’ optimization scenarios.

Scenario No. Objective 1 Objective 2

A Maximize heat transfer rate Minimize pressure drop
B Maximize refrigerant heat transfer coefficient Minimize pressure drop
C Minimize heat transfer resistance Minimize pressure drop

5. Results and Discussion

In this section, we first discuss the results generated from the three optimization
scenarios. We focus on analyzing one of the optimal solutions as an example from the
perspective of maximizing the heat transfer rate and minimizing the pressure drop. Then,
we discuss the computational cost and the ANN model application. We elaborate on
how integrating machine learning models during predictions accelerates the computation
process. Furthermore, we explore the single case of the Pareto front curve in scenario A at
the end of the discussion.

5.1. Scenario A

Based on the objective functions presented in Section 4, there are three optimization
cases. Figure 12 presents the Pareto optimal solutions for scenario A. The x-axis represents
the heat transfer rate, while the y-axis corresponds to the pressure drop. The red points
illustrate the Pareto optimal solutions for eight channels, green for nine channels, and so
on, up to twelve channels, cumulating in a final Pareto optimal curve. Each point signifies
a specific channel configuration and refrigerant flow rate. For instance, if there are eight
channels, there would be a total of 24 parameters, with three data points for each channel:
the wetted perimeter, area, and refrigerant flow rate. The heat transfer rate advanced by
roughly 5% compared to the initial structure after achieving the optimal solutions and
multi-objective optimization. The heat transfer rate for 12 channels was successively higher
than that of 11 and 10 channels because a higher number of channels led to a larger heat
transfer area, which simultaneously resulted in an increased pressure drop. Concurrently,
we observed that the jumps between points on the Pareto front in Figure 12 indicated
that the multi-objective genetic algorithm converged on the local optimality, creating the
non-smoothness of the Pareto front.
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5.2. Scenarios B and C

Figure 13a exhibits the relationship between the refrigerant heat transfer coefficient
and pressure drop, while Figure 13b demonstrates the connection between the inverse of
refrigerant convective thermal resistance and pressure drop. The Pareto optimal solutions
for 8, 9, 10, 11, and 12 channels were superimposed, resulting in a final aggregate Pareto
curve. The endpoints of the Pareto curve were constituted by the 8- and 12-channel
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solutions. The results indicate that the 8-channel configuration yields a lower pressure
drop, while the 12-channel structure achieves a higher refrigerant heat transfer coefficient.
Regarding the inverse of the refrigerant convective thermal resistance, channels 8, 11, and 12
are on the Pareto frontier. As the number of channels increases, the inverse of the refrigerant
convective thermal resistance also increases, accompanied by a corresponding increase in
the pressure drop. Therefore, the optimization process requires an understanding of these
trade-offs, aiming for an ideal balance suitable for the specific application.
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5.3. Computational Cost and ANN Model Application

Incorporating the machine learning model into the optimization process, we tested it
with a dataset of 1000 cases, based on the provided data comparing the calculation times for
1000 cases between a numerical model and machine learning model. The machine learning
model demonstrated a significantly faster calculation time compared to the 2D numerical
model. As shown in Table 4, this table presents a comparison of the calculation times
between a numerical model and an artificial neural network (ANN) model. On average,
the numerical model requires 25.92 s to perform the necessary computations, while the
ANN model demonstrates a significantly faster average computation time of 0.41 s. This
stark contrast in the calculation efficiency highlights the potential time-saving advantages
of employing ANN models for computational tasks. Specifically, the machine learning
model is approximately 63 times faster on average.

Table 4. Comparison of the computational times between the machine learning and numerical models.

Calculation Time

Numerical model 25.92 s (average)

ANN model 0.41 s (average)

5.4. Optimized Case Analysis

We selected a representative case from the set of optimal cases on the Pareto curve
shown in Figure 12. To ensure experimental fidelity, we picked a point from one of the
12 channels and input it into the numerical model. This provided the following authentic
heat transfer model data, with the heat transfer rate for each channel along with the air
inlet displayed in Figure 11. The “channel index” indicates the sequential numbering of
channels in accordance with the direction of the incoming airflow. The first channel that
encountered the entering air was designated as channel 1, and subsequent channels were
numbered incrementally, following the path of the airflow.
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Based on the numerical results in Figure 14, the total heat transfer rate reaches 0.571 W,
with a pressure drop at 226 Pa. In addition, the temperature difference between the refriger-
ant and air outlets compared to the baseline decreased, leading to an overall enhancement
of the total heat transfer rate. It can be observed that the heat transfer rate in channel 1 is
greater, compared to the baseline case, as illustrated in Figure 15a. A larger wetted perime-
ter corresponds to an increased flow for each channel. The heat transfer area between
the refrigerant and the channels was also larger. Along the airflow direction, the wetted
perimeter generally showed a decreasing trend. In addition, as illustrated in Figure 15b,
the mass flow rate of the refrigerant in the first channel is also higher. The refrigerant mass
flow rate decreased along the air flow direction across different channels.

Energies 2023, 16, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 14. The optimized case comparison analysis of the heat transfer rate along with the air inlet 
of each channel (baseline case and optimized result). 

(a) (b) 

Figure 15. (a) The relationship between the wetted perimeter and heat transfer rate; (b) relationship 
between the mass flow rate and heat transfer rate. 

We found that, at the initial stage of the microchannel heat exchanger, there was a 
significant temperature difference between the air and the refrigerant. This large temper-
ature gradient at the beginning provided a strong driving force for heat transfer. As the 
air progressed through the heat exchanger, this temperature difference gradually dimin-
ished, reducing the heat transfer potential. Therefore, having a larger wetted perimeter 
(which implies a greater contact area between the refrigerant and the walls) in the initial 
section effectively utilized the higher temperature gradient, leading to enhanced heat ex-
change efficiency. This design approach maximized heat transfer potential, significantly 
improving the overall performance of the heat exchanger. 

6. Conclusions 
In this study, we innovatively proposed and executed an optimization technique for 

microchannel heat exchangers, leveraging both multi-objective optimization and machine 
learning techniques. The optimization objectives included minimizing the pressure drop 
while maximizing the heat transfer rate, the refrigerant heat transfer coefficient, or 

Figure 14. The optimized case comparison analysis of the heat transfer rate along with the air inlet of
each channel (baseline case and optimized result).

Energies 2023, 16, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 14. The optimized case comparison analysis of the heat transfer rate along with the air inlet 
of each channel (baseline case and optimized result). 

(a) (b) 

Figure 15. (a) The relationship between the wetted perimeter and heat transfer rate; (b) relationship 
between the mass flow rate and heat transfer rate. 

We found that, at the initial stage of the microchannel heat exchanger, there was a 
significant temperature difference between the air and the refrigerant. This large temper-
ature gradient at the beginning provided a strong driving force for heat transfer. As the 
air progressed through the heat exchanger, this temperature difference gradually dimin-
ished, reducing the heat transfer potential. Therefore, having a larger wetted perimeter 
(which implies a greater contact area between the refrigerant and the walls) in the initial 
section effectively utilized the higher temperature gradient, leading to enhanced heat ex-
change efficiency. This design approach maximized heat transfer potential, significantly 
improving the overall performance of the heat exchanger. 

6. Conclusions 
In this study, we innovatively proposed and executed an optimization technique for 

microchannel heat exchangers, leveraging both multi-objective optimization and machine 
learning techniques. The optimization objectives included minimizing the pressure drop 
while maximizing the heat transfer rate, the refrigerant heat transfer coefficient, or 

Figure 15. (a) The relationship between the wetted perimeter and heat transfer rate; (b) relationship
between the mass flow rate and heat transfer rate.

We found that, at the initial stage of the microchannel heat exchanger, there was a
significant temperature difference between the air and the refrigerant. This large tempera-
ture gradient at the beginning provided a strong driving force for heat transfer. As the air
progressed through the heat exchanger, this temperature difference gradually diminished,
reducing the heat transfer potential. Therefore, having a larger wetted perimeter (which
implies a greater contact area between the refrigerant and the walls) in the initial section
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effectively utilized the higher temperature gradient, leading to enhanced heat exchange
efficiency. This design approach maximized heat transfer potential, significantly improving
the overall performance of the heat exchanger.

6. Conclusions

In this study, we innovatively proposed and executed an optimization technique for
microchannel heat exchangers, leveraging both multi-objective optimization and machine
learning techniques. The optimization objectives included minimizing the pressure drop
while maximizing the heat transfer rate, the refrigerant heat transfer coefficient, or minimiz-
ing the refrigerant convective thermal resistance. Notably, for the optimized case, the heat
transfer rate improved by 5% and the pressure drop decreased by 37% compared to the
initial structure, respectively. In addition, the wetted perimeter of the channel displayed a
consistently decreasing trajectory along the air flow direction, signaling an enhancement
potential for the heat transfer rate of the microchannel heat exchanger. We employed a
machine-learning-driven ANN model, underscoring its pronounced efficacy in forecasting
the heat transfer rate. This approach markedly reduced the associated computational costs.
The machine learning model’s prediction speed outpaced traditional numerical models by
a staggering 63 times, with a high prediction accuracy.

However, in our research, we concentrated on scenarios characterized by a uniform
airflow through the system. While this focus streamlined our analysis, it also introduced
certain limitations. We recognize that the assumption of a uniform airflow does not
fully capture the diverse and dynamic range of conditions encountered in more complex,
real-world applications, where airflow characteristics can vary substantially. Moreover,
our study did not incorporate the graphical visualization of the final channel structures
as derived from our computational models. The absence of such visualizations limited
our ability to provide a concrete, illustrative demonstration of our theoretical results and
computational predictions. A further limitation lay in the lack of experimental validation for
the structures modeled in our study. Without empirical testing, there remains a disconnect
between our theoretical projections and their practical applicability. The significance of
experimental validation cannot be overstated, as it is essential for verifying the real-world
feasibility and reliability of our modeled structures.

In summary, this study introduced a machine-learning-assisted microchannel geomet-
ric optimization for calculating the changes in the geometry of channels. The results show
that the variable channel structure design is superior to the baseline design. For the final
optimization results, based on the optimization output wetted perimeter and cross-sectional
area of each channel, further evaluations can be conducted using the computational fluid
dynamics analysis and experimental testing to finalize the channel structure design.
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Nomenclature

A Area
(
m2 )

AHTC Air-Side heat transfer coefficient
RHTC Refrigerant-Side heat transfer coefficient
ANNs Artificial neural networks
Cpa Specific heat capacity (KJ/kg/K)
G Total mass flux (liquid + vapor)
g Acceleration due to gravity
h Heat transfer coefficient
hI Heat transfer coefficient expressed by Equation (10)
hNu Heat transfer coefficient expressed by Equation (11), the Nusselt equation
hyd Hydraulic diameter
ins Inside
Jg Dimensionless vapor velocity defined by Equation (13)
k Thermal conductivity (KW/m·K)
.

m Mass flow rate of air (Kg/s)
L Tube length
∆P Pressure drop
pred Reduced pressure
Pr Prandtl number
Q Heat transfer rate (KJ/Kg)
R Heat transfer resistance (K/W)
Re Reynolds number
ReLS Reynolds number assuming liquid phase flowing alone
T Temperature (K)
t Fin thickness (m)
u Velocity (m/s)
w Wall
WP Wetted perimeter
x Vapor quality
Z Shah’s correlating parameter defined by Equation (14)
Greek symbols
µ Dynamic viscosity
ρ Density
π Ratio of a circle’s circumference
δ Thickness
Subscripts
cell At this cell
flu Fluid
g Vapor
i Inlet
ins Inside
local At the local position
ol Outlet
TP Two phase
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