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Abstract: The deployment of CO2 capture and storage (CCS) and negative emissions technologies
(NETs) are crucial to meeting the net-zero emissions target by the year 2050, as emphasised by the
Glasgow Climate Pact. Over the years, several energy planning models have been developed to
address the temporal aspects of carbon management. However, limited works have incorporated
CCS and NETs for bottom-up energy planning at the individual plant scale, which is considered in
this work. The novel formulation is implemented in an open-source energy system software that has
been developed in this work for optimal decarbonisation planning. The DECarbonation Options
Optimisation (DECO2) software considers multiperiod energy planning with a superstructural model
and was developed in Python with an integrated user interface in Microsoft Excel. The software
application is demonstrated with two scenarios that differ in terms of the availabilities of mitigation
technologies. For the more conservative Scenario 1, in which CCS is only available in later years, and
other NETs are assumed not to be available, all coal plants were replaced with biomass. Meanwhile,
only 38% of natural gas plants are CCS retrofitted. The remaining natural gas plants are replaced with
biogas. For the more aggressive Scenario 2, which includes all mitigation technologies, once again,
all coal plants undergo fuel substitution. However, close to half of the natural gas plants are CCS
retrofitted. The results demonstrated the potential of fuel substitutions for low-carbon alternatives in
existing coal and natural gas power plants. Additionally, once NETs are mature and are available for
commercial deployment, their deployment is crucial in aiding CO2 removal in minimal investment
costs scenarios. However, the results indicate that the deployment of energy-producing NETs
(EP-NETs), e.g., biochar and biomass with CCS, are far more beneficial in CO2 removal versus energy-
consuming NETs (EC-NETs), e.g., enhanced weathering. The newly developed open-source software
demonstrates the importance of determining the optimal deployment of mitigation technologies
in meeting climate change targets for each period, as well as driving the achievement of net-zero
emissions by mid-century.

Keywords: multiperiod energy planning; negative emissions technologies; process integration;
carbon-constrained energy planning; open-source software

1. Introduction

The 17 Sustainable Development Goals (SDGs) of the United Nations are often in-
terlinked. For example, the reduction in global poverty should be aligned with the en-
hancement of the health, education, and economic sectors [1]. Goal 13 is related to climate
actions, which demands urgent actions to mitigate climate change impacts [1]. In 2015,
196 countries adopted the Paris Agreement aimed to limit global warming to within 2 ◦C
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and preferably 1.5 ◦C above pre-industrial levels [2]. Despite this agreement, countries
have shown limited signs of reducing greenhouse gas (GHG) emissions. As of 2020, the
average surface temperature of Earth was 1.2 ◦C higher in comparison to the pre-industrial
period, and the CO2 concentration in the atmosphere exceeded 410 ppm; emissions will
continue to rise unless drastic mitigation actions are taken [3]. The fall in CO2 emissions
during the COVID-19 pandemic was only short-lived, rebounding to the normal trend by
the year’s end [3]. A shift in the economy towards carbon neutrality must occur to prevent
a further rise in GHG emissions [3]. According to the IPCC [4], carbon neutrality can only
be realistically achieved with the use of negative emissions technologies (NETs) in addition
to other climate change mitigation measures. Any delay in mitigation actions would only
compound the adverse impacts of climate change.

The need for deep decarbonisation necessitates efficient energy planning modelling
tools. In response, this work develops an open-source energy system software that can be
used for optimal decarbonisation planning. The mathematical formulation in this work
was inspired by carbon emissions pinch analysis (CEPA) that was developed to determine
the minimum deployment of renewable energy sources in meeting the CO2 emissions
limit of a geographical region [5]. Later versions of CEPA incorporated CO2 capture and
storage (CCS) [6]. However, these earlier works were limited by being unable to consider
time factors, which is an important dimension in progressive decarbonisation. Energy
planning models should be able to handle the temporal aspects of carbon management,
involving variations in demand and CO2 emission limits. A multiperiod energy plan-
ning model [7] was developed with the use of a CEPA-based programming framework
known as the automated targeting method [8]. In comparison to the graphical technique,
mathematical programming approaches are often preferable in the development of energy
planning models due to their ability in handling large-scale problems. Earlier work on the
superstructural model was reported as an alternative approach to solving energy planning
problems similar to those of CEPA methods [9]. Later, a fuzzy integer programming model
was formulated to account for the environmental and economic constraints during CCS
deployment [10]. The optimal matching of CO2 sources to available sinks was then done
via a continuous-time mixed-integer non-linear programming (MINLP) model [11]. In this
work, the MINLP model was simplified to a mixed-integer linear programming (MILP)
model by assuming a fixed flow rate of a CO2 source with no constraints imposed on the
CO2 storage capacities [11]. The practicality of this work was later enhanced by considering
varying CO2 flow rates and the existence of a limit on the CO2 storage capacities [12]. The
work was also made up of a multiperiod model for realistic energy planning involving
CCS deployment. Following this, a further extension to the multiperiod MILP model was
accomplished by considering unequal time intervals [13].

Despite these measures, the use of CO2 removal (CDR) via NETs will still be needed for
limiting global warming [4]. CDR may occur via two types of NETs, i.e., energy-producing
NETs (EP-NETs) and energy-consuming NETs (EC-NETs). The former generates energy
during CO2 load removal. Some examples of EP-NETs are bioenergy with CCS (BECCS)
and biochar [14]. By contrast, there is an energy penalty associated with CO2 load removal
for the latter technology. Direct air capture (DAC) [14], enhanced weathering [15] and
ocean liming [16] are some examples of EC-NETs. In the past, mathematical program-
ming and pinch-based approaches were developed to consider the deployment of NETs
during carbon-constrained energy planning. For the latter approach, the graphical tar-
geting technique [6] was extended to incorporate EP-NETs during energy planning [17].
Recognising that a portfolio of NETs would be required to accelerate CDR, this work was
later revamped for the combined deployment of both EP-NETs and EC-NETs [18]. The
limitations of the graphical targeting technique were overcome with the development of
an algebraic targeting technique in which renewable energy sources, CCS and NETs were
considered during energy planning [19]. An optimal source-sink matching for CDR via
biochar was initially conducted via a MILP model [20]. The objective function of the model
was set for the maximisation of CDR without compromising the soil quality [20]. Other
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work involving biochar was performed via a fuzzy linear programming model involving
biomass co-firing in power plants [21]. Aside from biochar, EW is also an effective means
of CDR, with several mathematical programming approaches being developed previously
to account for its deployment [15]. The optimisation of EW networks initially took place
via a linear programming (LP) model [22]. Due to the uncertainties with EW networks
in terms of silicate rock grinding and property variations, a fuzzy MINLP model was
formulated to address these issues [23]. The fuzzy model was further enhanced to consider
the uncertainties that exist within industrial supply chains and economic evaluations [24].
A recent work considered the use of non-hazardous industrial waste during EW, in which a
superstructural model was developed for its evaluation and analysis [25]. Since large-scale
CDR would require a portfolio of NETs, an LP model was formulated to optimise NETs’
deployment under resource (e.g., land, water, nutrients, and energy) constraints [26]. Due
to a projected extensive deployment of EW, a stand-alone supply chain-like system would
exist, thus presenting a need for its optimisation. Therefore, a more recent work aimed to
use a MILP model for the optimisation of the processes that occur in an EW network [27].

Given the urgent need for decarbonisation, energy planning tools have been developed
to aid in policymaking and the planning for future energy generation. The two major energy
planning modelling tools that are typically employed are the bottom-up and top-down
models. The former model is focused on the components of an energy planning system,
i.e., the availability of various technologies, and the overall costs involved [28]. In other
words, the target demand and emission limits are satisfied based on the technologies
made available in a period and the allocated budget [28]. Meanwhile, the latter model
investigates the impact of set demand and emissions limit targets on the economic and
energy sectors [29]. In other words, the top-down model investigates economic impacts
due to the implementation of such energy policies. In this work, a novel bottom-up model
is developed due to the availability of a wide technology library, aside from cost constraints.
Therefore, the discussion of existing energy planning models will be tailored to those that
have employed the bottom-up model.

An example of a bottom-up energy planning model is the Wien Automated System
Planning model [30]. A user can add energy planning constraints such as fuel availabilities,
system reliability targets, and emissions limits [30]. The model then determines the opti-
mal configurations for the expansion of existing energy systems by considering the costs
involved in existing and new plants [30]. Another integrated energy planning model is
OSeMOSYS [31]. Aside from providing detailed power configurations, this energy plan-
ning model also considers multi-resource (i.e., economic, material and energy) systems [31].
More recently, OSeMOSYS integrated smart grids to deal with intermittent renewable
energy sources [32]. One of the most popular energy planning models is MARKAL [33].
This energy planning model consists of a pool of technologies with their associated costs
and emissions constraints. Based on the demand of the energy planning system, a range
of technologies that minimise the total costs was selected [33]. TIMES is another energy
planning model, which is an extension of MARKAL that integrates an economic approach
to supplement the existing technical approach [34]. The solutions obtained from TIMES
are based on scenario analysis. A base case is developed as a reference for the addition
of interventions (e.g., minimum deployment of renewable energy, permissible emissions
limits, etc.). Once the constraints are incorporated, a separate scenario is then developed
and compared against the base case, which then allows the users to select the best possible
scenario after the evaluation of multiple scenarios [34]. Table 1 presents a summary of the
existing bottom-up energy planning models available for deployment.

From Table 1, it can be observed that in all existing energy planning models, little
focus has been placed on the key role that NETs and CCS can play in the future. Note,
however, that both of these technologies must be incorporated to align with the targets set
during the Paris Agreement [2] and the Glasgow Climate Pact [35]. Therefore, this work
reports the development of a Decarbonisation Options Optimisation (DECO2) software tool
that consists of a pool of technologies, including CCS and NETs, that may be employed to
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meet the CO2 emissions limits at specific facilities, along with new generation capabilities
and decommissioning strategies. There has been no such work conducted in the past
that includes all types of mitigation technologies (i.e., renewable energy, CCS and NETs).
Additionally, previous works did not consider the commissioning and decommissioning
timeline of power plants. This aspect must be considered for realistic energy planning of
deep decarbonisation. The multiperiod energy planning model in this software may be
employed by policymakers to determine long-term decarbonisation strategies. The latter
includes the timeline for the decommissioning of plants, technology implementation, and
fuel substitutions for fossil-based power plants (to renewable energy sources). The mathe-
matical programming in the software is expected to provide rigorous optimal solutions,
subject to constraints such as the availability of low-carbon fuels and renewable energy
sources, technology readiness, etc. The paper is organised as follows. A formal problem
statement is presented in the next section. This is then followed by the mathematical
formulations for carbon-constrained energy planning. The software infrastructure is then
presented to demonstrate the software application. Two scenarios of a hypothetical case
study that differ in terms of the deployment of mitigation strategies are presented to show
the applicability of the DECO2 software. Finally, conclusions and prospects for future work
are provided.

Table 1. Summary of bottom-up energy planning models.

Energy Planning Models Features Missing Key Feature

WASP

- Power generation systems
- Fuel availabilities and

emissions limits
- Optimal expansion of

existing energy systems
- Cost of existing and new

energy generation plants

CCS and NETs for individual
plants

OSeMOSYS

- Integrated assessment for
energy planning

- Multi-resource systems
(economic, material and
energy)

MARKAL

- A pool of technologies for
satisfying emissions and
cost constraints

- NETs’ deployment
- Open-source software
- Commissioning and

decommissioning
strategies

- Technology
implementation time

- Easy-to-use input
spreadsheet

TIMES

- Extension to MARKAL
- Incorporates economic

approach
- Viewing multiple energy

planning scenarios

2. Problem Statement

The formal problem statement for the development of a process integration-based
software tool for optimal decarbonisation is as follows:
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• A pool of fossil-based (coal and natural gas) and renewable energy-based (solar,
hydropower, etc.) plants are available to satisfy the energy demand and CO2 emissions
limit of an energy planning system in period k ∈ K.

• Power plant i has a lower-bound energy output (Fi,LB), an upper-bound energy output
(Fi,UB) and CO2 emissions intensity (CSi) that make up the energy planning system for
period k ∈ K.

• The commission and decommissioning periods for power plant i are specified.
• The total energy demand (Dk) and CO2 emission limit (Lk) of the energy planning

system in period k ∈ K are specified.
• The removal of the CO2 emissions in period k ∈ K is aided by the deployment of

renewable energy source r ∈ R, CCS technology n ∈ N, EP-NETs technology p ∈ P,
EC-NETs technology q ∈ Q, alternative solid-based fuel s ∈ S and alternative gas-
based fuel g ∈ G.

• The main task is to determine the energy generation from power plant i and the mini-
mum deployment of each technology (renewable energy, CCS, NETs and alternative
fuel) in satisfying the demand and CO2 emissions constraints of an energy planning
system in period k ∈ K.

Figure 1 presents a superstructure representation of the process integration-based
software for optimal decarbonisation.
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3. Mathematical Formulation of DECO2

DECO2 is based on a superstructural model, consisting of existing and upcoming
power plants available for power generation, as well as a pool of mitigation technologies.
The superstructural model initially determines the energy generation from power plant i
that satisfies the power demand of energy planning period k. Following this, the optimal
deployment of mitigation technologies, i.e., renewable energy sources, CCS, NETs and
alternative fuels, in period k is determined based on the demand and CO2 emissions
constraints. The superstructural model developed in this work would act as a guide to
policymakers in terms of power plants’ commissioning and decommissioning timelines
and total costs involved in meeting the energy demand and CO2 emissions limits of a
geographical region.

First, the cumulative deployment of energy source from power plant i ε I should satisfy
the energy demand of period k, as shown in Equation (1). Note that energy generation
by power plant i in period k (FSi,k) is constrained by its lower (Fi,LB) and upper bound of
energy generation (Fi,UB), as demonstrated in Equation (2) and Equation (3), respectively.
This section may be divided into subheadings. It should provide a concise and precise
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description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

∑
i

FSi,k = Dk ∀k (1)

FSi,k ≥ Fi,LB × Ai,k ∀i ∀k (2)

Si,k ≤ Fi,UB × Ai,k ∀i ∀k (3)

where Ai,k is the binary variable for energy generation by power plant i in period k.
Next, the energy generation from power plant i in period k is subject to either its com-

missioning or decommissioning timeline, as demonstrated Equation (4). Energy generation
from power plant i would only take place from the commissioning period (CMi) onwards.
Before the commissioning period, there should not be any energy generation from power
plant i. By contrast, energy generation from power plant i would only take place until the
period before the decommissioning period (DCMi).

FSi,k =

{
0, k < CMi
0, k ≥ DCMi

∀i ∀k (4)

Further, the energy generated from power plant i in period k should at least match
its generation in the previous period, as shown in Equation (5). This constraint ensures a
continuous operation of power plant i if it is selected for power generation. A temporary
shutdown of power plant i would be impractical, thus resulting in a negative return on
investment.

FSi,k+1 ≥ FSi,k ∀i ; k = 1, 2, . . . , n− 1 (5)

CCS is one of the mitigation technologies that may be employed in power plant i for
the satisfaction of the CO2 emissions limits [36]. CDR via CCS decreases the CO2 intensity
of power plant i (CSi). Therefore, the CO2 intensity of power plant i with the deployment
of CCS technology n in period k (CRi,k,n) is calculated from Equation (6) [6]:

CRi,k,n =
CSi × (1− RRk,n)

1− Xk,n
∀i ∀k ∀n (6)

where RRk,n and Xk,n represent the removal ratio and parasitic power loss of CCS technology
n in period k, respectively.

The deployment of CCS technology n is constrained by the upper bound of energy
generation by power plant i, as shown in Equation (7). Further, the cumulative deployment
of all CCS technologies should not exceed the energy generation by power plant i in period
k, as demonstrated in Equation (8).

FRi,k,n ≤ Fi,UB × Bi,k,n ∀i ∀k ∀n (7)

∑
n

FRi,k,n ≤ FSi,k ∀i ∀k (8)

where FRi,k,n is the deployment of CCS technology n in power plant i in period k, and Bi,k,n
is the binary variable for the deployment of CCS technology n in power plant i in period k.

Like the energy generation from power plant i, the deployment of CCS technology n
in power plant i in period k should at least match its deployment in the previous period, as
shown in Equation (9). CCS technology is capital intensive. Therefore, it is not practical
and is economically unviable for CCS technology n to be deployed in period k and not used
in the subsequent period.

FRi,k+1,n ≥ FRi,k,n ∀i ∀n ; k = 1, 2, . . . , n− 1 (9)
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CCS deployment incurs parasitic power loss of energy sources. Therefore, the net
energy of power plant i after the deployment of CCS technology n in period k (FNRi,k,n) is
calculated from Equation (10):

FRi,k,n × (1− Xk,n) = FNRi,k,n ∀i ∀k ∀n (10)

Aside from CCS, mitigation technologies that are available for power plant i in this
work are alternative solid-based fuel s and alternative gas-based fuel g. Note that alternative
solid and gas-based fuels may be used to replace fuels in power plant I, which are in solid
and gas phases, respectively. The deployment of these alternative fuels in power plant i
in period k should at least match their deployment in the previous period, as shown in
Equations (11) and (12). The reasoning for this is the same as for CCS deployment.

FASi,k+1,s ≥ FASi,k,s ∀i ∀s ; k = 1, 2, . . . , n− 1 (11)

FAGi,k+1,g ≥ FAGi,k,g ∀i ∀g ; k = 1, 2, . . . , n− 1 (12)

where FASi,k,s and FAGi,k,g are the deployment of alternative solid-based fuel s and gas-based
fuel g in power plant i in period k, respectively.

Further, the deployment of alternative solid-based fuel s and gas-based fuel g in power
plant i in period k is constrained by the upper bound of power generation by power plant i,
as shown in Equations (13) and (14), respectively. The use of alternative fuels should never
exceed the maximum power generation by power plant i, as these low-CO2-intensity fuels
are only purposed to replace the higher CO2-intensity fuels that were originally deployed.

FASi,k,s ≤ Fi,UB × Gi,k,s ∀i ∀k ∀s (13)

FAGi,k,g ≤ Fi,UB × Hi,k,g ∀i ∀k ∀g (14)

where Gi,k,s and Hi,k,g are the binary variables for the deployment of alternative solid-based
fuel s and gas-based fuel g in power plant i in period k, respectively.

The cumulative deployment of all mitigation technologies available in this work
should equate to the energy generated by power plant i in period k (FSi,k), as demonstrated
in Equation (15). The latter is initially determined from Equation (1).

FNSi,k + ∑
n

FRi,k,n + ∑
s

FASi,k,s + ∑
g

FAGi,k,g = FSi,k ∀i ∀k (15)

where FNSi,k is the net energy of power plant i without the deployment of mitigation
technologies.

Other mitigation technologies that are available in this work are renewable energy
source r, EP-NETs technology p and EC-NETs technology q. Note that these technologies
are not plant-specific. Instead, the cumulative deployment of these mitigation technologies
is determined for period k. The deployment of renewable energy source r (FCk,r), EP-NETs
technology p (FEPk,p) and EC-NETs technology q (FECk,q) in period k are constrained by
the availability of each technology, as demonstrated in Equation (16), Equation (17) and
Equation (18), respectively:

FCk,r ≤ ACk,r × Ck,r ∀k ∀r (16)

FEPk,p ≤ AEPk,p × Dk,p ∀k ∀p (17)

FECk,q ≤ AECk,q × Ek,q ∀k ∀q (18)

where Ck,r, Dk,p and Ek,q are the binary variables for the deployment of renewable energy
source r, EP-NETs technology p and EC-NETs technology q in period k, respectively, and
ACk,r, AEPk,p and AECk,q are the availabilities of renewable energy source r, EP-NETs
technology p and EC-NETs technology q in period k, respectively.
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Similar to the CCS and alternative fuels, the deployment of renewable energy source r,
EP-NETs technology p and EC-NETs technology q in period k should at least match their
deployment in the previous period, as demonstrated in Equation (19), Equation (20) and
Equation (21), respectively. Should a plant be commissioned in period k, it is economically
viable for its operation to be continuous in subsequent periods to ensure a positive return
on investment.

FCk+1,r ≥ FCk,r ∀r ; k = 1, 2, . . . , n− 1 (19)

FEPk+1,p ≥ FEPk,p ∀p ; k = 1, 2, . . . , n− 1 (20)

FEQk+1,q ≥ FEQk,q ∀q ; k = 1, 2, . . . , n− 1 (21)

The cumulative deployment of all mitigation technologies (CCS, alternative fuels,
renewable energy sources and NETs) should satisfy the total demand of the energy system
of period k; the latter includes the total power requirement (Dk) and that required by
EC-NETs (FECk,q), as demonstrated in Equation (22):

∑
i

FNSi,k + ∑
i

∑
n

FNRi,k,n + ∑
i

∑
s

FASi,k,s + ∑
i

∑
g

FAGi,k,g

+∑
r

FCk,r + ∑
p

FEPk,p = ∑
q

FECk,q + Dk ∀k
(22)

Following this, the total CO2 load contribution from all power plants and mitigation
technologies of energy planning period k (TEk) is determined from Equation (23):

∑
i

FNSi,kCSi + ∑
i

∑
n

FNRi,k,nCRi,k,n + ∑
i

∑
s

FASi,k,sCIASk,s+

∑
i

∑
g

FAGi,k,gCIAGk,g + ∑
r

FCk,rCICk,r + ∑
p

FEPk,pCIEPk,p

+ ∑
q

FECk,q CIECk,q = TEk ∀k

(23)

where CIASk,s, CIAGk,g, CICk,r, CIEPk,p and CIECk,q represent the CO2 intensities of alterna-
tive solid-based fuel s, alternative gas-based fuel g, renewable energy source r, EP-NETs
technology p and EC-NETs technology q in period k, respectively.

Next, the total costs of power generation by power plant i in period k (CTFk) are
calculated from Equation (24). Whereas the first term of those equations represents the
operating costs, the remaining two terms constitute the capital expenditure of the mitigation
technologies. For capital expenditure, the second term relates to the fixed cost associated
with the development of a new plant, e.g., land and machinery. Meanwhile, the third term
is the fixed cost associated with the plant’s capacity. A larger plant capacity would have a
higher fixed cost, and vice versa.

FCk+1,r ≥ FCk,r ∀r ; k = 1, 2, . . . , n− 1 (24)

where AFF is the annualized cost factor, and OFi,k, FC1i,k and FC2i,k are the operational
costs, fixed capital costs and capacity-dependent capital costs of power plant i in period k,
respectively.

Following this, the total costs associated with the deployment of renewable energy
source r (CTCk), EP-NETs technology p (CTEPk) and EC-NETs technology q (CTEQk) in
period k are determined from Equation (25), Equation (26) and Equation (27), respectively:

∑
r

(
(FCk,r OCk,r) + (AFF.Ck,r CC1k,r )+

(AFF.FCk,rCC2k,r)

)
= CTCk ∀k (25)

∑
p

(FEPk,p OEPk,p

)
+
(

AFF.Dk,pEPC1k,p

)
+(

AFF.FEPk,pEPC2k,p

)  = CTEPk ∀k (26)
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∑
q

(FECk,q OECk,q

)
+
(

AFF.Ek,qECC1k,q

)
+(

AFF .FECk,qECC2k,q

)  = CTEQk ∀k (27)

where OCk,r, OEPk,p and OECk,q are the operational costs of renewable energy source r,
EP-NETs technology p and EC-NETs technology q in period k, respectively. Meanwhile,
CC1k,r, EPC1k,p and ECC1k,q are the fixed capital costs of renewable energy source r, EP-
NETs technology p and EC-NETs technology q in period k, respectively. Further, CC2k,r,
EPC2k,p and ECC2k,q are the capacity-dependent capital costs of renewable energy source r,
EP-NETs technology p and EC-NETs technology q in period k, respectively.

The total cost of the energy planning period k (TCk) is calculated from Equation (28).
Note that this calculation procedure considers all power plants and mitigation technologies,
including those calculated from Equation (25), Equation (26) and Equation (27).

CTFk + ∑
i

∑
n
(FNRi,k,n CTRk,n + AFF.CFRk,nBi,k,n)

+∑
i

∑
s
(FASi,k,s CTASk,s + AFF.CFASk,sGi,k,s)

+∑
i

∑
g

(
FAGi,k,g CTAGk,g + AFF.CFAGk,g Hi,k,g

)
+ CTCk

+CTEPk + CTECk = TCk ∀k

(28)

where CTRk,n is the power generation cost with the deployment of CCS technology n in
period k, and CFRk,n, CFASk,s and CFAGk,g are the fixed costs associated with the deployment
of CCS technology n, alternative solid-based fuel s and gas-based fuels g in period k,
respectively. Meanwhile, CTASk,s and CTAGk,g are the costs of alternative solid-based fuel s
and gas-based fuels g in period k, respectively.

Subsequently, Equations (29) and (30) present the constraints related to the total CO2
emissions and total energy planning cost, respectively.

TEk ≤ Lk ∀k (29)

TCk ≤ BDk ∀k (30)

where BDk is the budget allocation of energy planning period k.
The objective function of this work is set to minimise either the total energy planning

cost (Equation (31)) or total CO2 emissions (Equation (32)). If the former is selected as the
objective function, the constraints from Equation (1) to Equation (29) ensure that the CO2
emissions limit of a geographical region in period k is satisfied. Meanwhile, for the latter
objective function, the constraints from Equation (1) to Equation (28) and Equation (30)
limit the deployment of mitigation technologies subject to the budget availability of energy
planning period k. Therefore, the CO2 emissions limit may or may not be satisfied.

minTCk (31)

minTEk (32)

The presence of both continuous and integer variables results in the formulation
being a MILP model. The mathematical formulation in this work is set up in Python, by
using the open-source modelling language Pyomo [37]. The use of Pyomo allows users
to freely use and modify the developed software. Additionally, this software may be
utilised by all types of industries, as it is in a publicly available domain. Meanwhile, an
easy-to-use input spreadsheet was developed in Microsoft Excel for the inclusion of the
necessary energy planning data. The optimisation problem is solved to global optimality
using the CPLEX solver from GAMS [38]; however, it can also be easily solved using
open-source solvers such as CBC and Octeract [39]. In other words, one may not need
access to GAMS for the use of the DECO2 software. Note that both CBC and Octeract
are available in the public domain. The mathematical formulation of this work titled
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‘Base_Model_Python.py’ is available on the DECO2 GitHub page, which is accessible via
https://github.com/mchlshort/DECO2 (accessed on 12 December 2022) or as a website
hosted accessibly via www.deco2.nottingham.edu.my (hostname confirmed, website active
on 1 March 2023). The next section presents the software infrastructure of the process
integration-based software for optimal decarbonisation.

4. Software Infrastructure

The superstructural model formulation in this work is set up in Python, using the
Pyomo algebraic modelling package, with an integrated user interface in Microsoft Excel,
as demonstrated in Figure 2.
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The energy planning data that are required during optimisation are imported from
the user interface file entitled ‘Base_User_Interface.xlsx’, which was set up in Microsoft
Excel. Besides creating a user-friendly tool, the inclusion of the energy planning data in a
Microsoft Excel file allows energy planners without programming knowledge to utilise the
software framework to carry out optimal decarbonisation. Note that fifteen sets of data
must be included in the user interface file. Each tab in the user-interface file consists of data
that must be included by energy planners before optimising the superstructural model in
Python. Table 2 presents the energy planning information related to each tab in the user
interface file.

As indicated in Table 2, the entries for all tabs (except ‘TECH_IMPLEMENTATION_TIME’)
in the user interface file consist of numerical values. However, the information in the
‘TECH_IMPLEMENTATION_TIME’ tab is non-numerical. Instead, an energy planner needs
to input the availabilities of the mitigation technologies in each period in terms of ‘YES’
(present) and ‘NO’ (absent). Upon inputting all energy planning data in the user interface
file, an energy planner may choose the objective function from the ‘PLANT_DATA’ tab, as
shown in Figure 3.

https://github.com/mchlshort/DECO2
www.deco2.nottingham.edu.my
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Table 2. Energy planning information related to each tab in the user interface file.

Microsoft Excel Tab Energy Planning Information

PLANT_DATA

Type of fuels, lower and upper bounds of power
generation, CO2 intensities, commissioning and
decommissioning timeline of existing and upcoming
power plants

ENERGY_PLANNING_DATA Power demand, CO2 emissions limit and budget
availability in each energy planning period

FUEL_COST_DATA Costs of fuels utilised in power plants in each energy
planning period

RENEWABLE_CI_DATA CO2 intensities of available renewable energies in each
energy planning period

RENEWABLE_COST_DATA Costs of available renewable energies in each energy
planning period

CAPEX_DATA_1 Fixed capital costs of mitigation technologies in each
energy planning period

CAPEX_DATA_2 Capacity-dependent capital costs of mitigation
technologies in each energy planning period

ALT_SOLID_CI CO2 intensities of alternative solid-based fuels in each
energy planning period

ALT_SOLID_COST Costs of alternative solid-based fuels in each energy
planning period

ALT_GAS_CI CO2 intensities of alternative gas-based fuels in each
energy planning period

ALT_GAS_COST Costs of alternative gas-based fuels in each energy
planning period

CCS_DATA
Removal ratios, parasitic power loss, power generation
costs and fixed costs of CCS technologies in each energy
planning period

NET_CI_DATA CO2 intensities of available NETs in each energy
planning period

NET_COST_DATA Costs of available NETs in each energy planning period

TECH_IMPLEMENTATION_TIME The availabilities of mitigation technologies in each
energy planning period
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Based on Figure 3, cell ‘B30′ presents the choices of objective functions available in this
work. The available objective functions are ‘min_budget’ (Equation (31)) and ‘min_emission’
(Equation (32)). An energy planner may choose one of the objective functions depending on
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one’s preference. Further, the energy planner may specify the number of energy planning
periods based on the dropdown list in cell ‘B31′. An energy planner may choose between 1
and 50 periods. Depending on the number of energy planning periods selected, an energy
planner should input the energy planning data for the specified number of periods.

Next, an energy planner may optimise the superstructural model in the Python file
entitled ‘Base_Model_Python’. Lines 692 and 694 of Figure 4 present the solver statement of
the superstructural model, which makes use of the CPLEX solver from GAMS [38]. Note
that a user may choose to alter the solver name on line 694 to any other suitable MILP
solver if one does not have access to the CPLEX solver.
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Figure 4. Optimising the superstructural model in Python.

Upon optimising the superstructural model, the console displays the solver status
and parameters associated with an optimisation problem, e.g., the number of objectives,
variables, user time, etc. If the termination condition is mentioned as ‘optimal’, it indicates
that the superstructural model is solved to global optimality. An energy planner may now
re-open the Microsoft Excel file to view results. Figure 5 presents the snapshot of the results
in the user interface file.
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Since six periods were chosen previously in Figure 3, an equivalent number of tabs
were created in the user interface file, as shown in Figure 5. The results in Figure 5 consist
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of all power plants specified in the ‘PLANT_DATA’ tab, as well as the available mitigation
technologies. Table 3 describes the definition of the column heading in Figure 5.

Table 3. Energy planning information related to each tab in the user interface file.

Column Heading Description

Fuel Type of fuel used in the power plant

Gross Energy Gross energy generated by each power plant

CCS_1 Ret Energy from each power plant subjected to the deployment of CCS
technology 1

CCS_2 Ret Energy from each power plant subjected to the deployment of CCS
technology 2

SOLID_1 Energy generation by alternative solid-based fuel type 1 in each
power plant

SOLID_2 Energy generation by alternative solid-based fuel type 2 in each
power plant

GAS_1 Energy generation by alternative gas-based fuel type 1 in each
power plant

GAS_2 Energy generation by alternative gas-based fuel type 2 in each
power plant

Net Energy The net energy of each power plant and mitigation technology (NETs
and renewable energy)

CO2 Load The total CO2 load of each power plant and mitigation technology
(NETs and renewable energy)

Cost The total cost of the energy planning system

At this stage, an energy planner may analyse and evaluate the results to determine the
practicality and ease of deployment of mitigation technologies. If any results are deemed
unsuitable or overly optimistic, an energy planner may alter the energy planning data
before re-running the optimisation software. Note that the energy planning may only
need to alter the energy planning data, since all variables and constraints were specified in
Python, with no inputs required from an energy planner.

The next section presents a case study that is used to demonstrate the optimal decar-
bonisation software framework.

5. Case Study

A hypothetical case study is used to demonstrate the application of the process
integration-based software framework for optimal decarbonisation. The superstructural
model in this work is demonstrated with six periods, each spanning a time interval of five
years. Table 4 presents the energy planning data that are specified in the user interface file
entitled ‘Base_User_Interface.xlsx’. Note that the data in Table 4 are assumed and do not
represent any real-life scenario. These energy planning data, though not representative
of an industrial scenario, would demonstrate the applicability of the software for optimal
decarbonisation. The data in Table 4 are arranged in the order of the Microsoft Excel tabs
mentioned in Table 2. Note that the data relevant to the ‘TECH_IMPLEMENTATION_TIME’
tab are excluded for now.
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Table 4. Energy planning information related to each tab in the user interface file.

Plant Category Fuel Lower Bound
(TWh y−1)

Upper Bound
(TWh y−1)

CO2 Intensity
(Mt TWh−1) CMi DCMi

Plant 1
Renewable Solar

20.03 26.70 0.15 1 7

Plant 2 15.98 21.30 0.15 1 7

Plant 3

Fossil Fuel

Natural Gas

5.13 20.50 0.50 1 7

Plant 4 3.48 13.90 0.50 1 7

Plant 5 4.20 16.80 0.50 1 7

Plant 6 Oil 4.00 16.00 0.80 1 3

Plant 7
Coal

6.68 26.70 1.00 1 5

Plant 8 4.53 18.10 1.00 1 7

Plant 9
Renewable Solar

15.00 20.00 0.15 2 7

Plant 10 18.75 25.00 0.15 4 7

As shown in Table 4, there are 10 power plants available for power generation.
Whereas the first eight plants are existing power plants (commissioned from Period 1
onwards), Plants 9 and 10 are upcoming power plants to be commissioned from Periods
2 and 4, respectively. In other words, Plants 9 and 10 would not be available for power
generation before Periods 2 and 4, respectively. On the other hand, Plants 6 and 7, utilis-
ing oil and coal, respectively, would be decommissioned in Periods 3 and 5, respectively.
Meanwhile, the lower bound of power generation by plants utilising renewable energy
sources (Plants 1, 2, 9 and 10) is set to 75% of their upper bounds. In other words, the power
generation from operational renewable-based power plants should at least be 75% of their
maximum design capacity, since these plants cannot be ramped up easily to meet a sudden
demand surge [40]. By contrast, power generation from plants utilising fossil-based sources
may be ramped up quickly. Therefore, the lower bound for these plants (Plants 3 till 8) is
set to 25% of their maximum generation capacity.

In Table 5, the energy planning is conducted based on incremental energy demand
and stricter CO2 emissions limits between successive periods. This scenario is often
observed in developing countries with increasing populations, which leads to higher
demand requirements. At the same time, lower CO2 emissions limits are required for
countries to meet their climate change targets. Note that the CO2 emissions limit is observed
to undergo a drastic decline at later periods. It is projected that the greater availability
of mitigation technologies at later periods would make it relatively easier to drive CO2
emissions reduction. Note that this work targets to achieve net-zero emissions by the
final period, consistent with the pledges made at COP26 [35]. Further, economic growth
contributes to a greater budget being available for energy planning across periods. Since
the power plants in Table 4 make use of solar, natural gas, oil and coal, the associated fuel
costs are presented in Table 6. As fossil-based sources are technologically matured, their
costs are projected to remain stable for all periods [41,42]. By contrast, recent technological
advancement has resulted in a significant decline in the cost of solar energy [43–45]. This
information is captured in this work with the declining cost of solar energy in Table 6. Note
that the cost decline in earlier periods is gradual, before increasing drastically towards
later periods.

Table 5. Case study energy planning data: ‘ENERGY_PLANNING_DATA’.

Energy Planning Parameters 1 2 3 4 5 6

Demand (TWh y−1) 60 75 90 105 120 135

CO2 Emissions Limit (Mt) 20 18 15 11 6 0

Budget (mil USD y−1) 3000 3500 4000 4500 5000 5500
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Table 6. Case study energy planning data: ‘FUEL_COST_DATA’.

Fuel Cost
(mil USD TWh−1) 1 2 3 4 5 6

Natural Gas 25

Oil 49

Coal 12

Solar 40 35 25 13 8 3

Aside from the existing plants, this work also considers the potential deployment
of renewable energies as separate plants for the mitigation of CO2 emissions. The five
renewable energies that are considered in this work are solar, hydropower, biomass, biogas
and municipal solid waste (MSW). Each renewable energy differs in terms of CO2 intensities
(Table 7) and costs (Table 8). Like solar energy, the CO2 intensities and costs of renewable
energies are expected to decrease across periods [45,46]. In the final period, solar energy
would be the cheapest [43,45] and has the lowest CO2 intensity [19,47]. The superstructural
model in this work would determine the optimal deployment of renewable energy sources
(if necessary) to meet the demand and CO2 emissions limits.

Table 7. Case study energy planning data: ‘COMPENSATORY_CI_DATA’.

CO2 Intensity of Renewable Energy
(Mt TWh−1) 1 2 3 4 5 6

Solar 0.10 0.09 0.08 0.07 0.06 0.05

Hydropower 0.15 0.14 0.13 0.12 0.11 0.10

Biomass 0.30 0.28 0.26 0.24 0.22 0.20

Biogas 0.25 0.23 0.21 0.19 0.17 0.15

Municipal Solid Waste 0.30 0.29 0.28 0.27 0.26 0.25

Table 8. Case study energy planning data: ‘COMPENSATORY_COST_DATA’.

Cost of Renewable Energy
(mil USD TWh−1) 1 2 3 4 5 6

Solar 40 35 25 13 8 3

Hydropower 30 29 28 27 26 25

Biomass 20 18 16 14 12 10

Biogas 25 23 21 19 17 15

Municipal Solid Waste 20 19 18 17 16 15

Next, Tables 9 and 10 present the capital costs associated with all plants (fossil fuel,
renewable and NETs). Note that this work assumes the capital expenditure for NETs plants
to be higher than for fossil-based plants. Given that NETs are still in an early development
phase with a lack of technological maturity, it is assumed that greater initial investment
is required for NETs plants. However, the capital costs of all plants except fossil-based
plants are expected to decrease across periods, with solar witnessing the largest decline.
The capital costs for fossil-based plants are projected to remain constant, and their values
are derived from the literature [41,42].
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Table 9. Case study energy planning data: ‘COMPENSATORY_CI_DATA’.

Fixed Capital Costs
(mil USD TWh−1) 1 2 3 4 5 6

Natural Gas

400Oil

Coal

Solar 400 350 300 250 200 150

Hydropower 400 380 360 340 320 300

Biogas

400 390 380 370 360 350Biomass

Municipal Solid Waste

EP-NET 1

600 550 500 450 400 350EP-NET 2

EP-NET 3

EC-NET 1

800 750 700 650 600 550EC-NET 2

EC-NET 3

Table 10. Case study energy planning data: ‘COMPENSATORY_CI_DATA’.

Fixed Capital Costs
(mil USD TWh−1) 1 2 3 4 5 6

Natural Gas

100Oil

Coal

Solar 100 85 70 55 40 25

Hydropower 100 90 80 70 60 50

Biogas

100 95 90 85 80 75Biomass

Municipal Solid Waste

EP-NET 1

150 140 130 120 110 100EP-NET 2

EP-NET 3

EC-NET 1

200 190 180 170 160 150EC-NET 2

EC-NET 3

In this work, alternative solid (biomass) and gas-based fuels (biogas) are meant to
replace coal and natural gas, respectively. For each fuel replacement, there are two types
available for use. For example, the two choices of biomass could be an empty fruit bunch
and a palm kernel shell [48]. Meanwhile, examples of biogas may be palm oil mill efflu-
ent [48] and animal manure [49]. In this work, it is assumed that the cheaper alternative fuel
would have higher CO2 intensity, and vice versa. The reasoning behind this assumption
is that fuels with lower CO2 intensity would often be subjected to processes with high
operating costs. The CO2 intensities and cost of the alternative fuels are presented in
Tables 11–14. Once again, the improved energy efficiencies are projected to decrease the
CO2 intensities and costs of alternative fuels across periods.
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Table 11. Case study energy planning data: ‘ALT_SOLID_CI’.

CO2 Intensity of Alternative
Solid-Based Fuel

(Mt TWh−1)
1 2 3 4 5 6

Technology 1 0.15 0.14 0.13 0.12 0.11 0.10

Technology 2 0.25 0.23 0.21 0.19 0.17 0.15

Table 12. Case study energy planning data: ‘ALT_SOLID_COST’.

Cost of Alternative Solid-Based
Fuel

(Mt TWh−1)
1 2 3 4 5 6

Technology 1 20 19 18 17 16 15

Technology 2 15 14 13 12 11 10

Table 13. Case study energy planning data: ‘ALT_GAS_COST’.

CO2 Intensity of Alternative
Gas-Based Fuel

(Mt TWh−1)
1 2 3 4 5 6

Technology 1 0.15 0.14 0.13 0.12 0.11 0.10

Technology 2 0.25 0.23 0.21 0.19 0.17 0.15

Table 14. Case study energy planning data: ‘ALT_GAS_CI’.

Cost of Alternative Gas-Based Fuel
(Mt TWh−1) 1 2 3 4 5 6

Technology 1 35 34 33 32 31 30

Technology 2 30 29 28 27 26 25

Following this, the CCS data are presented in Table 15. Note that there are two CCS
technologies available for deployment. Examples of CCS technologies are pre-combustion,
post-combustion and oxyfuel capture [50]. In this work, these two CCS technologies
may represent any of the available technologies. CCS technology 1 (e.g., pre-combustion
capture) has a higher removal ratio and lower parasitic power loss in comparison to CCS
technology 2 (e.g., post-combustion capture) [51,52]. Therefore, the latter has a lower cost
in comparison to CCS technology 1. Due to the projected improvement in the technological
maturity of CCS, the removal ratios of CCS systems are expected to increase. Meanwhile,
the remaining CCS parameters (parasitic power loss and costs) are projected to decline
across periods.

Finally, the CO2 intensities and costs of NETs are presented in Tables 16 and 17,
respectively. Note that both EP-NETs and EC-NETs are considered in this work, where each
NET type is made up of three technologies. Some examples of EP-NETs are biochar and
BECCS, whereas EC-NETs are made up of DAC and enhanced weathering. Note that NETs
with the lowest CO2 intensity (highest CDR capability) are the most expensive technology,
and vice versa. Once again, like CCS technologies and renewable energy, all NETs are
projected to mature across periods, resulting in declining CO2 intensities and costs. The
CO2 intensities and costs of NETs are derived from the literature [53,54].
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Table 15. Case study energy planning data: ‘CCS_DATA’.

CCS Data 1 2 3 4 5 6

Removal ratio of CCS technology 1 0.85 0.86 0.87 0.88 0.89 0.90

Parasitic power loss of CCS
technology 1 0.15 0.14 0.13 0.12 0.11 0.10

Power generation cost of CCS
technology 1 (mil USD TWh−1) 34 33 32 31 30 29

Fixed cost of CCS technology 1 (mil
USD TWh−1) 600 590 580 570 560 550

Removal ratio of CCS technology 1 0.65 0.66 0.67 0.68 0.69 0.70

Parasitic power loss of CCS
technology 1 0.25 0.24 0.23 0.22 0.21 0.20

Power generation cost of CCS
technology 2 (mil USD TWh−1) 29 28 27 26 25 24

Fixed cost of CCS technology 2 (mil
USD TWh−1) 550 540 530 520 510 500

Table 16. Case study energy planning data: ‘NET_CI_DATA’.

CO2 Intensity of NETs
(Mt TWh−1) 1 2 3 4 5 6

EP-NET 1 −0.80 −0.81 −0.82 −0.83 −0.84 −0.85

EP-NET 2 −0.60 −0.61 −0.62 −0.63 −0.64 −0.65

EP-NET 3 −0.40 −0.41 −0.42 −0.43 −0.44 −0.45

EC-NET 1 −0.60 −0.61 −0.62 −0.63 −0.64 −0.65

EC-NET 2 −0.40 −0.41 −0.42 −0.43 −0.44 −0.45

EC-NET 3 −0.20 −0.21 −0.22 −0.23 −0.24 −0.25

Table 17. Case study energy planning data: ‘NET_CI_DATA’.

Cost of NETs
(mil USD TWh−1) 1 2 3 4 5 6

EP-NET 1 43 41 39 37 35 33

EP-NET 2 40 38 36 34 32 30

EP-NET 3 37 35 33 31 29 27

EC-NET 1 49 47 45 43 41 39

EC-NET 2 37 35 33 31 29 27

EC-NET 3 24 22 20 18 16 14

Two scenarios are evaluated in this work using the hypothetical case study. The
first scenario is considered the less ambitious approach toward mitigating CO2 emissions.
By contrast, the second scenario is more aggressive and ambitious in addressing climate
change issues. The next section presents the details of Scenario 1.

5.1. Scenario 1

In Scenario 1, only certain mitigation technologies are available for CO2 emissions
mitigation, given as in Table 18.
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Table 18. Availability of mitigation technologies in Scenario 1.

Technology Availability 1 2 3 4 5 6

Solar 3 3 3 3 3 3

Hydropower 3 3 3 3 3 3

Biomass 3 3 3 3 3 3

Biogas 3 3 3 3 3 3

MSW 7 7 7 3 3 3

Alternative solid-based fuel
technology 1 7 7 7 7 7 7

Alternative solid-based fuel
technology 2 7 7 3 3 3 3

Alternative gas-based fuel
technology 1 7 7 7 7 7 7

Alternative gas-based fuel
technology 2 7 7 3 3 3 3

CCS technology 1 7 7 7 7 7 7

CCS technology 2 7 7 7 3 3 3

EP-NET 1 7 7 7 7 7 7

EP-NET 2 7 7 7 7 7 7

EP-NET 3 7 7 7 7 7 7

EC-NET 1 7 7 7 7 7 7

EC-NET 2 7 7 7 7 7 7

EC-NET 3 7 7 7 7 7 7

Based on Table 18, all renewable energies (except MSW) are available for use in all
energy planning periods. Note, however, that MSW is only available from Period 4. It is
assumed that technology associated with MSW would take a longer time to mature [55]. In
addition, one alternative solid- and gas-based fuel technology are unavailable in Scenario
1. These technologies are assumed to have lower CO2 intensities (see Tables 11 and 13)
and are far more mature as compared to their counterparts (technology 2). Therefore,
only the less mature technologies of the alternative fuels are available for Scenario 1
and are only available from Period 3 onwards. The fuel substitution of coal and natural
gas power plants would involve co-firing, thus requiring a retrofit to be carried out on
both types of power plants. Retrofitting power plants is capital intensive and may not
be available in earlier periods. A similar reasoning as to alternative fuels is applied for
CCS. For the latter, only technology 2 is available from Period 4 onwards. Since CCS
deployment is capital intensive, only one technology that has a lower removal ratio and
higher parasitic power loss is available in Scenario 1. Finally, although NETs’ deployment
is crucial for CDR, its commercial deployment is not likely to be seen anytime soon [56].
Therefore, the deployment of NETs is absent in Scenario 1. The information in Table 5 is
inputted in the ‘TECH_IMPLEMENTATION_TIME’ tab in the user interface file entitled
‘Base_User_Interface.xlsx’.

5.1.1. Case 1

Once all energy planning information is included in the user interface file, opti-
misation is carried out using a superstructural model coded in the Python file entitled
‘Base_Model_Python’. The objective function of Case 1 is set to minimise the total CO2
emissions (Equation (32)). In other words, the superstructural model is optimised subject
to the budget availability in Table 5. Note that ‘min_emission’ is selected in cell ‘B30′ of the
user interface file (see Figure 5). Figure 6 presents the results of Case 1. The detailed results
of Case 1 in Scenario 1 are presented in Table S1 in the Supplementary Information.
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Figure 6. Power plants’ configurations of Case 1 in Scenario 1.

Based on Figure 6, only power plants 1, 3, 7 and 8 were selected for power generation
in Period 1. Among them, only one of them (power plant 1) is a solar plant (renewable
energy). Although the power demand of 60 TWh y−1 was satisfied, the total CO2 emissions
were minimised at 35 Mt y−1, thus violating the CO2 emissions limit of 20 Mt y−1. Moving
on to Period 2, similar configurations as in Period 1 were observed, with additional power
generation from the existing operational power plants. Once again, the power demand
was satisfied, but the CO2 emissions were violated by 24 Mt y−1 (= 42–18 Mt y−1). The
commissioning of solar-based power plant 9 in Period 2 meant that it is available for power
generation in Period 3, and it was thus selected to satisfy the demand of 90 TWh y−1. In
addition to this, both biomass and biogas were deployed to replace the fuels in power plants
3 (natural gas) and 8 (coal), respectively. The alternative fuels have lower CO2 intensities,
thus contributing to lower cumulative CO2 emissions of 29 Mt y−1. Despite the higher costs
of alternative fuels, their deployment is relatively cheaper than commissioning new power
plants. Nevertheless, the CO2 emissions limit was violated by 14 Mt y−1 (=29–15 Mt y−1).

In Period 4, power plant 5, fueled by natural gas, was deployed to meet the incremental
demand increase. However, its high CO2 intensity increased the total CO2 load, thus
demanding additional mitigation measures. Therefore, both power plants 3 and 5 were
retrofitted with CCS. The reduced power generation from those power plants is due to
parasitic power losses during CCS deployment. Note that the CCS deployment in power
plant 3 is in addition to its deployment of alternative gas-based fuel (biogas) technology
2. In other words, there were two mitigation technologies deployed for power plant 3. In
addition to this, a new 3.45 TWh y−1 solar-based power plant that has a CO2 intensity of
0.07 Mt TWh−1 was commissioned in Period 4. Note that the solar-based power plant 9
operated at its maximum capacity in Period 4. Despite additional mitigation measures and
budget, the total CO2 emissions in Period 4 were similar to Period 3. With the available
budget, the total CO2 could only be minimised to 29 Mt y−1, thus violating the CO2
emissions limit by 18 Mt y−1 (= 29–11 Mt y−1).

Moving on to Period 5, power plant 7, which generated power from Period 1, was
decommissioned (see Table 4). Therefore, solar-based power plant 10 was deployed to
meet the incremental demand. Note that solar power plants 1, 9 and 10 were operating at
their maximum capacity. The deployment of mitigation technologies (CCS and alternative
fuels) in Period 5 was similar to those in Period 4. A similar situation was observed in the
final period, except that natural gas-based power plant 4 was now deployed to satisfy the
demand of 135 TWh y−1. Note that CCS was deployed in power plant 4 for the mitigation
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of its emissions. Despite the deployment of several mitigation technologies, they were
insufficient to satisfy the CO2 emissions limits in all periods in Scenario 1. The results
include fuel substitution to lower carbon alternatives, as well as the deployment of CCS.
Without the deployment of NETs, the net-zero emissions target would not be achievable.
However, this software fulfils the objective of deploying multiple mitigation technologies
for achieving climate change targets.

5.1.2. Case 2

In Case 2, the total energy planning cost (Equation (31)) is minimised as the objective
function. In other words, the CO2 emissions limit for all periods must be satisfied. However,
insufficient mitigation technologies (especially NETs) have resulted in an infeasible solution.
In other words, CDR via NETs is necessary for the achievement of the net-zero target in
the final energy planning period. Unless additional mitigation technologies are available,
the CO2 emissions limits in Scenario 1 would be constantly violated. Therefore, Scenario
2 is next investigated to identify the impact of additional mitigation technologies during
energy planning.

5.2. Scenario 2

Scenario 2 is regarded to be more aggressive in comparison to Scenario 1, in which
all mitigation technologies are now available for deployment (see Table 19). Unlike Sce-
nario 1, some technologies are available at earlier periods due to an assumption of rapid
technology maturity.

Table 19. Availability of mitigation technologies in Scenario 2.

Technology Availability 1 2 3 4 5 6

Solar 3 3 3 3 3 3

Hydropower 3 3 3 3 3 3

Biomass 3 3 3 3 3 3

Biogas 3 3 3 3 3 3

MSW 7 3 3 3 3 3

Alternative solid-based fuel
technology 1 7 7 3 3 3 3

Alternative solid-based fuel
technology 2 7 3 3 3 3 3

Alternative gas-based fuel
technology 1 7 7 3 3 3 3

Alternative gas-based fuel
technology 2 7 3 3 3 3 3

CCS technology 1 7 7 7 3 3 3

CCS technology 2 7 7 3 3 3 3

EP-NET 1 7 7 7 7 3 3

EP-NET 2 7 7 7 3 3 3

EP-NET 3 7 7 3 3 3 3

EC-NET 1 7 7 7 7 3 3

EC-NET 2 7 7 7 3 3 3

EC-NET 3 7 7 3 3 3 3

Based on Table 6, all renewable energies are available for deployment from Period
1 (except MSW, which is absent in Period 1). Both technologies of alternative solid- and
gas-based fuels are available for deployment in Scenario 2, with their availability shown in
Table 6. A similar situation also applied to both CCS technologies. Note that all NETs are
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now available for deployment, unlike in Scenario 1. Technology 3 of both NETs, having
the highest CO2 intensities versus technology 1 and 2, is available for deployment from
Period 3 onwards. Meanwhile, technology 1 has the lowest CO2 intensity (most effective
for CDR) and is thus more mature compared to technology 2 and 3, but it is only available
in the final two periods.

5.2.1. Case 1

The information in Table 6 is inputted in the ‘TECH_IMPLEMENTATION_TIME’ tab
in the Microsoft Excel-based user interface file entitled ‘Base_User_Interface’. Once again,
the objective function of Case 1 is set to minimise the total CO2 emissions (Equation (32)).
Figure 7 presents the results of Case 1. The detailed results of Case 1 in Scenario 2 are
presented in Table S2 in the Supplementary Information.
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Figure 7. Power plants configurations of Case 1 in Scenario 2.

Based on Figure 7, the configurations of the power plants in Periods 1 and 2 were
identical to those observed in Scenario 1. Therefore, the total CO2 load in both Periods 1 and
2 was identical to Scenario 1, thus violating the CO2 emissions limits. Moving on to Period 3,
both technologies of alternative fuels and CCS technology 2 were available for deployment.
Therefore, coal in power plant 8 was replaced with a lower-carbon alternative. In Scenario
1, the fuels in power plants 3 and 8 were both substituted with alternative fuel technology 2,
which has higher CO2 emissions but is cheaper. The use of the more expensive but cleaner
alternative solid-based fuel technology 1 in power plant 8 meant there was an insufficient
budget for fuel substitution to take place in power plant 3. Consequently, the CO2 emission
limit of 15 Mt y−1 in Period 3 was violated.

Period 4 saw the availability of all mitigation technologies, except for technology 1,
concerning NETs. Like Scenario 1, CCS technology 2 was deployed for natural gas-based
power plants 3 and 5. Additionally, 6.6 TWh y−1 of EP-NETs technology 2 was deployed to
aid in CDR. Nevertheless, the total CO2 load may only be minimised to 21 Mt y−1, which
is 10 Mt y−1 higher than the permissible limit. All mitigation technologies are available
in the final two periods. The configurations of the power plants in Periods 5 and 6 were
identical to those observed in Scenario 1. Aside from the deployment of CCS technology 2
and alternative solid-based fuel technology 1, EP-NETs technologies 1 and 2 and EC-NETs
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technology 1 were deployed. Technology 1 of both NETs was deployed due to their lower
CO2 intensities, thus contributing to a greater CDR. Note that the total CO2 load in Period 5
was minimised at 5.9 Mt y−1. This is the first period that saw the total CO2 load below the
CO2 emissions limit of 6 Mt y−1. Meanwhile, the net-zero emissions target was achieved
in the final energy planning period. These results demonstrated that NETs’ deployment
is crucial to achieving relevant climate change targets. Additionally, these results also
demonstrated the flexibility offered by the software in terms of making decisions between
various technologies. Therefore, a user may input a practically unlimited number of
technologies for making the business decision for driving decarbonisation initiatives. The
ability of a user to customise the constraints and input parameters presents the key novelty
of this work.

5.2.2. Case 2

Scenario 2 was repeated for Case 2 by minimising the total energy planning cost
(Equation (31)) as the objective function. The presence of a greater pool of mitigation
technologies made it possible to solve Case 2 to global optimality. Note that ‘min_budget’ is
selected in cell ‘B30′ of the user interface file (see Figure 3). Figure 8 presents the results
of Case 2. The detailed results of Case 2 in Scenario 2 are presented in Table S3 in the
Supplementary Information.
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Figure 8. Power plants’ configurations of Case 2 in Scenario 2.

Based on Figure 8, the CO2 emissions limits for all periods were satisfied. In Period 1,
solar-based power plants 1 and 2, natural gas-based plant 5 and coal-based plant 8 were
operational. Unlike Case 1, the deployment of both renewable plants resulted in the total
CO2 load being slightly below the CO2 emission limit, thus satisfying the constraint. Note,
however, that the total cost amounted to USD 3673 mil y−1, which is much higher than
the allocated budget (USD 3000 mil y−1). These results explain the violation of the CO2
emissions limit in Period 1 of Case 1. A greater budget allocation is required to satisfy the
emissions constraint in the latter case. Moving on to Period 2, solar-based power plant 9
was commissioned to meet the demand of 75 TWh y−1 and thus satisfy the CO2 emissions
limit of 18 Mt y−1. Period 3 saw natural gas-based power plant 5 and coal-based plant 8
being substituted for a cleaner alternative. For both plants, technology 1 was deployed.
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Note that co-firing of the alternative gas and natural gas-based fuels occurred in power
plant 5.

Period 4 saw the deployment of NETs, combined with greater power generation from
power plant 5. Instead of co-firing that occurred in Period 4, the natural gas-based plant
5 was completely substituted with alternative gas-based fuel technology 1. Note that
technology 2 with lower CO2 intensities was deployed for both types of NETs, despite
being costlier. Since coal-based power plant 7 was decommissioned in Period 5, solar-
fueled power plant 10 was deployed to meet the demand of 120 TWh y−1. Period 6 saw
the deployment of CCS technology 2 in power plant 4, fueled by natural gas as well as
NETs technology 1. Once again, these results highlight the criticality of NETs’ deployment
in mitigating CO2 emissions. These results demonstrate the novelty of this work, which
takes into account both CCS and NETs and their importance in reducing GHG emissions.
Over time, the software could be tailored to inputting novel technologies that would play a
pivotal role in the power generation sector.

6. Discussion

The two scenarios have demonstrated the usefulness of the DECO2 software in per-
forming optimal decarbonisation for the power generation sector. The software can consider
the various commissioning and decommissioning timelines among power plants. Addi-
tionally, the DECO2 software can help drive and inform decarbonisation strategies that
can consider fuel substitutions and the deployment of CCS as well as NETs. Although the
problems demonstrated in this paper are small-scale problems only involving 10 power
plants, the problem may very easily be scaled for optimal decarbonisation pathways to
be conducted on a national scale. Both scenarios were solved to global optimality in neg-
ligible time, thus promoting the use of DECO2 in the industry. Additionally, the DECO2
software has highlighted the importance of CCS and NETs’ deployment towards achiev-
ing the net-zero emissions targets and provides decisionmakers with a free-to-use, easily
modifiable tool, as iterated by recent reports [4,57]. Additionally, the energy generation
landscape would need to transition from fossil-based sources, i.e., coal, to alternative fuels,
i.e., biomass. This would allow for existing energy infrastructure to be maintained while
reducing GHG emissions. Most importantly, no single mitigation technology would be suf-
ficient in achieving the relevant climate change targets, and hence, a portfolio optimisation
approach is required. DECO2 provides a computing framework with which piecemeal data
about individual component technologies can be integrated for effective decision support.
However, the results obtained from this software are heavily dependent on input data and
key parameters. This presents as one of the bottlenecks of the existing software framework.
Therefore, data validation must be conducted to ensure that the obtained results would
provide a significant meaning and direction in driving decarbonisation initiatives.

7. Conclusions

The DECO2 optimal decarbonisation software framework was developed and intro-
duced in this work to aid in carbon-constrained energy planning and the mitigation of CO2
emissions. Consisting of a pool of available mitigation technologies such as alternative
low-carbon fuels, renewable energies, CCS and NETs, the multiperiod energy planning
model may be employed by policymakers and energy planners to determine the optimal
deployment of each technology to meet the increasing power demand and stringent CO2
emissions limits. The superstructural model in this work was developed in Python with an
integrated user interface in Microsoft Excel. All energy planning data are inputted in the
latter, as the former only serves as optimisation software, meaning that the model is simple
to use. The open-source framework allows for the flexibility for advanced users to change
the formulation and input their constraints. Two scenarios with different availabilities
of mitigation technologies are investigated in this work to demonstrate the software’s
functionality. The first scenario, which is the least aggressive approach, is optimised based
on the minimised emissions for each period. Note that none of the periods satisfied the CO2
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emissions limit due to an insufficient budget. Meanwhile, Scenario 2 is considered more
aggressive due to the greater availability of mitigation technologies. For Case 1 in Scenario
2, the CO2 emissions were violated in the earlier periods, before achieving the net-zero
target in the final period. Meanwhile, the results of Case 2 in Scenario 2 demonstrated that
early deployment of renewable energy is crucial to ensure that mitigations of CO2 emis-
sions at later periods can be performed with relative ease. Once NETs are available, their
deployment is crucial to aid in CDR. Future work should focus on the demand variation
on a small scale, i.e., daily, hourly, etc. The superstructural model developed in this work
has the potential to deal with demand peaks within a small timeframe. Further, practical
development in the associated mitigation technologies must be integrated into the existing
model to build a realistic energy planning scenario. The software can also be improved
to address the aforementioned data bottlenecks, which are inevitable when dealing with
novel, unproven technologies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en16041708/s1, Table S1: Results for Case 1 in Scenario 1: (a)
Period 1, (b) Period 2, (c) Period 3, (d) Period 4, (e) Period 5 and (f) Period 6; Table S2: Results for
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6; Table S3: Results for Case 2 in Scenario 2: (a) Period 1, (b) Period 2, (c) Period 3, (d) Period 4, (e)
Period 5 and (f) Period 6.
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