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Abstract: Since the power grid grows and the necessity for higher system efficiency is due to the
increasing number of renewable energy penetrations, power system operators need a fast and
efficient method of operating the power system. One of the main problems in a modern power
system operation that needs to be resolved is optimal power flow (OPF). OPF is an efficient generator
scheduling method to meet energy demands with the aim of minimizing the total production cost
of power plants while maintaining system stability, security, and reliability. This paper proposes a
new method to solve OPF by using incremental particle swarm optimization (IPSO). IPSO is a new
algorithm of particle swarm optimization (PSO) that modifies the PSO structure by increasing the
particle size, where each particle changes its position to determine its optimal position. The advantage
of IPSO is that the population increases with each iteration so that the optimization process becomes
faster. The results of the research on optimal power flow for energy generation costs, system voltage
stability, and losses obtained by the IPSO method are superior to the conventional PSO method.

Keywords: economic dispatch; generation cost; incremental particle swarm optimization; incremental
social learning; optimal power flow; particle swarm optimization; voltage stability

1. Introduction

Optimal power flow (OPF) is a method for efficiently scheduling power plants with
the aim of minimizing the total production costs of the power plants while keeping the
system safe and reliable and meeting the load demands by considering network losses and
network constraints. OPF is one of the most essential studies in modern power systems
operation to maintain and enhance system security, stability, and reliability. OPF will decide
the optimal operational settings of the electricity grid that are experiencing operational
and physical obstacles. Then by using the optimization algorithm technique, elements that
regulate the optimal point are expressed and formulated. The main intention of the OPF
method is to determine the control variable settings and the equation system that optimizes
the value of the objective functions. The selection of this function must be based on a
cautious examination of the technical and economic aspects of the electric power system.
Moreover, the rapid growth of the network and the need for efficiency in the electrical
system make the system operators look for fast and efficient methods in the electric power
system operation and planning.

There are many methods for solving OPF problems, ranging from conventional meth-
ods, such as AC-OPF [1], DC-OPF [2], and SF-OPF [3,4], to using artificial intelligence
or nature-inspired optimization techniques, such as bat algorithms [5], particle swarm
optimization [6], bacterial foraging method [7], whale optimization algorithm [8], artifi-
cial bee colony [9], differential search algorithm [10], grey wolf optimizer and differen-
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tial evolution [11], hunger games search (HGS) [12], moth swarm algorithm [13], grav-
itational search algorithm [14], teaching-learning-based optimization [15], circle search
algorithm (CSA) [16], improved harmony search method [17], modified imperialist com-
petitive algorithm [18], improved colliding bodies optimization algorithm [19], improved
electromagnetism-like mechanism method [20], Gbest guided artificial bee colony [21], Lévy
mutation teaching–learning–based optimization [22], and horse herd optimization [23]. A
complete review of the most recent optimization techniques for OPF is presented in [24].

Metaheuristic optimization approaches do not constantly assure obtaining an absolute
optimum answer to the problem, but a rational solution that is close to a global ideal
solution. Therefore, new algorithms are always being developed, which are also motivated
by the “No Free Lunch” theorem [25] that declares no optimization technique to be believed
as the only pre-eminent method in solving all optimization problems. Some algorithms
have succeeded in obtaining the optimum solution, but some algorithms are commonly
slow in convergence. Some of these methods are easily trapped in the optimum locale, or
other words converge prematurely. Some stochastic algorithms have been demonstrated
to be very successful in nonlinear problems, although they do not guarantee optimum
global solutions within time limits. Optimization has been tried with many constraints
by developing mathematical programming and modern heuristic search. The evolution
of the search method is no stranger to solving mathematical functions. Natural selection
and metaheuristics are very useful for finding optimum global solutions. Specifically in
the problem of OPF, since OPF is a vital and challenging issue in the operation of power
systems and stability enhancement, power system researchers are continuously attracted to
develop new algorithms for optimization or to enhance the existing approaches to acquire
a more effective solution of OPF.

One of the optimization methods often used to solve OPF problems is the particle
swarm optimization (PSO) method [6,26,27]. The PSO method is an optimization technique
based on the swarm population that utilizes the experience of the cognitive and social
principles of each swarm particle. The advantages of the PSO algorithm are its simple
concept and memory, and the initial population is preserved, based on a “productive
teamwork” among particles, so it is easy to implement and computationally efficient.
Nevertheless, the shortcoming of this algorithm is due to its fast convergence, in which
sometimes, throughout the optimization procedure, PSO cannot find a wider solution space
and results in a quick loss of diversity, which inevitably becomes caught in local optima or
unwanted premature converges, meaning quickly finding solutions to local solutions [28].

The concept of the metaheuristic method is to make a trade-off between exploration
and exploitation [13]. This technique starts with high exploration or high population
diversity and then, through the search process, reduces its diversity. However, decreas-
ing diversity will not always lead to worthy exploitation or rapid convergence. There-
fore, the diversity of the population is still a trapped dilemma and requires careful and
clever handling.

In a system consisting of many learning particles or agents, each particle/agent not
only must familiarize itself with the characteristics of the environment but also must adjust
itself to variations of other particles’ behavior. This issue becomes crucial in the research of
swarm intelligence especially if a large particle quantity is engaged in the study because
the learning process becomes more difficult. Therefore, to overcome this challenge, in this
paper, we propose an approach based on rising population numbers because in some cir-
cumstances, it can facilitate the scalability of the schemes composed of numerous learning
particles. This technique is motivated by the societal learning prodigies of animal popula-
tions and is called incremental social learning (ISL) [29]. The ISL algorithm implemented
on PSO produces an IPSO (incremental particle swarm optimization) algorithm, where
the size of the population rises over time. In IPSO, once a new particle is inserted into
the population, the position of the new particle is instigated using a “societal learning”
instruction that will lead to a preference near the best particle.
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IPSO is an optimization technique where each particle changes its position to deter-
mine its optimal position. The advantage of IPSO is that the population size increases with
each iteration so that the optimization process becomes faster. In the literature, there is not
much research implementing this IPSO method. A work by [30] compared the performance
of PSO and IPSO, and their experimental results showed that IPSO was able to obtain
better and faster solutions than PSO. A paper by [31] designed an IIR system identifica-
tion task with a robust distributed algorithm based on incremental PSO, and the results
showed excellent identification performance. A hybrid IPSO, ant colony optimization,
and K-means (IPSOAntK-means) algorithm was proposed for automatic flower boundary
extraction, and the results informed that this hybrid IPSO method was one of the best
methods [32]. Economic dispatch was proposed using IPSO and deep learning (DL). The
result was that IPSO required more time than DL, but the results of IPSO were better than
DL [33]. Therefore, this paper proposes a novel method for OPF by using incremental
particle swarm optimization, called IPSO-OPF. The proposed method is implemented in
the IEEE 30-bus system.

The next section of this paper is structured as follows: Section 2 describes the objective
functions and constraints in the optimal power flow. Section 3 outlines the proposed
methodology of incremental particle swarm optimization. Section 4 provides the results
and analysis; then Section 5 concludes the key outcomes of this study.

2. Optimal Power Flow

Optimal power flow (OPF) is a study that analyses the optimum settings in an electric
power system. OPF was initially proposed by Carpentier in 1962 and has gone through a
long time to develop various methods of solving power flow problems that can be applied
today. The main role of OPF is to determine the optimum settings for the power system [34].
OPF optimizes objective functions that are problematic in the electric power system, such
as the total cost function of generation or economic dispatch, the network losses function,
and the voltage deviation function on each bus by taking into account the limitations that
exist in the operation of the equipment [2,35,36]. While optimizing the system’s objective
function, OPF also maintains the system stability by keeping the system balance between
electricity generation and consumption [37].

2.1. Objective Functions

In the multi-objective optimal power flow, there are several objective functions used,
namely the generation cost function and the network losses function.

2.1.1. The Generation Cost Function

The objective function of OPF, also known as economic dispatch, is to obtain a mini-
mization of generating fuel costs by not violating the security constraint of each generator.
The generation cost function is a mathematical function modeling to be optimized. The
objective function equation for the generation cost is a nonlinear function. The minimum
generation cost formulation is derived as follows:

Min F =
NG

∑
i=1

Fi(PGi) (1)

F(PGi) =
NG

∑
i=1

αi + βiPGi + γi(PGi)
2 (2)

where,
F: total generation cost ($/h)
F(PGi): generation costs from the ith generator, which is a function of the generating

power output ($/h)
PGi: the ith generator power output (MW)
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NG: number of generating units
αi βi, γi: coefficient of generation cost.

2.1.2. The Network Losses Function

With the network losses objective, all control settings are regulated to minimize the
total active power losses. The network losses function is a mathematical modeling to find
the value of network losses in the electric power system. The network losses function is
also a nonlinear equation. The network losses function in the OPF problem is given in
Equation (3):

Plosses =
NTL

∑
k=1

gk

[
|Vi|2 +

∣∣Vj
∣∣2 + 2|Vi|

∣∣Vj
∣∣ cos

(
δi − δj

)]
(3)

where
Plosses: total network active power losses (MW)
NTL: number of transmission lines in the system
gk: the conductance of the k-line connecting the i and j buses
|Vi|: voltage magnitude on the ith bus∣∣Vj
∣∣: voltage magnitude on the jth bus

δi: voltage angle of bus i
δj: voltage angle of bus j

2.2. System Constraints
2.2.1. Equality Constraints

The equality constraint functions are formulated by a balance equation between losses,
generating power, and power absorbed by the load as well as the active and reactive power
balance equations. Equations (4)–(8) provide the nonlinear power flow equations that
control the system:

NG

∑
i=1

(PGi) = Pload + Plosses (4)

∆Pi = PGi − PDi (5)

∆Pi =
N

∑
j=1
|Vi|
∣∣Vj
∣∣∣∣Yij

∣∣(θij − δi + δj
)

(6)

∆Qi = QGi −QDi (7)

∆Qi =
N

∑
j=1
|Vi|
∣∣Vj
∣∣∣∣Yij

∣∣(θij − δi + δj
)

(8)

where
Pload: total system load (MW)
∑NG

i=1(PGi) : total active power generation (MW)
PGi: active power generation at bus i
PDi: active power demand at bus i
QGi: reactive power generation at bus i
QDi : reactive load power at bus i∣∣Yij
∣∣ : the element of bus admittance matrix Ybus

θij: the angle of ij element on Ybus

2.2.2. Inequality Constraints

The inequality constraints of the system are the formulation of continuous and discrete
constraints that denote the security and operational constraints of the system, which are as
follows:
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1. The power plant constraints, which consist of active and reactive power outputs of
the power plants, and voltages limited by minimum and maximum limits:

Pmin
Gi ≤ PGi ≤ Pmax

Gi , i = 1, . . . , NG (9)

Qmin
Gi ≤ QGi ≤ Qmax

Gi , i = 1, . . . , NG (10)∣∣∣Vmin
Gi

∣∣∣ ≤ |VGi| ≤ |Vmax
Gi |, i = 1, . . . , NG (11)

where
Pmin

Gi : the minimum active power of the ith bus generator
Pmax

Gi : the maximum active power of the ith bus generator
Qmin

Gi : the minimum reactive power of the ith bus generator
Qmax

Gi : the maximum reactive power of the ith bus generator∣∣Vmin
Gi

∣∣: the minimum voltage magnitudes of the ith bus generator∣∣Vmax
Gi

∣∣: the maximum voltage magnitudes of the ith bus generator
NG: number of generator buses

2. Security constraints including the voltage magnitude limit of the load bus:

∣∣∣Vmin
Lj

∣∣∣ ≤ ∣∣VLj
∣∣ ≤ ∣∣∣Vmax

Lj

∣∣∣, j = 1, . . . , Nload (12)

where∣∣∣Vmin
Lj

∣∣∣: the minimum voltage magnitudes of the jth load bus∣∣∣Vmax
Lj

∣∣∣: the maximum voltage magnitudes of the jth load bus
Nload: number of load buses

3. The settings of the discrete transformer tap

Tmin
Ti ≤ TTi ≤ Tmax

Ti , i = 1, . . . , NT (13)

NT : number of transformers

4. The reactive power injection from compensators

Qmin
Ci ≤ QCi ≤ Qmax

Ci , i = 1, . . . , NC (14)

NT : number of compensators

5. The loading of the transmission lines:

STLi ≤ Smax
TLi , i = 1, . . . , NTL (15)

3. Proposed Methodology: The Incremental Particle Swarm Optimization–Based
Optimal Power Flow
3.1. Incremental Social Learning (ISL)

Incremental social learning (ISL) is usually applied in multiagent algorithms. The basic
concept of ISL is to add one agent or particle to a population according to its timetable [29].
The initial population comprises a small number of agents that allow the learning process to
be carried out faster than the learning carried out by the larger population. New agents that
are added on schedule to a population can quickly learn socially from more experienced
agents who have been in the population for some time. Then, gradually, new agents
are added to the population, aiming to allocate the optimal number of agents needed to
complete a particular task. New agents can learn and acquire understanding from more
knowledgeable agents through this social learning, without the new agents needing to
spend “money” to obtain that knowledge. In this ISL, new agents can save time to learn new
knowledge or to perform their duties. With the presence of a new agent in the inhabitants,
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the population will then adapt to new circumstances, but existing agents who have become
part of the population do not need to be trained on the whole thing from the beginning.

3.2. Particle Swarm Optimization

Particle swarm optimization (PSO) is a metaheuristic method developed by Eberhart
and Kennedy [38]. The meaning of swarm in PSO is individuals who flock together as in
groups of birds or fish. PSO is a part of an evolutionary model algorithm inspired by the
activities of flocks of birds and schools of fish in search of prey, where a flock does not
have a front-runner to look for their food, so they will disperse to search for food in an
unsystematic way.

In the PSO algorithm, the process of finding a solution is performed by a popula-
tion containing some particles [39]. PSO is an optimization technique with a concept of
population-based activities in a food-searching procedure where each individual is called a
particle. Every particle will adjust its position with respect to time. PSO consists of an intel-
ligent population within a given search space. The population is produced unsystematically
with the lowest and the largest value. PSO is composed of particles traveling in the search
space. Each individual particle signifies the position and location of the obstacle. Each
particle travels around a multidimensional search space and adjusts its position according
to its own individual experience and the near particle’s experience. Each particle has a
position denoted by χt

i,j and a velocity symbolized by Vt
i,j in an N-dimensional search space,

where i represents the ith particle and N represents the dimension of the space search or
the number of unknown variables in a system of nonlinear equations. The following are
equations that describe the position χt

i,j and the velocity Vt
i,j:

χt
i,j = χt

i,1 , χt
i,2 , χt

i,3 , . . . , χt
i,N (16)

Vt
i,j = Vt

i,1 , Vt
i,2 , Vt

i,3 , . . . , Vt
i,N (17)

Each particle will look for the optimum answer with the intelligence obtained from its
own experience by traversing the dimensions of the search space. Then each particle will
adjust its own best position or best solution (local best or personal best—Pbest) and then
acclimatize the position of the best particle from the best value or solution from the entire
population (global best—Gbest) while crisscrossing the search space. PSO does not have
crosses between individuals and does not have mutations, and the existing particles are
not replaced by other particles during the search process. In every iteration, the particle
position that signifies the solution is assessed for its accomplishment by incorporating
its solution into the fitness function. Each particle is regarded as a spot in a particular
dimension of space. The following equations are mathematical models that describe the
mechanism for improving the state of the particle:

Vt+1
i,j = ψ Vt

i,j + µ1ε1

(
Ψt

i,j − χt
i,j

)
+ µ2ε2

(
Yt

i,j − χt
i,j

)
(18)

χt+1
i,j = χt

i,j + Vt+1
i,j (19)

where Ψt
i,j = Ψt

i,1 , Ψt
i,2 , . . . , Ψt

i,N represent the local best or personal best of the ith particle;
Yt

i,j = Yt
i,1 , Yt

i,2 , . . . , Yt
i,N represent the global best from the whole flock; µ1 and µ2 are

constants with the positive value, which are normally called acceleration coefficients or
learning factors; ε1 and ε2 are positive random numbers between 0 and 1 produced at
each iteration for each dimension; and ψ is an inertial parameter named the constriction
factor, which indicates the effect of changing velocity from the old vector to the new
vector. Equation (18) is employed to obtain the velocity of the new particle according to the
preceding velocity, the distance between the present position and the local best position,
and the current distance from the global best position. Then the particle flies to a new
position based on Equation (19).
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3.3. Implementation of Incremental Social Learning into Particle Swarm Optimization

The implementation of ISL into the PSO algorithm is called incremental particle swarm
optimization (IPSO). In ISL, each time a new agent joins the population, the new member
must study socially from a more experienced division of agents. In the IPSO algorithm,
when a new agent or particle is entered into a population, the position of this new member
is adjusted using information from agents who are already part of that population by
“social learning” rules.

This process is applied as an initialization instruction that transfers a new particle
from a randomly generated original position in the search space to a position closer to the
particle position, which serves as a “model” for the new particle to emulate [29]. The rules
for initializing the jth dimension of the new particle can be seen in the following equation:

χ
′
new,j = χnew,j + τ

(
℘model,j − χnew,j

)
(20)

where χ
′
new,j is the regenerated position of the new particle, χnew,j is the initial random

position of the new particle, ℘model,j is the position of the model particle, and τ is a homoge-
nously dispersed random number between 0 and 1. After this rule is implemented for every
dimension, the best position of the previous new particle is modified to the χ

′
new,j value,

and its velocity is arranged to zero. For all dimensions, the τ value is the same to confirm
that the renewed position of the new particle will be in any place alongside the vector of
℘model,j − χ

′
new,j. Finally, the new particle neighbors, namely, the collection of particles that

will receive information in the next iteration, are generated randomly, taking into account
the topological connectivity level of the swarm population.

3.4. Algorithm and Flowchart of the Proposed Incremental PSO-Based OPF

The computational steps to calculate the optimal power flow based on IPSO are
described in detail as follows, and the flowchart can be seen in Figure 1:

Step 1: Input data of the system (generator cost function, network losses function, active
power generation constraints, transmission line data, and bus data)

Step 2: Input IPSO variables (IPSO inertial weighting factor)
Step 3: Set the iteration equal to 1
Step 4: Generate population size “N” where each particle in the IPSO algorithm is deter-

mined by various control variables
Step 5: Initialize the resulting population as Pbest and eliminate the particles that do not

satisfy the system inequality constraints
Step 6: Run the optimal power flow program for each particle
Step 7: Calculate and evaluate the fitness value for each particle and determine the Gbest

value among all particles
Step 8: Calculate and update each particle’s velocity
Step 9: Adjust each particle’s position and eliminate the particles that do not meet the

constraints.
Step 10: Assess the fitness value of the new population with Pbest; then select the better

particle that also satisfies the constraints
Step 11: Particles with higher fitness function values are designated as Pbest
Step 12: If iter < maximum iteration (itermax), then add a new particle into the population

whose position is adjusted according to the “rules of social learning” and go to
Step 6; otherwise, go to Step 13.

Step 13: Print the Gbest value that gives the optimal solution (minimum Plosses).
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4. Results and Analysis

This paper uses the IEEE 30-bus system [40] as the case study. The IEEE 30-bus power
system consists of two power stations on buses 1 and 2. This system consists of 22 load
points spread over each bus with a total load of 283.4 MW of active power and 126.2 MVAr
of reactive power. Figure 2 shows the single-line diagram of the IEEE 30-bus system.

Table 1 shows the generation data contained in the IEEE 30-bus system consisting of
active power and reactive power generated by the generator, minimum and maximum
active and reactive power that can be generated by the generator, and the generation coeffi-
cient of each generator. As for the voltage profile constraint on each bus, it is determined to
be 0.95 p.u. as the lower limit and 1.05 p.u. as the upper limit.
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Figure 2. A single-line diagram of the IEEE 30-bus system [40].

Table 1. Generator data and cost coefficient [40].

Bus PGi (MW) QGi (MVAr)

Generator Constraints Generation Cost Coefficients

Pmax
Gi Pmin

Gi Qmax
Gi Qmin

Gi αi ($/h) βi ($/MWh) γi ($/MW2h)(MW) (MW) (MVAr) (MVAr)

1 (Gen 1) 191.7 29 191.7 20 30 −10 1243.53 38.301 0.035
2 (Gen 2) 40 10 140 5 50 −40 451.325 46.159 0.105

In this study, the results of OPF based on IPSO are compared with conventional
PSO. For OPF using the proposed method IPSO, it is named IPSO-OPF, and OPF using
conventional PSO is called PSO-OPF. The fundamental modification of IPSO from PSO
lies in the renewal of new particles. The update of new particles on PSO uses the constant
chi = 0.729, while the renewal of new particles on IPSO uses random numbers between 0
and 1. This difference affects the speed of obtaining the best fitness.

Figure 3 shows a comparison of the number of iterations between the PSO and IPSO
methods in the optimal power flow in the IEEE 30-bus system. Utilizing the IPSO-OPF
method in power flow optimization has a faster time to converge than the PSO-OPF method.
Furthermore, the IPSO-OPF method obtained a convergent value of 12.56 MW of system
active power losses in the 25th iteration, while the PSO-OPF method converged in the
69th iteration with a result of 12.58 MW of active power losses. Hence, it can be seen that
in determining active power losses, the minimum value is obtained using the IPSO-OPF
method with fewer iterations.
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Table 2 shows a comparison of the generation costs between the IPSO-OPF method
and the PSO-OPF method, including a summary of the comparison of optimal power
flow results between the IPSO-OPF and PSO-OPF methods with iteration, active power
losses, and generation costs as parameters. By using the PSO-OPF method, the total power
generated by generator 1 is 191.7 MW, while the total power generated by generator 2 is
74.28 MW with a total cost of generating using the PSO-OPF method of USD 14,331/h.
Meanwhile, using the IPSO-OPF method, the power generated by generators 1 and 2 is
191.7 and 74.26 MW, respectively. The total cost of generating the IPSO-OPF method is



Energies 2023, 16, 1706 11 of 13

USD 14,330/h. Thus, it can be seen that by using the IPSO-OPF method, the generation
cost obtained is slightly cheaper than the generation cost using the PSO-OPF method.

Table 2. Comparison of the generation costs of the PSO-OPF and IPSO-OPF methods.

Methods
Active Power (MW) Cost ($/h) Active Power

Losses (MW)
Total Cost

($/h)
Number of
IterationsGen 1 Gen 2 Gen 1 Gen 2

PSO 191.7 74.28 9872 4459 12.58 14,331 69
IPSO 191.7 74.26 9872 4458 12.56 14,330 25

It can be seen from Table 2 that the IPSO-OPF method converges faster at the 25th
iteration than the PSO-OPF method, which converges at the 69th iteration. The active
power losses obtained using the IPSO-OPF method are also lesser than the PSO-OPF
method. As for the cost of generation, the IPSO-OPF method also produces a generation
cost that is cheaper than the cost of generating the PSO-OPF method. Therefore, overall,
the performance of IPSO-OPF is superior to the conventional PSO-OPF in solving optimal
power flow, especially since IPSO-OPF converges faster than the conventional PSO-OPF.

Figure 4 shows a comparison of the voltage profiles on each bus using the IPSO-
OPF and PSO-OPF methods. It is obvious that the voltage magnitude obtained from the
IPSO-OPF method on average is higher than the voltage magnitude using the PSO-OPF
method; consequently, in general, the system voltage stability performance obtained using
the IPSO-OPF method is better than the PSO-OPF method.
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Voltage magnitudes, active power losses, and generation costs between the IPSO-
OPF and PSO-OPF methods have values that are not much different. This is because the
fundamental difference between the two methods is in the iteration speed to obtain a
convergent value.

5. Conclusions

This paper proposes a new method for optimal power flow using incremental particle
swarm optimization (IPSO). IPSO is the development of the metaheuristic PSO method
in which incremental social learning (ISL) is implemented into the PSO algorithm. ISL
is stirred by the phenomenon of societal learning in the society of animals. In IPSO, the
population size grows from iteration to iteration. When a new particle joins the population,
its position is adjusted using a “societal learning” rule that persuades a preference toward
the best particle. The advantage of IPSO is that the population increases with each iteration
so that the optimization process becomes faster. The simulation results using the IEEE
30-bus system show that the performance of IPSO-OPF is superior to conventional PSO-
OPF in resolving the optimal power flow mainly because IPSO-OPF converges faster than
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conventional PSO-OPF. IPSO-OPF results in fewer iterations, lower active power loss, a
better system voltage profile, and lower generation costs than the PSO-OPF method.
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