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Abstract: Pre-ignition, involving complex interactions of physical and chemical processes, occurs
not only in actual combustion engines but also in fundamental research equipment such as rapid
compression machines and shock tubes. Thus, identifying the combustion conditions prone to pre-
ignition is critical for the interpretation of ignition data and fuel design. Shock tube experiments with
dimethyl ether (DME) were carried out in this study to investigate the pre-ignition behavior during
fuel auto-ignition. The experimental conditions included a wide range of temperatures (620–1370 K),
pressures (1–9 atm), and equivalence ratios (0.5–5.0). The results indicate that pre-ignition of DME
is prone to occur in the transition region from a high temperature to an intermediate temperature
(~1000 K), and the decrease in pressure and equivalency ratio will aggravate the pre-ignition behavior.
Theoretical analysis was then performed using four physical-based criteria: temperature perturbation
sensitivity of ignition delay times, thermal diffusivity, a dimensionless parameter analogous to
the Damköhler number, and the Sankaran number. According to experimental observations and
theoretical analysis, it was found that the temperature sensitivity (Stp = 75 µs/K) and Sankaran
number (Sap = 1) are the best available criteria for predicting the pre-ignition behavior of negative
temperature coefficient (NTC) fuels. The pre-ignition region of non-NTC fuels can be accurately
predicted by thermal diffusivity and the Damköhler number, but they deviate greatly when predicting
the pre-ignition of NTC fuels. This strategy is expected to provide a feasible method for identifying the
critical conditions under which pre-ignition may occur and for revealing the pre-ignition mechanisms
for other NTC fuels.

Keywords: pre-ignition; NTC fuels; dimethyl ether; physical-based criteria

1. Introduction

Pre-ignition is an unwanted ignition event that occurs before it is expected and can
lead to non-homogeneous combustion. Pre-ignition has been observed in systems such
as aero engines and internal combustion engines [1], particularly in highly blown spark-
ignition engines operating under high-load and low-speed conditions [2]. Pre-ignition is
known as an initiator for engine super-knock, which causes extremely high peak pressure
with associated pressure oscillations to occur instantly, destroying the piston head and com-
bustion chamber [3,4]. Therefore, understanding the kinetics and dynamic mechanism of
pre-ignition and predicting this phenomenon is critical for engine design and optimization.

Pre-ignition is well known as a complex physical-chemical process, and decoupling
the interactions between physical flow and chemical reactions in actual combustors is
difficult. Since it was first observed in aviation engines in the 1920s, numerous efforts
have been made to decipher pre-ignition [5]. Shock tubes are widely used for chemical
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kinetic measurements and are widely accepted as equipment that creates a nearly stagnant
and zero-dimensional test environment [6–8]. Experiments conducted in shock tubes can
eliminate the interference of composite factors found in engine combustors and serve as a
better guide in revealing the pre-ignition mechanism. Previous studies [9,10] have shown
that pre-ignition occurs on hot surfaces or around hot particles. Pre-ignition was attributed
to lubricating oil droplets and spark plugs in engine combustors by Akram et al. [11],
Menrad et al. [10], Zöbinger et al. [12], and Hamilton et al. [13]. Ninnemann et al. [14]
believed that impurities, e.g., residual broken films in the shock tube from the previous
experiment, were the cause of pre-ignition in shock tube experiments. Fei et al. [15]
demonstrated in a rapid compression machine that oil droplets can cause pre-ignition.
Pryor et al. [16] discovered that the bifurcation caused by the interaction of a reflected shock
wave with a boundary layer can result in an inhomogeneous pressure and temperature
distribution and the formation of hotspots. Regardless of the origin of the hot spots,
numerous simulations using a temperature gradient have been carried out to investigate
the effects of mixture composition, hot spot size, and boundary conditions [3,17,18]. The
pre-ignition was discovered to be strongly dependent on the mixture composition (fuel type
and equivalence ratio) and thermal boundary conditions (pressure and temperature behind
the reflected shock wave). The process of pre-ignition can be captured with high-speed
imaging techniques. Shock tube experiments have revealed the pre-ignition behavior for a
variety of fuels, including H2 [14], CH4 [16], ethanol [19–21], dimethyl ether (DME) [22],
and n-heptane [23]. All the results indicate that lower pressures, lower equivalence ratios,
higher fuel concentrations, and Ar gas diluents make pre-ignition easier. Pre-ignition, on
the other hand, occurs at low temperatures for non-negative temperature coefficient (NTC)
fuels and at medium temperatures for NTC fuels.

According to past studies [3,20], the occurrence of pre-ignition usually requires (a) an
ignition source that can induce a premature flame, (b) a flame that can propagate steadily,
and (c) these processes to occur sufficiently early before the main ignition. Based on the
experimental and numerical studies mentioned above, dimensionless parameters analo-
gous to the Damköhler number (Da*), thermal diffusivity, and laminar flame thickness
were proposed as criteria for recognizing the likelihood of pre-ignition [3,19,20,24–26].
According to these theoretical criteria, the pre-ignition tendency of various mixtures such
as H2 [14], CH4 [16], methanol, and ethanol [19,20] can be accurately predicted. However,
there has been only limited research into the relationship between the experimental phe-
nomenon and theoretical criteria for the pre-ignition of NTC fuels. It is unclear whether
the current theoretical criteria can accurately predict NTC fuel pre-ignition. DME is an
appealing renewable and basic fuel owing to its low-temperature chemistry and NTC
phenomenon [22,27]. In our previous study [22], it was found that DME mixtures are
prone to pre-ignition at around 1000 K. However, this was not the focus of our previous
work and the pre-ignition mechanism of DME was not profoundly analyzed. Therefore,
DME was chosen as the study target. This study aims to comprehensively investigate
the effect of temperature, pressure, and equivalence ratio on the pre-ignition behavior
of DME through shock tube experiments. Moreover, it is hoped that through theoretical
analysis and verification with experimental results, a universal criterion that can assess the
likelihood of pre-ignition of NTC fuels can be proposed.

2. Experimental and Numerical Methods

To better understand the kinetics and dynamics mechanism of pre-ignition, ignition
delay times (IDTs) of DME/‘air’ mixtures were measured behind reflected shock waves at
Xi’an Jiaotong University using a variable cross-section high-pressure shock tube (HPST), as
shown in Figure 1. Details of the HPST can be found elsewhere [22,28], and only a summary
is provided here. The stainless-steel shock tube had a 6.4-m-long driver section and a
7.6-m-long driven section (150 mm inner diameter). Because of the larger inner diameter
of the driven section, the influence of the non-ideal boundary layer on the experimental
measurement was effectively reduced. The primary signals detected in the experiments
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were sidewall pressure from four piezoelectric pressure transducers (PCB 113B22), end-wall
pressure from a charge output dynamic pressure transducer (PCB 113B03), and OH* light
emission from a photomultiplier tube (Hamamatsu CR131) with a narrow bandpass filter
(centered at 306 nm with FWHM < 10 nm) located at the end wall. The reflected shock
pressure (p5) and temperature (T5) were calculated using one-dimensional shock jump
equations. The largest uncertainty in T5 was estimated to be 22 K using the standard
root–sum–squares (RSS) method [29]. The measured IDT was defined as the time between
the passage of the reflected shock wave and the time of the rapid rise in end wall pressure;
thus, the time interval could be precisely determined. The driver gases were high-purity
nitrogen (99.999%) and helium (99.999%), and the test mixtures contained high-purity argon
(99.9999%), oxygen (99.9999%), and DME (99.9%). To reduce the non-ideal gas dynamic
effects, the artificial air (21% O2 and 79% Ar) was made up of the monoatomic molecule
argon rather than nitrogen. Shock tube experiments on DME mixtures were carried out at
various pressures (1, 3, and 9 atm) and at temperatures ranging from 620 K to 1370 K, as
shown in Table 1. DME, O2, and Ar were filled into the mixing tank in turn. Dalton’s law
of partial pressure was used to control the components of the gas mixtures. The mixture
was placed overnight to ensure sufficient diffusion and mixing. All the experiments were
tailored when the IDTs were longer than 2 ms. The Chemkin-Pro package [30] was used to
simulate the IDTs and laminar flame speeds with a closed homogeneous batch reactor and
a premixed laminar flame speed calculation reactor, respectively.
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Figure 1. Diagram of the high-pressure shock tube facility.

Table 1. Summary of experimental conditions.

Mix. ϕ p (atm) XDME XO2 XAr

PHI0.5 0.5 3 3.38% 20.29% 76.33%
PHI1.0 1.0 3 6.54% 19.63% 73.83%
PHI2.0 2.0 1, 3, 9 12.28% 18.42% 69.30%
PHI3.0 3.0 3 17.36% 17.36% 65.28%
PHI5.0 5.0 3 25.93% 15.56% 58.51%

3. Results and Discussion

The models of Wang et al. [31], AramcoMech 3.0 [32], HPMech-v3.3 [33], and
Burke et al. [27] were used to predict the IDTs of DME/O2/Ar mixtures under the as-
sumption of constant U and V, as shown in Figure 2. Except for some differences in the
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NTC region, the performance of all the models in describing DME auto-ignition was es-
sentially identical. AramcoMech 3.0 [32] has been widely validated against a variety of
experimental data, including IDTs, laminar flame speeds, and speciation profiles, under a
variety of conditions [22,27]. Therefore, it is used in this study’s discussion.
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Figure 2. Simulated ignition delay times of PHI1.0 DME/‘air’ mixtures with various kinetic
models [27,31–33] at pressures of 3 atm and 40 atm.

A strong pre-ignition tendency of DME mixtures was observed in previous studies
around temperatures of 1000 K [22]. IDTs of DME/‘air’ mixtures ranging from 0.13 ms to
14 ms at various equivalence ratios (0.5–5.0) were also measured at pressures of 1, 3, and
9 atm over temperatures of 628–1370 K to gain a better understanding of the pre-ignition
mechanism in this study, as shown in Figures 3 and 4. Under the assumption of constant
U and V, AramcoMech 3.0 [32] was used to predict the IDTs. Because of the negligible
dp5/pdt value (<1%/ms), the non-ideal facility effect was excluded from all simulations.
All the data sets showed the expected Arrhenius-like behavior in both the low (<670 K) and
high (>1150 K) temperature ranges, while the conventional NTC behavior was seen in the
temperature range 770–900 K. The AramcoMech 3.0 reproduced the measured IDTs well for
all the mixtures at temperatures above 1100 K but underestimated them for partial mixtures
(PHI0.5, PHI1.0, PHI2.0, PHI3.0) in the temperature transition zone (950–1100 K) and low-
temperature region (<770 K). AramcoMech 3.0, for the mixture with an equivalence ratio of
2.0, underestimated IDTs by a factor of 5.7 and 3.0 at 1000 K and 700 K, respectively.

Unlike extremely rich mixtures (PHI5.0) or high-pressure mixtures (PHI2.0, p = 9 atm),
the mixtures (PHI0.5, PHI1.0, PHI2.0, PHI3.0) exhibit a repeatable fall-off feature of ignition
delay time in the temperature transition zone (~1000 K) at low pressure (p < 9 atm). The IDT
fall-off behavior is dependent on the equivalence ratio and pressure, and it is not observed
in the PHI5.0 mixture at a pressure of 3 atm or in the PHI2.0 mixture at a pressure of 9 atm.
Because of the limited test time of the HPST, the fall-off behavior of IDTs is not observed
at 1 atm, but a comparison of experimental data at 3 atm and 9 atm can demonstrate
such a pressure-dependence behavior. The IDTs’ fall-off behavior cannot be reproduced
using the available kinetic mechanisms with a conventional homogeneous ignition sim-
ulation approach, which is consistent with the observation made by Javed et al. [23] in
the ignition of n-heptane. The unusual IDT fall-off behavior was thought to be the result
of pre-ignition. At T5 < 770 K, it is different. Princeton University [34–36] and Sandia
National Laboratories [37] investigated the low-temperature oxidation chemistry of DME
using jet-stirred reactor and flow reactor experiments and discovered that existing kinetic
models tend to over-predict or under-predict DME oxidation. Our recent study [22] also
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demonstrated that existing kinetic models tend to overpredict the IDTs of DME mixtures at
low pressure and low temperature. Therefore, in the low-temperature region (<770 K), the
distinct discrepancy between the experimental measurements and simulations is consid-
ered to be due to the effect of the low-temperature chemistry of DME rather than the effect
of pre-ignition.
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The high-speed image sequences recorded behind the reflected shock waves by
Figueroa–Labastida et al. [19,20] and Ninnemann et al. [14] demonstrated that if pre-
ignition occurs, a localized non-homogeneous ignition can be triggered before the main
ignition, which is consistent with the experimental observation in Figure 5. Pre-ignition
behavior can be identified experimentally in the temperature transition zone (~1000 K)
by comparing the time histories of pressure and OH* chemiluminescence, as shown in
Figure 5. The OH* light emission occurs approximately 700 µs before the pressure rises at
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970 K with pre-ignition, whereas it increases almost simultaneously with pressure at 718 K
without pre-ignition. At T5 = 970 K, the fact that the OH* signal shows a significant step
while at the same time the pressure trace is not showing any premature pressure increase
could be attributed to far-end wall pre-ignitions. Therefore, the photomultiplier detects a
flame kernel away from the end wall while the pressure sensor does not see anything.
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4. Analysis of Pre-Ignition Criteria

This study evaluated various pre-ignition criteria for DME/‘air’ mixtures. Following a
discussion of an ignition characterization based on the temperature perturbation sensitivity
coefficient (Stp) of IDTs and thermal diffusivity, a dimensionless parameter analogous to
Da* based on the timescale competition of flame propagation and auto-ignition is presented.
The Sankaran number criteria have been discussed. AramcoMech 3.0 was used in the
following analysis. As previously stated, the DME mechanism has significant uncertainties
under both low-temperature and low-pressure conditions. Therefore, a detailed analysis
was limited to temperatures above 770 K.

4.1. Temperature Perturbation Sensitivity

IDTs can be significantly advanced through pre-ignition. The temperature perturbation
sensitivity coefficient, an ignition characteristic parameter, is discussed in this study to
validate the effect of hot spots on IDTs. Meyer et al. used this coefficient as an indicator to
predict the pre-ignition of H2/O2 mixtures [38]. Based on their experiments, Stp = −2 µs/K
was proposed as the critical value for the pre-ignition of stoichiometric H2/O2 mixtures.
The absolute value was considered in this study, taking into account both positive and
negative temperature fluctuations, and we have the following definition:

Stp =

∣∣∣∣ ∂τ

∂T

∣∣∣∣ (1)

where τ is the IDT in ms, and T is the temperature in K. Stp denotes the magnitude of the
change in IDT caused by the temperature perturbation.

Figure 6 shows the effects of equivalence ratio and pressure on the Stp of DME/‘air’
mixtures at pressures of 3–9 atm and temperatures of 770–1250 K. Stp is small for PHI2.0
DME/‘air’ mixtures at high temperatures (>1250 K) but gradually increases with decreasing
temperature. Stp reached the maximum value at ~1000 K, after which it began to decrease
until the temperature behind the reflected shock wave fell below 940 K. Stp decreased after
a slight increase in the NTC region as the temperature decreased. Notably, the peak of Stp
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occurs in the temperature transition zone, which corresponds exactly to the pre-ignition
region shown in Figures 3 and 4. Based on our experiments and simulations, the critical
value of Stp for determining the pre-ignition limit was found to be 75 µs/K, which differs
from the value recommended by Meyer et al. [38]. This could be attributed to differences
between the experimental devices and the tested mixtures. Furthermore, as the equivalence
ratio or pressure increases, the peak value of Stp decreases, which is consistent with the
experimental observations in Figures 3 and 4. Therefore, the Stp criterion is appropriate for
determining the pre-ignition tendency and region of DME mixtures.
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4.2. Thermal Diffusivity

Thermal dissipation is also closely related to the ignition of a local mixture that may
induce pre-ignition. Thus, thermal diffusivity has been used to interpret the pre-ignition
behavior of H2 [14], iso-octane [23], and ethanol mixtures [39]. The thermal diffusivity α is
also used in this study to evaluate the effect of thermal dissipation on the pre-ignition of
DME and is defined as

α =
λ

ρc
(2)

where λ denotes thermal conductivity, ρ denotes density, and c denotes specific heat ca-
pacity. α represents the rate of dissipation of the temperature gradient. Figure 7 shows
the thermal diffusivity of DME mixtures with different equivalence ratios at various pres-
sures. As the temperature decreases, the thermal diffusivity decreases monotonically. At
a given temperature, thermal diffusivity decreases with increasing equivalence ratio and
pressure. A low thermal diffusivity α implies a more pronounced non-uniform temper-
ature distribution, which increases the possibility of pre-ignition. However, as observed
in the experiments (Figures 3 and 4), low equivalence ratios and lower pressures favor
DME mixture pre-ignition, which appears to contradict the trend predicted by thermal
diffusivity. In fact, under all conditions considered, the value of α is very small, on the
order of 10−4 m2·s−1, indicating that thermal diffusion has a negligible influence on the
ignition of the mixtures. Therefore, predicting pre-ignition based on thermal diffusivity
alone is insufficient; additional parameters must be considered.
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4.3. Damköhler Number

The competition between the auto-ignition timescale and flame propagation speed
also influences pre-ignition. Even if the local mixture is ignited by hotspots, pre-ignition
cannot be observed if the flame propagation timescale is sufficiently slow relative to
the auto-ignition delay of mixtures. Therefore, the relationship between IDT and the
characteristic time of flame propagation must be estimated. Consider a dimensionless
parameter analogous to Da [19,20,40]:

Da∗ =
τchar
τign

(3)

τign denotes the IDTs, and τchar denotes the characteristic flame propagation time,
which is defined as

τchar =
δ

SL
(4)

where δ is the flame thickness and SL is the laminar flame speed. The flame thickness is the
thermal diffusion thickness in this study, which is defined as

δ =
α

SL
(5)

Figure 8 depicts the flame thickness of DME/‘air’ mixtures at various equivalence
ratios (ϕ = 0.5, 1.0, 2.0, 3.0, and 5.0) at different pressures (1, 3, and 9 atm). To simulate the
τign and SL, AramcoMech 3.0 was used. A small Da* indicates that the IDT is sufficiently
long relative to the flame propagation characteristic time. As a result of the greater im-
pact of the local flame on the main ignition, mixtures with longer IDT and shorter flame
propagation characteristic times are expected to be more prone to pre-ignition. Da* varies
monotonically with temperature for non-NTC fuels. However, this is not true for NTC
fuels. The temperature dependence of Da* for DME mixtures with different equivalence
ratios at different pressures is shown in Figure 9. Da* has a turning point at ~1000 K for
PHI2.0, PHI3.0, and PHI5.0 mixtures at 3 atm. The value of Da* was smaller at higher
pressures (9 atm), indicating a strong pre-ignition trend, which contradicts the experimental
observation. Therefore, predicting pre-ignition using Da* alone is insufficient.
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4.4. Sankaran Number Criterion

Sankaran et al. [41] proposed another dimensionless number to represent the competi-
tion between the auto-ignition timescale and flame propagation speed and to distinguish
weak ignition from strong ignition. The ratio of the laminar flame velocity to the sponta-
neous front velocity is defined as the parameter. This criterion was successfully used by
Strozzi et al. [42] and Figueroa–Labastida et al. [20] to interpret the observed preignition
of methane, methanol, and ethanol. The predictive criterion for DME/‘air’ mixtures is
defined as follows:

Sap = βSL

∣∣∣∣ ∂τ

∂T

∣∣∣∣ T′

lT Re−0.5
T

(6)

where β is a constant, T’ is the root mean square of the core gas temperature fluctuation,
and lT is the characteristic length scale of the core gas temperature fluctuation field, which
is comparable to the size of the hotspot. ReT is defined as

ReT =
T′lT

α
(7)
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This study determined β as 0.5, T’ as 1.5 K, and lT as 2 mm, based on the recommenda-
tions of Sankaran et al. [41], Figueroa–Labastida et al. [20], and Javed et al. [23]. Sankaran
number criterion (Sap) = 1 was used as the threshold to distinguish between strong (Sap < 1)
and weak (Sap > 1) ignition modes. Sap < 1 occurs in the case of a highly reactive mixture
with a small temperature gradient, and each local point auto-ignites like a homogeneous
mixture. Sap > 1, on the other hand, indicates that the less reactive mixture will allow the
flame to develop within the mixture, making pre-ignition more likely. The effects of equiva-
lence ratio and pressure on the Sap value of DME/‘air’ mixtures at temperatures ranging
from 770 K to 1250 K are depicted in Figure 10. Clearly, the Sap-predicted ignition modes
for DME/‘air’ mixtures well reproduce the equivalence ratio and pressure dependences of
the pre-ignition observed experimentally in Figures 3 and 4. Specifically, in the temperature
transition zone, the lean and stoichiometric DME mixtures (PHI0.5, PHI1.0) were predicted
to be more prone to pre-ignition than the rich mixtures (PHI2.0, PHI3.0, PHI5.0), whereas
PHI2.0 mixtures tended to undergo strong/homogeneous ignition at 9 atm compared to the
mixtures at 3 atm and 1 atm. Overall, the Sap prediction performance for the pre-ignition
of DME/‘air’ mixtures has been validated across a wider range of equivalence ratios,
temperatures, and pressures.
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5. Conclusions

Understanding hydrocarbon preignition is critical for the operation and design of
internal combustion engines. The pre-ignition behavior of DME mixtures observed in our
previous study [22] inspired this study. An in-depth study of pre-ignition using an HPST
was used to supplement more comprehensive experimental data. Because of the occurrence
of pre-ignition, the IDTs of the PHI0.5, PHI1.0, PHI2.0, and PHI3.0 DME mixtures decreased
significantly in the temperature transition zone (~1000 K). The experimental results in-
dicated that the pre-ignition behavior was strongly dependent on the equivalence ratio
and pressure. DME mixtures with lower pressures (1 and 3 atm) and smaller equivalence
ratios were more prone to pre-ignition. To investigate the tendency of pre-ignition in DME
mixtures, four criteria (Stp, α, Da*, and Sap) were investigated. The temperature perturba-
tion sensitivity Stp was discovered to be a better criterion for interpreting the experimental
pre-ignition behavior. Furthermore, Sap, which describes the competition between laminar
flame propagation velocity and spontaneous front velocity, could efficiently reproduce the
equivalence ratio and pressure dependence of the pre-ignition tendency. The theoretical
prediction parameters Stp = 75 µs/K and Sap = 1 could be used to help identify the con-
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ditions under which inhomogeneous ignition may prevail. The results can also provide
experimentalists with information to avoid specific regimes when designing experiments.

It should be noted that only the fuel combustion characteristics were examined in this
study, regardless of the source of the hot spots. The mechanism for generating hot spots is
still unknown and requires further research. Furthermore, the auto-ignition experiments
below 1000 K at 1 atm could not be conducted in this study because of the limited test time of
the shock tube. In addition, the currently existing DME mechanism has a large uncertainty
at low temperatures and low pressures. Therefore, additional experimental research and
mechanistic investigations are required to identify whether NTC fuel pre-ignition takes
place at low temperatures and low pressure.
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