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Abstract: Domestic water heating accounts for 15% to 27% of the total energy consumption in
buildings in Australia. Over the past two decades, the latent heat thermal energy storage (LHTES)
system has been widely investigated as a way to reduce fossil fuel consumption and increase the
share of renewable energy in solar water heating. However, the research has concentrated on the
geometric optimisation of the LHTES heat exchanger for the past few years, and this might not be
sufficient for commercialisation. Moreover, recent review papers mainly discussed the development
of a particular heat-transfer improvement technique. This paper presents perspectives on various
solar hot water systems using LHTES to shift focus to on-demand performance studies, as well as
structure optimisation studies for faster commercialisation. Future challenges are also discussed.
Since the topic is an active area of research, this paper focuses on references that showcase the overall
performance of LHTES-assisted solar hot water systems and cannot include all published work in
the discussion. This perspective paper provides directional insights to researchers for developing an
energy-efficient solar hot water system using LHTES.

Keywords: heat pipe; latent heat thermal energy storage; phase-change material; NEPCM; solar
energy; solar water heating

1. Introduction

Population growth and rapid industrialisation have substantially increased the global
energy demand, as well as greenhouse gas emissions. To counter this and reduce depen-
dence on fossil-fuel-powered sources, it has now become essential to adopt renewable
energy resources. However, intermittent behaviour and dilute form are key challenges to
their successful utilisation. Energy storage could solve these problems and smoothen the
operation of end-user applications. One such application is solar water heating, where
thermal energy storage can bridge the gap between the energy supply and demand. Ex-
tensive research has been conducted on thermal energy storage technologies over the last
two decades to improve their energy efficiency. Based on the working principle, thermal
energy storage is classified into (i) sensible heat storage, (ii) thermochemical heat storage,
and (iii) latent heat storage. Among these, the latent heat thermal energy storage (LHTES)
system is popular due to its higher energy storage density than the sensible heat storage
system [1–3]. Furthermore, the working fluid of the LHTES system, namely phase-change
material (PCM), exhibits negligible changes in its chemical and thermal properties after
undergoing thousands of thermal cycles. In addition to this, the hot water production cost
of a such solar water heater is approximately one-third of that of the electric water heater [4].
A life-cycle assessment showed that the environmental impacts of LHTES-assisted solar
water heaters are also very competitive with those of the other heating systems [5]. For
these reasons, the topic has become an active area of research for the past two decades.
However, it has been noticed that the research has mainly concentrated on the geometric
optimisation of the LHTES heat exchanger in recent years. There has still been a lack of
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research on overall system performance, although essential for technology commerciali-
sation. Moreover, recent review papers mainly discussed the development of a particular
heat-transfer improvement technique [6–8]. Therefore, this paper presents perspectives on
various solar hot water systems using LHTES to shift focus back to on-demand performance
studies, as well as structure optimisation studies for faster commercialisation.

2. Solar Hot Water Systems Using LHTES

The conventional solar hot water system utilizes a large hot water tank to store thermal
energy. This refers to sensible heat storage. However, the LHTES operates on PCM to store
thermal energy. During charging, the PCM melts at a constant temperature or within a
temperature range, storing the latent heat of fusion. On the other hand, it gets solidified
during discharging and releases the stored energy [9]. The broad classification of PCMs is
shown in Figure 1. Among all, organic PCMs are widely studied for solar water heating
because of their appropriate thermodynamic properties. Furthermore, they are chemically
inert, possess a high latent heat, and perform stably without having a supercooling effect.
However, their lower thermal conductivity (less than 0.3 W/m·K) limits their energy storage
and retrieval performances. Therefore, different configurations have been developed to
effectively store solar energy. These include the following: (i) a heat-pipe-assisted LHTES
system, (ii) LHTES modules integrated into the water tank, and (iii) a water storage tank
with a separate LHTES tank. The perspectives on each storage system are discussed in the
following subsections.
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2.1. Heat-Pipe-Assisted LHTES System

In this type of system, a heat pipe is used to transfer collected solar energy from
solar collectors to the LHTES tank, as shown in Figure 2. The PCM is filled inside the
LHTES tank at the condenser section of the heat pipe. Abhat [10] found that a finned heat
pipe inserted into an LHTES is capable of operating within smaller temperature gradients
(<10 ◦C). Liu et al. [11] concluded that the heat-pipe heat exchanger with LHTES can
perform the functions of simultaneous charging/discharging for the continuous operation
of the system. Analytically, Naghavi et al. [12] showed that integrating the evacuated tube
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heat pipe solar collector (ETHPSC) with LHTES can effectively control the overloading
of the heat pipe and prevent overheating of the water supply during peak solar radiation
hours. According to Lee et al. [13], a two-phase closed thermosyphon system with LHTES
can make the storage tank lighter compared to traditional heating systems. Furthermore,
the charging and discharging efficiencies were 30% and 17% higher while using PCM than
using water.
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The above studies showed that a heat-pipe-assisted LHTES could meet the solar hot
water system’s requirements and improve the structural design and thermal performance
in comparison to the conventional system. Thereafter, many researchers attempted to
enhance the thermal performance of such systems by using multiple heat pipes, fins, and
different PCMs. Brahim et al. [15] achieved a modest improvement by adding fins to the
condenser region of the heat pipes, as illustrated in Figure 3. Numerically, Tiari et al. [16]
found that increasing the number of heat pipes improves the thermal performance through
increasing the melting rate and decreasing the base wall temperature, while increasing
the fin length results in a more uniform temperature distribution within the PCM in
the container. Robak et al. [17] experimentally concluded that fins are not as effective
as heat pipes in improving thermal performance. Regarding the hot water production
capability, Naghavi et al. [14] theoretically extended the operating time for 3 to 4 h with
an outlet water temperature of 39 ◦C. The authors used an array of ETHPSC connected
to a common manifold filled with PCM, as shown in Figure 4. However, the thermal
performance was higher than the conventional heating system only for a water flow rate
higher than 55 L/h. Another analytical study by Bazri et al. [18] reported that the ETHPSC
integrated with the PCM with a melting temperature of 56 ◦C can provide hot water at a
temperature of 46 ◦C for 4 h, with a flow rate of 50 L/h. Based on the theoretical findings,
Naghavi et al. [19] designed and fabricated a compact solar water heating system (Figure 5)
to conduct experimental tests in charging and discharging modes under real ambient
conditions in Malaysia. The system exhibited a thermal efficiency of 38–42% on sunny days
and 34–36% on cloudy/rainy days. The on-demand performance study from the same
research group showed that the system can effectively provide households with hot water
in a tropical climate territory such as Malaysia. With a collector area of 2 m2, the system can
deliver a minimum of 112–170 L of hot water per day in the worst weather conditions [20].
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Researchers also studied another type of heat-pipe-based system in which the PCM is
filled inside the collector tube, as shown in Figure 6. Papadimitratos et al. [21] improved
system efficiency by 26% during normal operation and 66% during stagnation mode when
using PCMs compared to a traditional system without PCMs. Through computational
fluid dynamics (CFD), Pawar and Sobhansarbandi [22] confirmed that the PCM filled
inside the collector tube extends the system operation for a longer period when solar
radiation is not available. Wu et al. [23] proposed a novel composite PCM with two
phase-change temperatures to accomplish the seasonal variations. In contrast to the above
studies, Xue [24] found that the performance of a domestic water heater using PCM-based
solar collector is inferior to that of a traditional solar collector due to the low thermal
conductivity and high viscosity of the PCM. A summary of heat-pipe-assisted LHTES
systems is presented in Table 1.
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Table 1. Summary of the literature on heat-pipe-assisted LHTES systems.

Reference Examined System/Scope of
the Study Type of Study Observations

Abhat [10] A finned-heat-pipe-assisted
LHTES system. Experimental The system was able to operate within

smaller temperature gradients (<10 ◦C).

Liu et al. [11] A heat-pipe heat exchanger with
latent heat storage. Experimental

The system was able to perform
simultaneous charging/discharging for the
continuous operation of the system.

Naghavi et al. [12] The ETHPSC assisted
LHTES system. Numerical

The system was able to control the
overloading of the heat pipe and prevent
overheating of the water supply during peak
solar radiation hours.
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Table 1. Cont.

Reference Examined System/Scope of
the Study Type of Study Observations

Lee et al. [13] A two-phase closed thermosyphon
system with LHTES. Experimental The usage of PCM could make the storage

tank lighter than traditional heating systems.

Brahim et al. [15] A plate-screen-meshes-heat-pipe-
assisted solar water heater. Numerical and Experimental

It achieved a collector efficiency of 60% by
adding fins to the condenser region of the
heat pipes.

Tiari et al. [16] A finned-heat-pipe-assisted
LHTES system. Numerical

An increasing number of heat pipes
improved the thermal performance by
increasing the melting rate.

Robak et al. [17] Different combinations of the heat
pipe and fins in the LHTES system. Experimental Fins were not as effective as heat pipes in

improving thermal performance.

Naghavi et al. [14] The ETHPSC-assisted LHTES
system. Numerical Extended the operating time for 3 to 4 h with

an outlet water temperature of 39 ◦C.

Bazri et al. [18] The ETHPSC-assisted
LHTES system. Numerical

The system was able to provide hot water at
a temperature of 46 ◦C for 4 h, with a flow
rate of 50 L/h.

Naghavi et al. [19] The ETHPSC-assisted
LHTES system. Experimental

It achieved a thermal efficiency of 38–42% on
sunny days and 34–36% on
cloudy/rainy days.

Naghavi et al. [20]
On-demand performance study of
the ETHPSC-assisted
LHTES system.

Experimental
The system was able to deliver a minimum
of 112–170 L of hot water per day in the
worst weather conditions.

2.2. LHTES Modules Integrated into the Water Storage Tank

In this type of system, small PCM containers of various shapes, such as cylindrical,
spherical, etc., are placed inside the hot water tank, as shown in Figure 7. During the
day, the PCM melts and lowers the temperature of the storage tank. Thus, it prevents the
overheating of water and reduces heat losses to the environment.
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A thermodynamic comparison between a solar hot water system with and without
a PCM (Figure 7) revealed that the water temperature at the middle of the storage tank
decreases consistently during the day until the melting point (48.5 ◦C) of the PCM is
reached. After the intensity of solar radiation decreases, the water temperature remains
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constant at 45 ◦C for approximately 10 h. However, the authors did not consider the
drawing of hot water during this period [25].

Mazman et al. [26] added cylindrical-shaped PCM units at the top of the storage tank
and observed a good storage density and lower heat losses in the top layer. The efficiency
was around 74%. During discharge, the average temperature of the storage tank dropped
below the PCM melting temperature range (49–53 ◦C) within 6–12 h. Al-Hinti et al. [27]
placed the PCM-filled aluminium bottles on two levels, as seen in Figure 8. The water
temperature was maintained at 13–14 ◦C higher than the system without a PCM. Wu and
Fang [28] used spherical PCM containers and theoretically observed different temperatures
at different sections of the storage tank. Experimentally, Fazilati and Alemrajabi [29] utilized
PCM-containing spherical capsules in the jacketed shell-type storage tank of the solar hot
water system. The energy storage density and the exergy efficiency were improved by up
to 39% and 16%, respectively. Moreover, the system could supply hot water at a specified
temperature for a 25% longer time. Navarro et al. [30] incorporated PCM-containing high-
density polyethylene spheres into a storage tank and reported the undesired results of PCM
leakage in the laboratory, as illustrated in Figure 9. Therefore, it was recommended that
the PCM spheres must be thermally cycled and cleaned before implementing in the real
application of domestic hot water. Similarly, Fang et al. [31] designed a microencapsulated
phase-change material (MEPCM)-based LHTES system and found that the higher MEPCM
particle fraction and higher PCM core fraction result in a higher energy storage capacity.
However, it slowed down the energy storage rate. Overall, the system exhibited a stable
operation and a high heat transfer rate, indicating that it is practical for use in domestic hot
water systems.
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Researchers also studied the effects of various key parameters such as the type of
PCM, its location inside the tank, the tank’s volume, etc. Nkwetta et al. [32] confirmed
that the top position of the PCM was better than the middle position. It was noticed that
the improvement in the solar fraction through integrating PCM modules depended on the
tank volume [33]. Studies on different PCMs reported that the storage-tank volume can be
reduced by more than 50% by using multiple hybrid storage tanks [34]. An investigation
into the storage tank’s aspect ratios revealed that a higher aspect ratio (3:1) degraded
the charging performance, unlike sensible storage tanks (Figure 10). Therefore, a lower
aspect ratio (1:1) should be preferred for hybrid thermal storage with PCM spheres [35].
Bayomy et al. [36] demonstrated that the storage efficiency of the LHTES system was closely
linked to the user’s hot water demand.

Apart from these studies, research was also carried out on different shaped containers
and configurations. Numerically, Elbahjaoui and Qarnia [37] investigated the rectangular
LHTES (Figure 11) integrated with solar collectors and observed the outlet water tem-
perature in the range of 43.6–24 ◦C, 51.7–24 ◦C, and 62.86–24 ◦C, respectively, for RT42,
RT50, and RT60 during discharging. Abdelsalam et al. [38] examined direct and indirect
heat-exchange modes in the water storage tank and hybrid storage (water + PCM modules)
tanks, as depicted in Figure 12. The direct mode operated with a higher solar fraction than
the indirect mode due to thermal stratification. To further improve the system, the authors
suggest carefully selecting the melting temperature to optimize latent heat storage, which
will minimize temperature fluctuations within the system. Kılıçkap et al. [39] developed an
LHTES system that was integrated with a hot water collector and tested it under Elazığ
climatic conditions (Figure 13). The highest thermal efficiency, namely 58%, was achieved
in July when a PCM was used in the storage tank. Moreover, the system with PCM was
able to transfer stored heat to water at night, providing hot water for an additional 1–1.5 h.
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Contradictory to the above findings, some authors have also reported undesirable
results. The simulation study by Kousksou et al. [40] confirmed that the use of PCMs might
not be beneficial, as previously found by Talmatsky and Kribus [41]. The authors suggested
that the choice of the PCM must be performed on a case-by-case basis depending on the
precise location of the installation. De Gracial et al. [42] extended the work of Farid and
Stretton [43] to validate the previous outcomes and explained the benefits of PCM in the
storage tank. However, the storage volume of the hot water was reduced from 180 to 123 L
due to the incorporation of 57 PCM-filled tubes. The system with many small tubes could
provide hot water for a longer time during the first discharge but a limited time in other
discharges. A summary of the usage of LHTES modules inside the water storage tank is
presented in Table 2.

Table 2. Summary of the literature on the usage of LHTES modules inside the water storage tank.

Reference Examined System/Scope of the Study Type of Study Observations

Canbazoğlu et al. [25] Placed cylindrical LHTES modules
inside the hot water tank. Experimental

The water temperature remained constant at
45 ◦C for approximately 10 h after the solar
radiation decreased.

Mazman et al. [26] Added cylindrical-shaped PCM units at
the top of the storage tank. Experimental

It achieved a thermal efficiency of 74%. During
discharge, the average temperature of the
storage tank dropped below the PCM melting
temperature range (49–53 ◦C) within 6–12 h.

Al-Hinti et al. [27] Placed the PCM-filled aluminium
bottles inside the hot water tank. Experimental The water temperature was maintained at

13–14 ◦C higher than the system without PCM.

Fazilati and Alemrajabi [29]
Utilized PCM-contained spherical
capsules in the jacketed shell-type
storage tank.

Experimental The system was able to supply hot water at a
specified temperature for a 25% longer time.

Fang et al. [31] Designed a MEPCM-based
LHTES system. Experimental

The system exhibited a stable operation and a
high heat transfer rate, indicating that it is
practical for use in domestic hot
water systems.

Nkwetta et al. [32] Studied different positions of PCM
inside the storage tank. Numerical The top position of the PCM was better than

the middle position.

Teamah et al. [34] Studied the combination of different
storage tanks with different PCMs. Numerical

The storage tank volume was reduced by more
than 50% by using multiple hybrid
storage tanks.

Afshan et al. [35] Studied different aspect ratios of the
hybrid water storage tank. Experimental A lower aspect ratio (1:1) was recommended

for hybrid thermal storage with PCM spheres.

Elbahjaoui and Qarnia [37] Rectangular-shaped LHTES with
different PCMs. Numerical

The outlet water temperature was observed in
the range of 43.6–24 ◦C, 51.7–24 ◦C, and
62.86–24 ◦C, respectively, for RT42, RT50, and
RT60 during discharging.

Kılıçkap et al. [39] The PCM was filled inside the annulus
of the hot water tank. Experimental

It achieved the highest thermal efficiency of
58% by using PCM. Moreover, the system with
PCM was able to transfer stored heat to water
at night, providing hot water for an additional
1–1.5 h.

2.3. Water Storage Tank with a Separate LHTES

A separate shell-and-tube heat exchanger has been used as an LHTES either alone
or with the water storage tank, as shown in Figure 14a. During the daytime, a portion
of the hot water coming out from the solar collector is diverted through the LHTES, and
the energy gets stored inside the LHTES. During the nighttime, when the water tank’s
temperature drops below the preset value, the water is circulated via the LHTES to recover
the stored energy.
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Mahfuz et al. [44] used a vertical shell-and-tube heat exchanger that was 1 m in length
as an LHTES (Figure 14b) and filled the annulus with paraffin wax with a melting point
of around 56.06 ◦C. During discharging, the outlet water temperature remained above
40 ◦C for just 30 min, which was for the lowest flow rate (0.033 L/min). Luu et al. [45]
developed a dynamic model of latent heat battery to integrate it with the domestic solar
water heating system. The authors found that the proposed tankless system could increase
fossil fuel savings by 15.7% more than a conventional system. The same authors theoreti-
cally achieved the discharge average temperature of 40 ◦C by considering various design
perspectives of the LHTES system [46]. Lamrani et al. [47] modelled the solar parabolic
trough collector with a 100 m2 area to assist the LHTES system in supplying hot water
to a large building. The authors found that the choice of PCM is crucial for maximising
the system’s performance. Using a PCM with a low melting temperature can result in
an inability to provide hot water at the desired temperature, while a PCM with a high
melting temperature may not fully utilize available solar energy for storage. The authors
recommended paraffin wax RT55 for domestic hot water systems. An experimental study
on a spiral-finned heat exchanger using PCM (melting temperature of 52 ◦C) showed that
the system could provide hot water of 40 ◦C with a flow rate of 0.5 L/min for just 2000 s
(0.55 h) [48]. A performance comparison between latent and sensible heat storages using
a tube-in-tank heat exchanger demonstrated that the hot water temperature should be
emphasized according to phase-change temperature. Furthermore, the system was able
to provide hot water of 40 ◦C with a flow rate of 0.6 L/min for just 19.3 min when the
inlet water temperature was 20 ◦C [49]. Dogkas et al. [50] used a staggered finned heat
exchanger (commonly used as an evaporator and condenser in air-conditioning systems) as
a thermal storage system and observed that tanks can be charged quickly, in less than 2 h,
using either solar energy or a heat pump. In addition, the system was able to produce 106 L
of hot water instantly at a temperature above 40 ◦C during discharging. The capability of
a multi-tube heat exchanger (Figure 15) to serve as the LHTES for a solar water heating
system was examined by Osman et al. [51]. The results showed that the LHTES unit was
able to increase the hot water temperature by 7–12 ◦C and maintained a constant hot water
supply for extended periods of about 2–3 h. Furthermore, natural gas consumption was
also reduced by 130 m3 annually.
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As seen in Figure 16, the series and parallel configurations of the hybrid storage tank
were analysed by Huang et al. [52] through TRNSYS software, and the solar fraction of
the series system was observed to be 30% and 5–12% higher than a single water tank and
parallel configuration, respectively. The authors proposed the use of a PCM with a melting
temperature range between 47.5 and 57.5 ◦C and also optimized the volume ratio of the
PCM unit. Shalaby et al. [53] designed a rectangular container with a finned tube bank to
use as LHTES with a flat plate solar water heater, as illustrated in Figure 17. The authors
divided the PCM into thin slices to improve its thermal conductivity and achieved a daily
efficiency of 65% by combining the PCM and water storage tank. This configuration was
able to provide hot water at a consistent temperature range of 50–60.4 ◦C for 24 h.
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A summary of the hot water systems with a separate LHTES unit is presented in
Table 3.

Table 3. Summary of the literature on the hot water systems with a separate LHTES unit.

Reference Examined System/Scope of the Study Type of Study Observations

Mahfuz et al. [44] A shell-and-tube heat exchanger as a
separate LHTES system. Experimental For the lowest flow rate (0.033 L/min), the outlet water

temperature remained above 40 ◦C for just 30 min.

Luu et al. [45] A shell-and-tube-type tankless latent
heat battery. Numerical Improved the fossil fuel saving by 15.7% more than a

conventional system.

Luu et al. [46] A shell-and-tube-type tankless latent
heat battery. Numerical Achieved the discharge average temperature of 40 ◦C.

Lamrani et al. [47]
Parabolic-trough-collector-assisted
rectangular shell-and-tube-type
separate LHTES system.

Numerical

The PCM with a low melting temperature was unable to
provide hot water at the desired temperature, while a PCM
with a high melting temperature was not able to fully
utilize available solar energy for storage.

Lu et al. [48] A spiral-finned heat-exchanger-type
separate LHTES system. Experimental The system has provided hot water of 40 ◦C with a flow

rate of 0.5 L/min for just 2000 s (0.55 h).

Gao et al. [49] A tube-in-tank-type separate LHTES
system. Experimental The system was able to provide hot water of 40 ◦C with a

flow rate of 0.6 L/min for just 19.3 min.

Dogkas et al. [50] A staggered finned heat exchanger as
a separate LHTES system. Experimental The system was able to produce 106 L of hot water instantly

at a temperature above 40 ◦C during discharging.

Osman et al. [51] A multi-tube heat exchanger as a
separate LHTES system. Numerical and Experimental

The LHTES unit was able to increase hot water temperature
by 7–12 ◦C and maintained a constant hot water supply for
extended periods of about 2–3 h.

Shalaby et al. [53]
Rectangular shell-and-finned
tube-bank-type heat exchanger as a
separate LHTES system.

Experimental The configuration was able to provide hot water at a
consistent temperature range of 50–60.4 ◦C for 24 h.

3. Current Research Activities (Last 5 Years)

In the last decade, various techniques have been developed to improve the heat
transfer rate in the LHTES systems [54] for solar energy applications. This includes investi-
gations into different types of heat exchangers [55–57], different types of shell shapes [58],
different angular positions [59,60], multi-tube heat exchangers [61], eccentric tube heat ex-
changers [62], nanoparticles and porous matrixes [6,63], spiral tube heat exchangers [64,65],
cascaded PCM [8], different types of fins [7,66], etc. One of the most popular techniques,
incorporating nanoparticles into pure PCM, i.e., nano-enhanced phase-change material
(NEPCM), could enhance the thermal conductivity of the PCM and, hence, the overall
thermal performance [67]. However, it also affects the other thermodynamic properties and
thermal stability of the PCM [68], thus making the operation complicated. Another popular
technique, longitudinal fins, is widely investigated because of their low cost and ability
to penetrate the dead zone of the annulus [69]. The researcher then put effort into further
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optimizing the energy storage/retrieval process in a longitudinal finned LHTES system.
This includes studies on different fin parameters [7,70], integration of tube eccentricity with
fins [71,72], the combination of fins with multiple heat transfer tubes [73], the insertion of
metal foams and nanoparticles [74], the combination of fins and rotation [75,76], usage of
optimization methods [77], etc. Recently, research has converged on the innovation of fin
designs. This leads to the development of novel fin structures, such as branched fins [78],
triangular fins [79], superimposed fins [80], snowflake fins [81], tree-shaped fins [82], honey-
comb structured fins [83], punched fins [84], corrugated fins [85], cesaro fins [86], and many
more. However, the manufacturing and integration of such complex fin structures seem
to be difficult. More importantly, the direction of research on heat-transfer improvement
techniques has deviated in recent years. Unfortunately, only a limited number of the afore-
mentioned references discussed the overall system performance of solar hot water systems,
which is a crucial aspect to consider. Most studies have investigated a small individual
LHTES unit under the fixed heat source temperature rather than focussing on a whole inte-
grated solar hot water system. While working on heat-transfer improvement techniques,
researchers also need to keep in mind the system integration and its ability to be commer-
cialised. Therefore, there is a need to work parallelly on both on-demand performance
studies and structure-optimisation studies for the commercialisation of such technology.

4. Perspectives and Challenges

From the aforementioned literature, it can be concluded that the PCM-based LHTES
system can provide hot water for domestic purposes and improve the share of solar energy
in building energy consumption. Each type of system has its advantages and challenges.

(i) The heat-pipe-assisted LHTES system appears to be a promising solution for domestic
hot water supply. Its ability to provide hot water at a temperature of 40–45 ◦C,
at a flow rate of 50 L/h, for an extended period of 3 to 4 h, along with a thermal
efficiency between 30% and 50%, and its ability to solve thermal stratification and
overheat issues are significant advantages. Furthermore, replacing the conventional
hot water tank also reduces the space requirement. These features make the system an
attractive option for those looking to integrate sustainable energy solutions into their
buildings. However, the high cost of the heat-pipe-based solar collector and a lack of
experimental work to prove the system’s effectiveness and economics are challenges
that need to be addressed. Further research and optimization studies are needed to
justify the LHTES applicability and bring down the overall cost of the system.

(ii) The second type of system, which utilizes LHTES modules inside a hot water tank,
has the potential to maintain a temperature of 40–55 ◦C for extended periods, i.e., of
6 to 12 h. However, most studies have not accounted for the hot water withdrawal
during the testing. As of now, there is no evidence to suggest that this type of system
is superior to the first type, but it does exhibit higher thermal efficiency (50–70%),
theoretically. While it cannot fully replace a conventional tank, it has the potential to
reduce the size of the tank. One of the biggest challenges in implementing this type of
system is the risk of PCM leakage from the small LHTES modules if not thermally
cycled before use. Additionally, there are a variety of parameters that govern the
system’s performance, such as the type of PCM, aspect ratio of the storage tank,
position of PCM modules (top, medium, and bottom), storage tank volume, and the
number of storage tanks, which make optimization a complex process. Therefore,
more on-demand performance studies are needed to optimize hot water production
and address the challenges associated with this type of system.

(iii) The third type of system, which utilizes a separate LHTES tank, has not yet reached
maturity. Studies have shown that these systems are currently unable to provide hot
water at temperatures of 40 ◦C for even a short period (3–4 h). The major challenges
are the formation of a solid layer around the inner tube of the heat exchanger during
discharging and the low thermal conductivity of the PCM, which reduces the sys-
tem’s ability to provide hot water at a desired temperature. In addition, the design,
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orientation, and position of the heat exchanger significantly affect the phase-changing
phenomenon and impact the system’s performance. Hence, more research is needed
to improve the heat transfer rate during energy storage and recovery, optimize the
heat exchanger’s design, and find ways to increase the thermal conductivity of the
PCM used in the system.

The research direction on this topic has deviated in recent years, where the focus is on
optimizing the geometry of individual LHTES units rather than considering the overall
performance of the system. This might not be sufficient for developing an effective LHTES
system for wide commercialization. There is still a lack of studies on the performance
and economic analysis of the whole solar hot water system using LHTES under different
operating conditions, weather conditions, and users’ demands. Therefore, it may be
beneficial to focus on both on-demand performance studies and structure optimisation
studies for the faster commercialisation of such a technology.

5. Conclusions and Future Work

Latent heat thermal energy storage (LHTES) has been extensively investigated for
domestic water heating purposes over the past years. Three major types of LHTES systems
have been developed and studied to improve the energy efficiency of hot water production
using solar energy: (i) heat-pipe-assisted LHTES system, (ii) LHTES modules integrated
within a water storage tank, and (iii) water storage tank with a separate LHTES tank.
Among all, the first and second types of systems have been well examined, with several
on-demand system performance studies. However, they still struggled in terms of high cost
and complex optimization procedures. Therefore, further research is necessary to optimize
the key parameters and bring down the overall cost of the system. The third type of system
has not become mature to date. Moreover, the research direction on this topic has deviated
in recent years, where the focus is on optimizing the geometry of individual LHTES units
rather than considering the overall performance of the system. Further research should
work parallelly on both on-demand performance and optimisation studies to speed up the
commercialisation of the technology.
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64. Wołoszyn, J.; Szopa, K.; Czerwiński, G. Enhanced heat transfer in a PCM shell-and-tube thermal energy storage system. Appl.
Therm. Eng. 2021, 196, 117332. [CrossRef]

65. Punniakodi, B.M.S.; Senthil, R. Enhanced heat transfer in a phase change energy storage with helical tubes. J. Energy Storage
2023, 58, 106352. [CrossRef]

66. Zhu, X.; Li, Y.; Zhu, Q. Heat transfer enhancement technology for fins in phase change energy storage. J. Energy Storage
2022, 55, 105833. [CrossRef]

67. Mohammadpour, J.; Lee, A.; Timchenko, V.; Taylor, R. Nano-Enhanced Phase Change Materials for Thermal Energy Storage: A
Bibliometric Analysis. Energies 2022, 15, 3426. [CrossRef]

68. Amin, M.; Putra, N.; Kosasih, E.A.; Prawiro, E.; Luanto, R.A.; Mahlia, T.M.I. Thermal properties of beeswax/graphene phase
change material as energy storage for building applications. Appl. Therm. Eng. 2016, 112, 273–280. [CrossRef]

69. Abdulateef, A.M.; Mat, S.; Abdulateef, J.; Sopian, K. Geometric and design parameters of fi ns employed for enhancing thermal
energy storage systems: A review. Renew. Sustain. Energy Rev. 2018, 82, 1620–1635. [CrossRef]

70. Modi, N.; Wang, X.; Negnevitsky, M.; Cao, F. Melting characteristics of a longitudinally finned-tube horizontal latent heat thermal
energy storage system. Sol. Energy 2021, 230, 333–344. [CrossRef]

71. Kumar, R.; Verma, P. An experimental and numerical study on effect of longitudinal finned tube eccentric configuration on
melting behaviour of lauric acid in a horizontal tube-in-shell storage unit. J. Energy Storage 2020, 30, 101396. [CrossRef]

72. Patel, J.R.; Rathod, M.K.; Sheremet, M. Heat transfer augmentation of triplex type latent heat thermal energy storage using
combined eccentricity and longitudinal fin. J. Energy Storage 2022, 50, 104167. [CrossRef]

73. Ge, R.; Li, Q.; Li, C.; Liu, Q. Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat
thermal energy storage system. Renew. Energy 2022, 187, 829–843. [CrossRef]

74. Arıcı, M.; Kamal, A.; Teggar, M.; Ajarostaghi, S.S.M. Performance enhancement of latent heat storage systems by using extended
surfaces and porous materials: A state-of-the-art review. J. Energy Storage 2021, 44, 103340. [CrossRef]

75. Soltani, H.; Soltani, M.; Karimi, H.; Nathwani, J. Heat transfer enhancement in latent heat thermal energy storage unit using a
combination of fins and rotational mechanisms. Int. J. Heat Mass Transf. 2021, 179, 121667. [CrossRef]

76. Soltani, H.; Soltani, M.; Karimi, H.; Nathwani, J. Optimization of shell and tube thermal energy storage unit based on the effects
of adding fins, nanoparticles and rotational mechanism. J. Clean. Prod. 2022, 331, 129922. [CrossRef]

77. Pizzolato, A.; Sharma, A.; Maute, K.; Sciacovelli, A.; Verda, V. Design of effective fins for fast PCM melting and solidification in
shell-and-tube latent heat thermal energy storage through topology optimization. Appl. Energy 2017, 208, 210–227. [CrossRef]

78. Irfan, M.; Mahabat, M.; Asip, L.; Farooq, H. Melting performance enhancement of a phase change material using branched fins
and nanoparticles for energy storage applications. J. Energy Storage 2021, 38, 102513. [CrossRef]

79. Yao, S.; Huang, X. Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy
storage system. Energy 2021, 227, 120527. [CrossRef]

80. Ma, J.; Xu, H.; Liu, S.; Peng, H.; Ling, X. International Journal of Heat and Mass Transfer Numerical study on solidification
behavior and exergy analysis of a latent heat storage unit with innovative circular superimposed longitudinal fins. Int. J. Heat
Mass Transf. 2021, 169, 120949. [CrossRef]

81. Ren, F.; Du, J.; Cai, Y.; Guo, J.; Liu, Y.; Zhang, D.; Li, M. Study on thermal performance of a new optimized snowflake longitudinal
fin in vertical latent heat storage. J. Energy Storage 2022, 50, 104165. [CrossRef]

82. Huang, Y.; Liu, X. Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins. Renew.
Energy 2021, 174, 199–217. [CrossRef]

83. Elmaazouzi, Z.; Ait, I.; Gounni, A.; El, M.; Outzourhit, A.; Ghali, E. Coupled parameters evaluation of three different finned
structures for concentrated solar thermal energy storage. J. Energy Storage 2022, 51, 104523. [CrossRef]

84. Ding, P.; Liu, Z. International Journal of Thermal Sciences Numerical investigation of natural convection enhancement in latent
heat energy storage units with punched-fin and slit-fin. Int. J. Therm. Sci. 2021, 163, 106834. [CrossRef]

http://doi.org/10.1016/j.est.2020.102202
http://doi.org/10.1016/j.applthermaleng.2020.116244
http://doi.org/10.1016/j.est.2022.105940
http://doi.org/10.1016/j.applthermaleng.2022.118812
http://doi.org/10.3390/en14133821
http://doi.org/10.1016/j.applthermaleng.2021.117332
http://doi.org/10.1016/j.est.2022.106352
http://doi.org/10.1016/j.est.2022.105833
http://doi.org/10.3390/en15093426
http://doi.org/10.1016/j.applthermaleng.2016.10.085
http://doi.org/10.1016/j.rser.2017.07.009
http://doi.org/10.1016/j.solener.2021.10.043
http://doi.org/10.1016/j.est.2020.101396
http://doi.org/10.1016/j.est.2022.104167
http://doi.org/10.1016/j.renene.2022.01.097
http://doi.org/10.1016/j.est.2021.103340
http://doi.org/10.1016/j.ijheatmasstransfer.2021.121667
http://doi.org/10.1016/j.jclepro.2021.129922
http://doi.org/10.1016/j.apenergy.2017.10.050
http://doi.org/10.1016/j.est.2021.102513
http://doi.org/10.1016/j.energy.2021.120527
http://doi.org/10.1016/j.ijheatmasstransfer.2021.120949
http://doi.org/10.1016/j.est.2022.104165
http://doi.org/10.1016/j.renene.2021.04.066
http://doi.org/10.1016/j.est.2022.104523
http://doi.org/10.1016/j.ijthermalsci.2021.106834


Energies 2023, 16, 1969 20 of 20

85. Nicholls, R.A.; Moghimi, M.A.; Griffiths, A.L. Impact of fin type and orientation on performance of phase change material-based
double pipe thermal energy storage. J. Energy Storage 2022, 50, 104671. [CrossRef]

86. Saini, P.; Dhar, A.; Powar, S. Parametric optimization of a cesaro fins employed latent heat storage system for melting performance
enhancement. J. Energy Storage 2022, 51, 104534. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.est.2022.104671
http://doi.org/10.1016/j.est.2022.104534

	Introduction 
	Solar Hot Water Systems Using LHTES 
	Heat-Pipe-Assisted LHTES System 
	LHTES Modules Integrated into the Water Storage Tank 
	Water Storage Tank with a Separate LHTES 

	Current Research Activities (Last 5 Years) 
	Perspectives and Challenges 
	Conclusions and Future Work 
	References

