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Abstract: Thermal energy storage is an essential technology for improving the utilization rate of solar
energy and the energy efficiency of industrial processes. Heat storage and release by the dehydration
and rehydration of Ca(OH)2 are hot topics in thermochemical heat storage. Previous studies have
described different methods for improving the thermodynamic, kinetic, and structural stability of
Ca(OH)2 to improve energy storage density, energy storage rate, and cycle stability, respectively. Here,
the mechanisms and effects of different techniques on the performance improvement of Ca(OH)2

and some common problems were reviewed. Specific problems were also clarified based on the
characteristics of different technologies. Finally, suggestions for the future development of Ca(OH)2

heat storage materials were provided.
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1. Introduction

The extensive use of fossil fuels has resulted in greenhouse gas emissions and environ-
mental pollution. In response, the global energy sector is transitioning from fossil energy
to renewable energy to achieve the goal of low carbon emissions and green development.
The International Energy Agency (IEA) predicts that by 2050, 90% of electricity will be
generated from renewable energy sources, with solar energy being the largest source [1].
However, renewable energy is characterized by intermittency and volatility. Furthermore,
when a power system is dominated by renewable energy, there is a mismatch between
energy supply and demand in time and space. This poses a significant challenge to the
expansion of renewable energy in power systems and necessitates the development of
new power systems [2,3]. Energy storage technology is an essential component of new
renewable energy power systems. In particular, this study focused on thermal energy
storage technology.

Thermal energy storage technology is a large-scale energy storage technology with
ecological and cost efficiency that can realize the direct storage of thermal energy [4] as
well as the indirect storage of electrical energy [5,6]. Compared with electrical batteries,
thermal energy storage can achieve gigawatt-hour-scale energy storage at a lower cost [7].
Furthermore, compared with pumped hydro energy storage, thermal energy storage has more
compact storage volumes. The application scenarios of thermal energy storage mainly include
concentrated solar power generation and waste heat recovery of industrial processes, which
help achieve continuous and stable all-weather operation of solar thermal power generation
and improve the energy efficiency of industrial systems [8–11]. Thermal energy storage
includes sensible, latent, and thermochemical heat storage. Sensible and latent heat storage
uses temperature changes and phase transitions to achieve heat storage and release [12],
whereas thermochemical heat storage uses reversible chemical reactions (mainly gas–solid
reactions) to achieve heat storage and release [13]. Thermochemical heat storage has the
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advantages of high energy storage density (0.5–3 GJ/m3), wide operating temperatures, and
long-term energy storage [14–16], making it a major focus of research [17].

Among the many thermochemical heat storage materials, Ca(OH)2 is among the
most promising owing to the reversible reaction of Ca(OH)2 dehydration and CaO hydra-
tion [18,19]. This material has the advantages of low cost, high energy storage density, good
reversibility, cycle stability, nontoxicity, and fast reaction kinetics [20]. The working princi-
ple of this approach is shown in Equation (1) and Figure 1. During heat storage, Ca(OH)2
absorbs heat and decomposes to produce CaO and steam, storing the heat as chemical
energy. In the exothermic process, CaO reacts with steam to form Ca(OH)2, releasing stored
chemical energy as heat. Under atmospheric pressure, the heat storage temperature of
Ca(OH)2 ranges from 400 to 600 ◦C, and the heat release temperature ranges from 25 ◦C to
approximately 500 ◦C (as determined from the partial pressure of the steam involved in the
reaction) [21]. These temperatures enable the integration of this heat storage system with
the steam Rankine cycle while allowing flexible adjustment of the heat storage and release
power by controlling the heat input and partial steam pressure.

Ca(OH)2 (s)↔ CaO (s)+H2O (g) ∆H = 104.4 kJ/mol (1)
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mass transfer effect and reduce the reaction rate, which is not conducive to practical ap-
plications. Additionally, the high decomposition temperature of Ca(OH)2 (approximately 
350 °C) limits the types of heat sources that can be matched. Therefore, the thermody-
namic properties, kinetic properties, and structural stability of Ca(OH)2 must be opti-
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Since Wentworth and Chen [13] first demonstrated that Ca(OH)2/CaO could be used 
for heat storage in 1976, this material has been the subject of considerable research for 
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The Ca(OH)2/CaO thermochemical heat storage system mainly comprises a heat
storage material and a reactor; therefore, development of a more efficient heat storage
system should first focus on improving the heat storage material and optimizing the reac-
tor [12]. This study focuses on improving Ca(OH)2/CaO heat storage materials. Although
the theoretical energy storage density of Ca(OH)2 can reach 1400 kJ/kg or 3.1 GJ/m3, the
actual volumetric storage density is approximately two-fold lower than the theoretical
value because of its low apparent density [23]. From the perspective of energy storage rates,
a lower thermal conductivity (approximately 0.1 W/m. K) limits the heat transfer rate of
the material and thus the reaction rate. In terms of cycle stability, the agglomeration and
fragmentation of Ca(OH)2 particles after multiple cycles deteriorate the mass transfer effect
and reduce the reaction rate, which is not conducive to practical applications. Additionally,
the high decomposition temperature of Ca(OH)2 (approximately 350 ◦C) limits the types
of heat sources that can be matched. Therefore, the thermodynamic properties, kinetic
properties, and structural stability of Ca(OH)2 must be optimized to improve its energy
storage density, energy storage rate, and cycle stability.

Since Wentworth and Chen [13] first demonstrated that Ca(OH)2/CaO could be used
for heat storage in 1976, this material has been the subject of considerable research for more
than 40 years. Material improvement accounts for a large proportion of existing studies,
enabling continuous improvements in the performance of Ca(OH)2 to aid in the rapid
transformation of the current energy system. Yuan et al. [24] summarized the application
of CaO-based materials and the role of CaO/Ca(OH)2 cycles, CaO/CaCO3 cycles, and
the coupling of CaO/Ca(OH)2 and CaO/CaCO3 cycles in thermochemical heat storage.
Yuan et al. focused on the process and influence of key variables (such as temperature,
vapor pressure, and CO2) and described the improvement effect of four additives (Al2O3,
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LiOH, Na2Si3O7, and nano-SiO2) on the heat storage materials. Wang et al. [25] sum-
marized research on the physical and chemical properties of Ca(OH)2 (such as specific
heat capacity, reaction enthalpy, chemical equilibrium, and kinetics), highlighted current
problems in the application of this material (high decomposition temperature, low thermal
conductivity, agglomeration, cracking, and carbonation) and solutions, and introduced
current application fields. However, a comprehensive review on improving Ca(OH)2
materials is lacking. Considering the importance of this research direction, this review
summarized the research on material improvement from a technical perspective. The
mechanisms and effects of different technologies on the performance improvement of
Ca(OH)2 heat storage materials were reviewed, existing problems were discussed, and
suggestions for future development were provided. Different reactors require different heat
storage materials, that is, powder or granulated materials. Therefore, Ca(OH)2/CaO heat
storage materials were reviewed herein based on this characteristic. Different performance
enhancement techniques are available for powders and granulation materials, as shown in
Figure 2. Notably, powder materials can be improved by doping modifications, composite
powders, surface coatings, and supporting frames technologies, while granulated mate-
rials can be improved using composite granules, surface coatings, binder matrices, and
macro-encapsulation technologies.
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2. Performance-Improvement Technology for Powder Materials
2.1. Doping Modifications

Murthy et al. [26] prepared Ca(OH)2 doped with 1, 3, and 5 wt.% Al, Ni, and Zn
using the co-precipitation method, finding that the dopants decreased the dehydration
temperature of Ca(OH)2 and increased the reaction rate. In particular, Al had the best
effect at the same doping level. Two mechanisms were proposed for this effect: first, the
addition of Ni, Al, and Zn induces crystal defects and forms potential nucleation sites,
thereby increasing the number of interfacial propagating nuclei; second, elemental doping
creates energetic centers and reduces the activation energy in some steps of the chemical
transformation. By comparing the decomposition temperatures of the doped samples
obtained via the co-precipitation method and the mixed samples obtained via direct mixing,
the authors found that these two preparation methods had almost the same effect on
reducing the decomposition temperature of Ca(OH)2. Therefore, if the objective is only to
reduce the decomposition temperature, the direct mixing method can replace the expensive
co-precipitation method.

Yan and Zhao [27] used the first principles method and transition state theory to study
the mechanism of separate Li and Mg doping in Ca(OH)2 thermochemical heat storage at
the microscopic level. The influence of doping on the macroscopic heat storage process



Energies 2023, 16, 3019 4 of 23

was determined by comparing the transition state, energy barrier, and density of electronic
states of the undoped and doped systems. Their theoretical calculation results showed
that Li doping could reduce the energy barrier of the Ca(OH)2 dehydration reaction from
0.40 eV to 0.11 eV, which means that Li-doped samples completed the dehydration reaction
at a lower temperature. Analysis of the pseudogap width in the density of electronic states
revealed that the pseudogap width was reduced by Li doping, thus reducing the bond
energy; that is, at the same temperature, Li doping caused the O-H and OH-Ca bonds
of Ca(OH)2 break more quickly, which increased the dehydration rate. In comparison,
the Mg doping had little effect on the decomposition of Ca(OH)2. Based on theoretical
research, Yan and Zhao [28] prepared samples with different Li/Ca molar ratios (2%, 5%,
10%, and 30%) using the ball milling method and confirmed this phenomenon through
thermogravimetric experiments. As shown in Figure 3, with increased Li doping, the
time required to dehydrate Ca(OH)2 was shortened and the heat storage rate constantly
increased. However, it is worth noting that a conversion of 0.3 was used as the demarcation
point in the kinetic process of Li-doped Ca(OH)2 decomposition, and the two stages
conform to different kinetic mechanism functions. Yan and Zhao [28] suggested that the
reason for this phenomenon is that different effects are produced when the distance between
the atoms in the Ca(OH)2 crystal and Li atoms exceeds a specific limit. Notably, Li doping
had little effect on the heat storage capacity (including the reaction enthalpy and specific
heat capacity) of Ca(OH)2.
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4.6-fold, the average heat storage power was 365 ± 15 W/kg, and complete reversibility 

Figure 3. Decomposition of Ca(OH)2 doped with different amounts of Li at a heating rate of
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Shkatulov and Aristov [29] screened the chlorides, nitrates, sulfates, and acetates of
alkaline metals (Li, Na, and K), which reduced the dehydration temperature and increased
the dehydration rate of Ca(OH)2. As shown in Figure 4, 5 wt.% KNO3 doping yielded the
best results, reducing the dehydration temperature of Ca(OH)2 by approximately 40 ◦C,
and the heat storage density was 94.8% of that of pure Ca(OH)2. At 390 ◦C and a partial
steam pressure of 24 mbar, the heat storage rate of Ca(OH)2 was increased 4.6-fold, the
average heat storage power was 365 ± 15 W/kg, and complete reversibility was achieved
over five cycles. Based on infrared spectroscopy, Shkatulov and Aristov [23] suggested that
the insertion of nitrate ions into the Ca(OH)2 lattice causes the collapse of the KNO3 crys-
talline structure, lowers the symmetry of the nitrate ions, and creates additional structural
defects, which can further promote nucleation and accelerate dehydration. Wang et al. [30]
prepared Ca(OH)2 composites containing KNO3 using mechanical and solution mixing
methods and observed similar phenomena. Based on kinetic analysis and morphological
observations, the authors showed that KNO3 could reduce the apparent activation energy
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of Ca(OH)2 decomposition and regulate the morphology of Ca(OH)2 to enhance the mass
transfer effect.
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Figure 4. The effect of adding different salts on Ca(OH)2: (a) dehydration onset temperature and (b) heat
storage density of “salt/Ca(OH)2”. (Reprinted with permission from ref. [29]. Copyright 2015 Elsevier).

Maruyama et al. [31] prepared samples containing lithium compounds (LiOH, LiCl, and
Li2CO3) using an impregnation method with both single and co-doping. The peak dehydration
temperatures of Ca(OH)2/LiOH/LiCl = 100:5:5 and Ca(OH)2/LiCl/Li2CO3 = 100:10:5 (molar
ratios) were approximately 60 ◦C lower than that of pure Ca(OH)2. This indicates that the
co-addition of Li compounds renders Ca(OH)2 heat storage suitable for low-temperature
heat sources. Based on the X-ray diffraction (XRD) patterns and crystal lattice information,
Maruyama et al. [31] suggested that the doped Li+ was located in the interlayer of the Ca(OH)2
crystal structure (Figure 5), which increased the lattice volume of Ca(OH)2 and rendered
the crystal fragile, thereby promoting dehydration. It is worth noting that LiCl reacts with
Ca(OH)2 to form CaCl(OH) during the preparation process, which inhibits dehydration at high
temperatures.
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Bian et al. [32] prepared Ce- and Mn-doped CaO using a wet mixing method in which
the mass ratios of CeO2/CaO and MnO2/CaO were 10:90 and 1.2:100, respectively. After
10 cycles, the hydration conversion of Mn-doped CaO was 88.4%, which was 1.06-fold
higher than that of Ce-doped CaO and 1.12-fold higher than that of CaO. Density functional
theory calculations showed that Mn and Ce doping accelerated H2O adsorption on the
CaO surface. As shown in Figure 6, Mn doping reduced the energy barrier of the CaO
hydration reaction by 84.3%, and this effect was greater than that of Ce doping. As a result,
Mn-doped CaO showed higher hydration reactivity. The above-mentioned studies on
doping modifications are summarized in Table 1.
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Table 1. Summary of research on doping modifications 1.

Research Dopant Doping Method Benefit

Murthy et al. [26] Al, Ni, Zn co-precipitation

G dehydration temperature ↓
G dehydration rate ↑
G the effect of Al was the best at the same

doping level

Yan and Zhao [28] Li, Mg ball milling
G Li doping, dehydration temperature ↓
G Li doping, dehydration rate ↑

Shkatulov and Aristov [23,29] Li, Na, K mechanical and
solution mixing

G dehydration temperature ↓
G dehydration rate ↑
G 5 wt.% KNO3 doping was the

best choice

Wang et al. [30] K mechanical and
solution mixing

G dehydration temperature ↓
G dehydration rate ↑

Maruyama et al. [31] Li impregnation

G Ca(OH)2/LiOH/LiCl = 100:5:5 (molar
ratios), dehydration temperature ↓
significantly

G Ca(OH)2/LiCl/Li2CO3 = 100:10:5
(molar ratios), dehydration
temperature ↓ significantly

Bian et al. [32] Ce, Mn wet mixing G Mn-doped CaO showed a higher
hydration reactivity

1 ↑ indicates an increase, and ↓ indicates a decrease.

2.2. Composite Powders

Kariya et al. [33] prepared a composite material of expanded graphite and Ca(OH)2
using an ultrasonic crushing method in an ethanol solution, as shown in Figure 7. The higher
the content of expanded graphite in the composites, the higher their reactivity. The average
heat output of the composite with 11 wt.% expanded graphite was 1.76 kW/(kg material),
which was twice that of pure Ca(OH)2. Therefore, expanded graphite promoted the hydration
reaction more effectively than the dehydration reaction. The addition of expanded graphite
improved the thermal conductivity and porosity of the composites, thereby enhancing their
heat and mass transfer effects. Considering that the dehydration reaction rate is mainly driven
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by heat transfer and that the hydration reaction rate is jointly controlled by heat transfer and
steam diffusion, the increase in the hydration rate is more significant.
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Huang et al. [34] prepared a Ca(OH)2 composite material with the addition of hexago-
nal boron nitride (HBN) using ultrasonic and magnetic agitation. The thermal conductivi-
ties of Ca(OH)2 at room temperature and 300 ◦C improved by 13.2% and 22.9%, respectively,
with 15 wt.% HBN in the composite. After 10 cycles, the heat release capacity of the com-
posite remained at 67% (61% for pure Ca(OH)2), indicating good cyclic stability. HBN
prevented the agglomeration of Ca(OH)2, and the pores formed by HBN also facilitated
the diffusion of steam, contributing to a higher hydration conversion. Kinetic data further
showed that adding HBN reduced the activation energy for the dehydration of Ca(OH)2
and increased the heat storage rate.

Li et al. [35] reported that the addition of 10 wt.% ZrO(NO3)2 could reduce the initial
dehydration temperature of the composite by 61 ◦C. Moreover, the dehydration rate of the
composite at 310 ◦C was 15.7 times that of pure Ca(OH)2. This is because the activation
energy of the dehydration of the composite was 46 kJ/mol lower than that of pure Ca(OH)2.
The dehydration rate of the composite increased with increasing ZrO(NO3)2 addition.
However, the heat storage capacity of the composite also exhibited a downward trend
owing to the decrease in the Ca(OH)2 content in the unit mass composite. The heat
storage capacity of the composite doped with 10 wt.% ZrO(NO3)2 was 75.7% of that of the
pure material. To mitigate the deterioration of mass transfer caused by Ca(OH)2 powder
agglomeration, Li et al. [35] also added carbon fibers to the composite to maintain a higher
porosity and thus improve the cycle stability.

Sun et al. [36] used limestone powder and acetic acid as raw materials to obtain calcium
acetate using the wet mixing method and then obtained CaO by high-temperature calcina-
tion. High hydration and dehydration conversions and cycling stability were achieved in
the cyclic heat storage test. Finally, Guo et al. [22] used CaCO3 and additives (including
tetraethoxysilane, a silane coupling agent, and bis(3-triehoxysilylpropyl) pertetrasulfide) to
prepare composite materials via heat treatment. Compared with pure Ca(OH)2, the com-
posites containing 0.6 wt.% additives exhibited higher reactivity and more stable hydration
performance under near-equilibrium conditions, which was attributed to the enhanced
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effect of Ca2SiO4 nanoparticles on hydration reactions. Notably, when the temperature
and pressure parameters are far from equilibrium or the steam partial pressure is high, the
enhancement effects of the additives are insignificant because the hydration reaction of
CaO is already fast under these conditions. The above-mentioned studies on composite
powders are summarized in Table 2.

Table 2. Summary of research on composite powders 1.

Research Additives Preparation Method Benefit

Kariya et al. [33] expanded graphite ultrasonic crushing

G hydration rate ↑ significantly
G dehydration rate ↑
G thermal conductivity ↑
G porosity ↑

Huang et al. [34] hexagonal boron nitride ultrasonic and magnetic agitation
G thermal conductivity ↑
G cycle stability ↑
G dehydration rate ↑

Li et al. [35] ZrO(NO3)2 and carbon fibers mechanical and solution mixing

G dehydration temperature ↓
G dehydration rate ↑
G porosity ↑
G cycle stability ↑

Sun et al. [36] acetic acid wet mixing
G dehydration conversions ↑
G hydration conversions ↑
G cycle stability ↑

Guo et al. [22]

tetraethoxysilane and silane
coupling agent and

bis(3-triehoxysilylpropyl)
pertetrasulfide

heat treatment

G higher reactivity and more
stable hydration performance
under near-equilibrium
conditions

1 ↑ indicates an increase, and ↓ indicates a decrease.

2.3. Surface Coatings

Roßkopf et al. [37] used magnetic agitation to deposit a small amount of nano-SiO2
particles (with an average particle size of approximately 7 nm) on the surface of Ca(OH)2.
The addition of small amounts (≤5 wt.%) of the nano-SiO2 particles prevented the ag-
glomeration of the Ca(OH)2 powder and did not inhibit the heat storage and release rate,
achieving stability over eight cycles. The reduction in adhesion between the Ca(OH)2
particles minimized channeling effects, thus creating a more uniform flow of materials and
greatly improving the flow characteristics and heat and mass transfer effects in the powder
bed [38]. When studying material performance using an indirect heat transfer fixed-bed
reactor, it was found that the SiO2 coating reacted with H2O and CaO (Equation (2)) to form
reinhardbraunsite (Ca5(SiO4)2(OH)2), which maintained the surface structural stability of
the heat storage material [39]. When 10 wt.% nano-SiO2 was added to the composite, the
reinhardbraunsite accounted for approximately 30 wt.% of the composite after 10 cycles.

5CaO + 2SiO2 + H2O = Ca5(SiO4)2(OH)2 (2)

Xu et al. [40] studied the agglomeration behavior of Ca(OH)2 and CaO at the molecular
level using reactive molecular dynamics simulations, as shown in Figure 8. Their results
indicated that the Ca(OH)2 dehydration reaction was the main factor affecting material
agglomeration. The effect of H2O on the agglomeration of Ca(OH)2 molecules was greater
than that on CaO molecules, mainly because of the different spatial displacements of the
atoms during the chemical reaction. The addition of nano-silica particles to CaO/Ca(OH)2
effectively reduced the agglomeration rate and acted as a barrier.
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Amjadi et al. [41,42] used the dry mixing method to prepare Ca(OH)2 particles coated
with hydrophilic and hydrophobic silica nanoparticles to improve fluidization. The sieve
size and mass percentage of the SiO2 nanoparticles were essential parameters affecting
the fluidization quality of the composite, accounting for 73.88% and 19.01% of the total
contribution, respectively. When the fluidized gas contained alcohols, Ca(OH)2 coated with
hydrophilic silica nanoparticles exhibited high fluidization quality.

Gollsch et al. [43] modified the Ca(OH)2 powder using nanostructured flow agents
(nanostructured silicon and/or aluminum oxide) based on high-intensity dry mixing. By
increasing the distance, the adhesion between the particles was reduced, improving the
flowability of the powder [44]. The additive improved the fluidity of the powder in the
first few cycles. However, after several heat storage cycles, the fluidity of the mixture
gradually worsened, whereas that of the pure Ca(OH)2 powder gradually improved. It was
concluded that the nanostructured additive in the mixture reacted with the host particles to
form side products, which led to a smooth particle surface and increased the inter-particle
forces. However, the inter-particle forces of the pure Ca(OH)2 powder decreased owing to
particle agglomeration. The above-mentioned studies on surface coatings are summarized
in Table 3.

Table 3. Summary of research on surface coatings 1.

Research Coating Preparation Method Benefit

Roßkopf et al. [37,39] nano-SiO2 particles magnetic agitation
G powder agglomeration ↓
G powder flow characteristics ↑
G heat and mass transfer ↑

Xu et al. [40] nano-SiO2 particles reactive molecular dynamics simulations G powder agglomeration ↓

Amjadi et al. [41,42] hydrophilic/hydrophobic
silica nanoparticles dry mixing G powder flow characteristics ↑

Gollsch et al. [43] nanostructured silicon and(or)
aluminum oxide dry mixing G powder flow characteristics ↑

1 ↑ indicates an increase, and ↓ indicates a decrease.

2.4. Supporting Frames

Kariya et al. [45] selected low-cost vermiculite with high porosity and chemical stability
as the Ca(OH)2 supporting frame and prepared a composite using the impregnation method
(Figure 9). The hydration rate of the composite increased with an increasing number of
cycles, whereas that of pure Ca(OH)2 exhibited the opposite trend. The maximum hydration
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rate of the composite material (0.93 × 10−2 s−1) was also higher than that of pure Ca(OH)2
(0.71 × 10−2 s−1) at the 15th cycle when the content of Ca(OH)2 in the composite was 38
wt.%. The authors explained this phenomenon based on reaction kinetics using a grain
model, proving that vermiculite can improve cycle stability and solve the problem of a
low reaction rate to a certain extent. Kariya and Kato [46] also attempted to use porous
silicon carbide with high porosity as the supporting frame for Ca(OH)2 and found that
the maximum hydration rate of the composite material was 1.2 times higher than that of
Ca(OH)2 because the porous support improved the steam diffusion effect.
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Figure 9. Photos of samples of (a) vermiculite and (b) vermiculite/Ca(OH)2 composites. (Reprinted
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Funayama et al. [47,48] used silicon carbide–silicon (SiC-Si) ceramic foam (Figure 10)
and a SiC-Si ceramic honeycomb (Figure 11) as the Ca(OH)2 powder-supporting frame. The
ceramic foam composite had a volumetric energy storage density of 440 kJ L-bed−1 and a
volumetric heat output rate of 1.3 kW L-bed−1 (for the first 5 min at a maximum hydration
pressure of 84.6 kPa). In comparison, the ceramic honeycomb composite had a volumetric
energy storage density of 0.76 MJ L-bed−1 and a maximum heat storage power of 0.22 kW
L-bed−1; the heat output rate (for the first 5 min at the maximum hydration pressure of
85 kPa) was 1.6 kW L-bed−1. Both supporting frames enhanced the heat transfer of the
heat storage materials [49] and prevented the formation of centimeter-scale agglomerates.
In a recent study, Funayama et al. [50] used the extrusion method to load a Ca(OH)2 slurry
into a composite foam, further improving the power density and bulk stability of the heat
storage material. Both the maximum heat storage power density (0.36 MW/m3

bed) and
the heat release power density (0.71 MW/m3

bed) of the composite foam at 5 min during
hydration were 1.6 times that of pure powder. The above-mentioned studies on supporting
frames are summarized in Table 4.
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Table 4. Summary of research on supporting frames 1.

Research Supporting Frames Preparation Method Benefit

Kariya et al. [45] vermiculite impregnation
G hydration rate ↑
G cycle stability ↑

Kariya and Kato [46] silicon carbide impregnation G hydration rate ↑

Funayama et al. [47,48] SiC-Si ceramic foam/
ceramic honeycomb

vacuum
impregnation/compression

G heat transfer ↑
G centimeter-scale

agglomerates ↓

Funayama et al. [50] composite foam extrusion
G power density ↑
G bulk stability ↑

1 ↑ indicates an increase, and ↓ indicates a decrease.

3. Granulated Material Performance Improvement Technology
3.1. Composite Granules

Fujii et al. [51,52] prepared spherical Ca(OH)2 pellets (diameter of ~17 mm) and
cylindrical Ca(OH)2 pellets (diameter = 19.5 mm; length = 60 mm). The specific volume
of Ca(OH)2 (0.45 cm3/g) was larger than that of CaO (0.29 cm3/g). During heat storage,
Ca(OH)2 decomposition led to a contraction in the geometric size of the pellets, and the
volume of the pellets expanded during the heat release process. This alternating shrinkage
and expansion caused cracking. Adding 15 wt.% Al was also found to enhance dehydration
while maintaining the geometric shape. Based on the XRD patterns, Ca3Al2(OH)12 and
Ca12Al14O33 were identified as the main factors enhancing the brittleness of the pellets.

Funayama et al. [53] used a packed bed reactor with a 100 W scale to evaluate 60 g
of cylindrical Ca(OH)2 pellets (diameter = 1.9 mm; length = 2–10 mm). The experimental
results showed that the heat storage density of the bed was 1.0 MJ L-bed−1, and the average
heat output power in the first 10 min was 0.71 kW L-bed−1 with an initial bed temperature
of 350 ◦C and a hydration pressure of 84.6 kPa. The Ca(OH)2 pellets maintained a stable
conversion over 17 cycles.

Gupta et al. [54] added the inert additive calcium titanate (CaTiO3) to Ca(OH)2 com-
posite pellets (diameter = 3.2 mm; length = 5.6 mm) to improve the reaction rate and
structural stability. Inert CaTiO3 particles acted as skeletal supports in the Ca(OH)2 pellets,
which greatly reduced the influence of the conversion between Ca(OH)2 and CaO on the
pellet volume and improved the integrity of the overall pellet structure. The CaTiO3 skele-
ton was conducive to steam diffusion while maintaining the pellet structure, and provided
a larger reaction area and improved reaction rate. When the mass ratio of Ca(OH)2 to
CaTiO3 in the composite pellets was 1:0.5 or 1:1, the mechanical strength of the composite
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pellets was more than 50% higher than that of pure Ca(OH)2 pellets. The above-mentioned
studies on composite granules are summarized in Table 5.

Table 5. Summary of research on composite granules 1.

Research Granule Shape Additives Benefit

Fujii et al. [51,52] spherical/cylindrical pellets Al G dehydration rate ↑
G maintaining the geometric shape

Funayama et al. [53] cylindrical pellets none G maintain a stable conversion

Gupta et al. [54] cylindrical pellets CaTiO3
G dehydration rate ↑
G structural stability ↑

1 ↑ indicates an increase, and ↓ indicates a decrease.

3.2. Surface Coatings

Valverde-Pizarro et al. [55] coated composite pellets (60 wt.% Ca(OH)2 and 40 wt.%
γ-Al2O3) with mesoporous alumina by dip coating and added cetyltrimethylammonium
bromide surfactant during the coating process. After 10 cycles, the hydration conversion of
the composite was >80%, and the heat release was >800 kJ/kg. After 20 cycles, the compos-
ite retained a spherical structure, and there were highly dispersed alumina particles on its
surface, but cracks also appeared (Figure 12). The authors suggested that the surfactants
not only reduced the surface tension of the pellets and slowed the generation of cracks, but
also made the coating more uniform, and increased the compressive strength. Cosquillo
Mejia et al. [56] performed 10 heat storage cycles using this material in a moving bed
reactor. The results confirmed that alumina coating can improve the mechanical stability of
composite pellets under reaction conditions.
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Briones et al. [57] coated dense silica and Al-mesoporous silica gel onto the surface
of spherical and cylindrical composite pellets (60 wt.% Ca(OH)2 and 40 wt.% γ-Al2O3),
respectively, using a dip coating method. When calcined, both gels form a hard calcium
silicate layer, helping to maintain the structural integrity of the sample during the cycle.
The former forms a continuous coating on the surface of the composite pellet, providing
a high-intensity value (up to 31 N) for the pellet. The latter forms a porous silica coating
on the surface of the composite pellet, which helps maintain the porosity of the pellet,
thus promoting steam diffusion. After 10 cycles, the cylindrical samples showed higher
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hardness values and hydration yields than the spherical samples. The above-mentioned
studies on granule surface coatings are summarized in Table 6.

Table 6. Summary of research on granule surface coatings 1.

Research Granule Shape Coating Benefit

Valverde-Pizarro et al. [55] spherical pellets mesoporous alumina
G cycle stability ↑
G structural stability ↑

Cosquillo Mejia et al. [56] spherical pellets mesoporous alumina G structural stability ↑

Briones et al. [57] spherical/cylindrical pellets dense silica
gel/Al-mesoporous silica gel

G maintain the
structural integrity

G dense silica gel
providing a
high-intensity value

G Al-mesoporous silica gel
helps to maintain
the porosity

G cylindrical pellets
showed higher hardness
values and
hydration yields

1 ↑ indicates an increase, and ↓ indicates a decrease.

3.3. Binder Matrices

Criado et al. [58] prepared cylindrical composite pellets (length = 1–3 mm; diame-
ter = 2 mm) using limestone as the precursor for CaO and sodium silicate as the binder. In
the process of obtaining composite materials rich in CaO via calcination at 850 ◦C, CaO
reacts with sodium silicate (Equation (3)) to produce hard Ca silicates. This yielded a
composite material with a compressive strength approximately four times that of the origi-
nal CaO. However, the CaO content of the composite material was reduced. The authors
suggested that the most suitable CaCO3 parameters were a particle size of 36–63 µm for
the Ca precursor, a Ca/Si molar ratio of 4.8–6.2, and calcination performed in air at 850 ◦C.
After 500 hydration (450 ◦C pure steam)/dehydration (500 ◦C air) cycles, the composite
maintained a stable conversion. However, when the heat storage atmosphere was pure
steam, the hydration conversion of the composite decreased sharply with the number of
cycles. XRD analysis showed that hydrated silicates were generated when dehydrated
in a steam atmosphere, which hindered the hydration of CaO and led to the attenuation
of the hydration conversion (Figure 13). Criado et al. [59] reported that in the process of
converting CaO into Ca(OH)2, a larger grain size causes the fracture of the hard Ca silicate
framework and reduces the compressive strength. They also pointed out that the mechani-
cal strength of the composite materials can be maintained by providing CaO particles with
a larger space. In one method, CaCO3 was used as a CaO precursor to provide space for
Ca(OH)2 grain growth based on the difference in molar volume (36.9 cm3/mol for CaCO3
and 16.9 cm3/mol for CaO). In another method, the hydration conversion of CaO was
controlled to improve the mechanical stability of the pellets.

5CaO + Na2Si3O7 = Na2CaSiO4 + 2Ca2SiO4 (3)

Sakellariou et al. [60] used calcium nitrate and calcium acetate as CaO precursors,
and CaO/Al2O3 composites were obtained using liquid-phase self-propagating high-
temperature synthesis. A polyvinyl alcohol aqueous solution was used as a binder
to prepare the pellets (diameter = 30 mm; length = 5 mm). The experimental results
showed that the composite with calcium nitrate as the CaO precursor exhibited a better
hydration/dehydration performance. The presence of Al resulted in more Ca3Al2O6 and
Ca12Al14O33 in the composite. A mixed Ca/Al phase does not participate in the heat
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storage and release process but can dampen the effects of cyclic dehydration–hydration
(shrinking–swelling mechanism) and enhance pellet structural integrity. Based on their ob-
servations, the authors reported that Ca/Al composites with calcium nitrate as a precursor,
close to 81/19, possess a high heat storage capacity and mechanical strength. To reduce
material costs, Sakellariou et al. [61,62] selected natural limestone as the CaO precursor
and developed near-spherical (850 µm–2 mm diameter) composites using 25 wt.% kaolinite
(Al2(Si2O5)(OH)4) as the binder. After 20 cycles, the composites remained intact and exhib-
ited a high mechanical strength. The XRD analysis showed that the Ca2Al2SiO7 formed
in the composite pellets had a higher mechanical strength. The microscopic image shows
that the CaO particles in the composite pellets were wrapped in a smooth and compact
Ca2Al2SiO7 network structure (Figure 14). While this improved the compressive strength
of the composite pellets, it also consumed some CaO and reduced the heat storage capacity.
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Xia et al. [63] prepared a tablet-shaped composite (diameter = 8 mm; height = 6 mm) via
ball milling using carboxymethyl cellulose sodium (CMC-Na) as the binder and vermiculite
as the raw material. Compared with powdery Ca(OH)2, when the composite ratio (CaO:
CMC-Na: vermiculite) was 80:15:5, the gravimetric storage density of the composite material
was 71% of that of the pure material, and the volumetric storage density was 124% of that of



Energies 2023, 16, 3019 15 of 23

the pure material. The CMC-Na in the composite formed mesh structures under the influence
of carbonization and sintering. The mesh structure and vermiculite skeleton provided struc-
tural support for the composite material and separated the heat storage material particles,
thereby reducing agglomeration. The above-mentioned studies on granule binder matrices
are summarized in Table 7.

Table 7. Summary of research on granule binder matrices 1.

Research Granule Shape Binder Matrices Benefit

Criado et al. [58,59] cylindrical pellets sodium silicate
G structural stability ↑
G maintain a stable conversion

Sakellariou et al. [60] cylindrical pellets polyvinyl alcohol
G hydration/dehydration

performance ↑
G structural stability ↑

Sakellariou et al. [61,62] near-spherical pellets kaolinite G structural stability ↑

Xia et al. [63] cylindrical pellets CMC-Na
G volumetric storage density ↑
G structural stability ↑

1 ↑ indicates an increase, and ↓ indicates a decrease.

3.4. Macro-Encapsulation

Afflerbach et al. [64] proposed an oxide ceramic-based material for the semipermeable
encapsulation of pre-granulated Ca(OH)2 based on the core-shell principle. The basic
principles of mass and heat transfer in heat storage and release processes are shown in
Figure 15 [65]. The actual setup is shown in Figure 16, where the white ball core is the
heat storage material and the red shell is the oxide ceramic material. Ceramic materials
exhibit high thermal stability and mechanical strength after sintering at high temperatures;
however, a small amount of larnite by-products can be produced. The decomposition and
release of organic compounds during ceramic sintering can form a porous network structure
in the ceramic shell, which is conducive to steam diffusion. A ratio of Ca(OH)2/adhesion-
promoting agent/dry ceramic precursor powder of 4:2:3 may be the best choice. The
heat storage material in the ceramic shell was completely transformed in 10 cycles, and
its compressive strength showed little change, decreasing from 86.7 N to 82.6 N. The
gravimetric storage density of the encapsulation material was 56–58%, and the volumetric
storage density was 33% that of pure CaO, which was determined by the mass proportion
of the ceramic shell in the encapsulation material.

Energies 2023, 16, 3019 15 of 23 
 

 

Table 7. Summary of research on granule binder matrices 1. 

Research Granule Shape Binder Matrices Benefit 

Criado et al. [58,59] cylindrical pellets sodium silicate  structural stability ↑  
 maintain a stable conversion 

Sakellariou et al. [60] cylindrical pellets polyvinyl alcohol  hydration/dehydration performance ↑  
 structural stability ↑  

Sakellariou et al. [61,62] near-spherical pellets kaolinite  structural stability ↑  

Xia et al. [63] cylindrical pellets CMC-Na  volumetric storage density ↑  
 structural stability ↑  

1 ↑ indicates an increase, and ↓ indicates a decrease. 

3.4. Macro-Encapsulation 
Afflerbach et al. [64] proposed an oxide ceramic-based material for the semiperme-

able encapsulation of pre-granulated Ca(OH)2 based on the core-shell principle. The basic 
principles of mass and heat transfer in heat storage and release processes are shown in 
Figure 15 [65]. The actual setup is shown in Figure 16, where the white ball core is the 
heat storage material and the red shell is the oxide ceramic material. Ceramic materials 
exhibit high thermal stability and mechanical strength after sintering at high tempera-
tures; however, a small amount of larnite by-products can be produced. The decomposi-
tion and release of organic compounds during ceramic sintering can form a porous net-
work structure in the ceramic shell, which is conducive to steam diffusion. A ratio of 
Ca(OH)2/adhesion-promoting agent/dry ceramic precursor powder of 4:2:3 may be the 
best choice. The heat storage material in the ceramic shell was completely transformed in 
10 cycles, and its compressive strength showed little change, decreasing from 86.7 N to 
82.6 N. The gravimetric storage density of the encapsulation material was 56–58%, and 
the volumetric storage density was 33% that of pure CaO, which was determined by the 
mass proportion of the ceramic shell in the encapsulation material. 

Gollsch et al. [66] verified the mechanical stability of an encapsulation material in a 
laboratory-scale reactor. Furthermore, Afflerbach et al. [65] increased the compressive 
strength of these materials by approximately 15% by adding 5 wt.% diatomaceous earth 
to the powdery ceramic precursor. This increased the amorphous glass phase in the ce-
ramic shell and promoted densification of the shell microstructure, which not only im-
proved the mechanical strength but also significantly enhanced the bulk thermal con-
ductivity of the material. Compared with the unencapsulated materials, the thermal 
conductivity of the encapsulated materials was improved by up to 60%. The energy 
storage density of the encapsulated material was 144.9 kWh/m3 and 0.16 kWh/kg. 

 
Figure 15. Schematic diagram of heat and H2O transfer of semi-permeable encapsulation materials 
during heat storage and release. (Reprinted with permission from ref. [65]. Copyright 2021 Else-
vier). 

Figure 15. Schematic diagram of heat and H2O transfer of semi-permeable encapsulation materials
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Gollsch et al. [66] verified the mechanical stability of an encapsulation material in
a laboratory-scale reactor. Furthermore, Afflerbach et al. [65] increased the compressive
strength of these materials by approximately 15% by adding 5 wt.% diatomaceous earth to
the powdery ceramic precursor. This increased the amorphous glass phase in the ceramic
shell and promoted densification of the shell microstructure, which not only improved the
mechanical strength but also significantly enhanced the bulk thermal conductivity of the
material. Compared with the unencapsulated materials, the thermal conductivity of the
encapsulated materials was improved by up to 60%. The energy storage density of the
encapsulated material was 144.9 kWh/m3 and 0.16 kWh/kg.
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Cosquillo Mejia et al. [67] conducted studies on the heat storage of ceramic-encapsulated
materials in an indirect heat transfer moving bed reactor and found that ceramic-encapsulated
materials had good fluidity and did not plug heat exchangers; however, the shells of some
ceramic-encapsulated materials were cracked and broken. At the same time, the heat storage
material was not fully transformed under the reactor operating conditions, which was at-
tributed to the mass transfer resistance caused by the ceramic shell in a lower-steam-pressure
atmosphere. Guo et al. [68] embedded a mixture of CaCO3 and carboxymethyl cellulose in a
silicon carbide honeycomb matrix and obtained composite pellets via calcination. The com-
posite pellets exhibited good structural stability over 22 cycles, with a discharging/charging
density of over 1000 kJ/Lpellet. The above-mentioned studies on granule macro-encapsulation
are summarized in Table 8.

Table 8. Summary of research on granule macro-encapsulation 1.

Research Encapsulation Materials Benefit

Afflerbach et al. [64] oxide ceramic-based material
G thermal stability ↑
G structural stability ↑
G porous shell

Gollsch et al. [66] oxide ceramic-based material G maintain structural stability in a
laboratory-scale fixed-bed reactor

Afflerbach et al. [65] oxide ceramic-based material and diatomaceous earth
G structural stability ↑ significantly
G bulk thermal conductivity ↑

Cosquillo Mejia et al. [67] oxide ceramic-based material and diatomaceous earth
and Na2CO3

G good fluidity in an indirect
heat-transfer moving bed reactor

Guo et al. [68] silicon carbide G structural stability ↑

1 ↑ indicates an increase, and ↓ indicates a decrease.
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4. Problems and Suggestions

Based on the reviewed literature, each technology can improve various properties of
Ca(OH)2 while also creating other problems, and, currently, no single technology can solve
all of these problems. A reasonable approach is to select the most appropriate technology
according to the practical application of the strengthening demand for specific aspects of
heat storage materials or to combine various technologies. Bayon et al. [69] found that
feedstock cost accounts for a major part of the capital cost after an economic evaluation of
17 thermochemical energy storage systems based on gas–solid reaction. For a composite
material based on Ca(OH)2, the material cost mainly comprises additive and processing
costs. With an increase in the cycle number and carbonation of heat storage materials under
the influence of CO2 in the air, performance gradually declines, and fresh materials are
needed [70]. Therefore, to achieve large-scale industrial applications, it is necessary to
screen cheaper additives and use a relatively simple preparation process so that the material
costs remain acceptable. At the same time, reactions between the added functional material
and heat storage material should be avoided as much as possible, as this significantly
reduces the content of the effective heat storage material. These are common issues that all
technologies must address. The individual problems and suggestions related to specific
technologies for future development are summarized as follows:

• Small amounts of elements can be doped to change the properties of heat storage materi-
als. A small amount of doping material has little effect on the heat storage capacity of the
material and can significantly improve its kinetic characteristics. Earlier studies mainly
focused on the doping effect of a single element, whereas more recent studies have fo-
cused on the co-doping effect based on relatively inexpensive elements. Simultaneously,
more attention should be paid to the mechanisms of doping modifications;

• The main purpose of constructing composite materials (powders or granules) is to
introduce other substances with excellent properties into Ca(OH)2 to compensate for
the shortage of heat storage materials, such as high-thermal-conductivity materials
that improve the heat transfer effect. Because the heat storage capacity of a composite
material includes the thermochemical heat storage capacity of Ca(OH)2/CaO and the
sensible heat storage capacity of all substances, the excessive addition of functional
materials reduces the heat storage capacity of the composite. Therefore, it is necessary
to explore advanced functional materials to reduce the amount of added material
while maintaining the performance of the composite materials;

• Coating nanoparticles onto the surface of a powder or granulated material can reduce
adhesion forces and stabilize the surface structure of the material. Because the volume and
surface structure of the host particles change during heat storage cycles, a higher coverage
quality is required to enable the nanoparticles to adapt to changes in the host particles;

• The supporting frames and binder matrices can improve the structural integrity of
heat storage materials. These materials occupy a high proportion of the composite
material, which significantly reduces the energy storage density of the composite.
For supporting frame technology, skeleton materials with high porosity should be
developed to improve the loading capacity of heat storage materials. For binder matrix
technology, the particle structure should be maintained, whereas the amount of binder
added should be reduced to improve the energy storage density;

• Macro-encapsulation provides excellent mechanical strength and can maintain the
structure of heat storage materials for a long time. As inert shell materials occupy a
certain space and exhibit mass transfer resistance, it is necessary to ensure acceptable
compressive strength while reducing shell thickness and improving permeability to
improve heat storage rates and capacities.

In addition to these performance-improving technologies, advanced technologies in
other fields should also be used as references. For example, Huang et al. [71] regulated
the crystal morphology of Ca(OH)2 at the microscopic level and showed that Ca(OH)2
nanoparticles with a spindle structure (Figure 17a) were superior to those with a hexagonal
structure. Bian et al. [72] prepared hollow nanostructured CaO (HN-CaO) using glucose as
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the carbon template (Figure 17b) and reported that its hollow structure has the advantages
of high porosity, large surface area, and high gas diffusion efficiency [73]. Therefore, the
diffusion resistance of steam is significantly reduced, and a high conversion rate is achieved.
Newly developed heat storage materials should also be tested in larger-scale reactors to
evaluate their ability to withstand mechanical and thermal stresses on a bulk scale.
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5. Carbide Slag Can Replace High-Quality Ca(OH)2 for Heat Storage

Carbide slag is a by-product of the calcium carbide method used to produce polyvinyl
chloride (PVC), the main component of which is Ca(OH)2. The annual output of carbide slag
in China, as a bulk industrial solid waste, is almost 34 million tons. In 2018, Yuan et al. [74]
proposed the use of carbide slag instead of high-quality Ca(OH)2 for heat storage and
demonstrated its potential for long-term thermochemical heat storage over 30 heat storage
cycles. Zhang et al. [75] modified carbide slag with a by-product of biodiesel (more
than 90% glycerol), obtained a porous and loose structure, and reduced the diffusion
resistance of steam. After 30 cycles, the hydration conversion and heat storage density
of the modified carbide slag were 0.65 mol/mol and 1.14 GJ/t, respectively, which was
1.6 times that of the original carbide slag. Subsequently, Zhang et al. [76] prepared Ca/Mg-
based composites using carbide slag with dolomite (CaMg(CO3)2) as the raw material
and found that a small amount of MgO maintained good pore characteristics, whereas
excessive MgO hindered steam diffusion. Feng et al. [77–79] also systematically studied the
thermodynamic characteristics (including thermal stability, heat storage capacity, and heat
transfer characteristics) and reaction kinetics of carbide slag (Figure 18). They showed that
while the thermochemical heat storage capacity of carbide slag was lower than that of pure
Ca(OH)2, its sensible heat storage capacity was higher than that of pure Ca(OH)2. Under
the same conditions, the reaction rate of the carbide slag was almost the same as that of
pure Ca(OH)2; however, the heat storage rate was lower because of differences in purity.
Considering that carbide slag is an industrial solid waste, its near-zero material cost and
good heat storage performance indicate its high potential for large-scale thermochemical
heat storage applications.
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6. Conclusions

Heat storage and release through the reversible reaction of Ca(OH)2 dehydration and
CaO hydration is a thermochemical energy storage scheme with potential industrial applica-
tions. This study reviewed opportunities for improving the performance of Ca(OH)2/CaO
heat storage materials, existing problems, and opportunities for future development. The
main conclusions are as follows:

• Heat storage materials can be divided into powders and granulated materials based
on their macroscopic morphologies. Performance improvement technologies for pow-
der materials include doping modifications, composite powders, surface coatings,
and supporting frames. Technologies for improving the performance of granulated
materials include composite granules, surface coatings, binder matrices, and macro-
encapsulation. Currently, no technology can simultaneously improve the energy
storage density, energy storage rate, and cycling stability of heat storage materials.
Therefore, relevant technologies should be selected according to the main characteris-
tics that must be improved for specific practical applications;

• The functional materials used in existing research can regulate heat storage charac-
teristics by changing the crystal structure of Ca(OH)2/CaO and can also compensate
for the deficiencies of Ca(OH)2/CaO owing to several advantages. The addition of
functional materials is usually accompanied by a relevant preparation process, thus
increasing the cost of the heat storage materials. At present, the competitiveness of
heat storage materials can be improved by reducing material and manufacturing costs.
Strategies to reduce material costs include using inexpensive functional materials and
choosing carbide slag to replace high-quality Ca(OH)2. Reducing manufacturing costs
can involve choosing simpler and more effective manufacturing technologies;

• Improvements in heat storage performance include heat storage capacity, thermal
conductivity, reaction rate, and structural stability. The improvement in heat storage
performance is inevitably accompanied by a reduction in heat storage capacity, which
is caused by the addition of other materials. The structural stability of heat storage
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materials affects the heat and mass transfer effects as well as the reaction rate. In-
creasing the porosity of a material reduces its mechanical strength but achieves a high
reaction rate. Thus, the heat storage properties and structural stability of the materials
are interrelated.
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