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Abstract: The energy transition and the resulting expansion of renewable energy resources increas-
ingly pose a challenge to the energy system due to their volatile and intermittent nature. In this
context, energy management systems are central as they coordinate energy flows and optimize them
toward economic, technical, ecological, and social objectives. While numerous scientific publications
study the infrastructure, optimization, and implementation of residential energy management sys-
tems, only little research exists on industrial energy management systems. However, results are not
easily transferable due to differences in complexity, dependency, and load curves. Therefore, we
present a systematic literature review on state-of-the-art research for residential and industrial energy
management systems to identify trends, challenges, and future research directions. More specifically,
we analyze the energy system infrastructure, discuss data-driven monitoring and analysis, and
review the decision-making process considering different objectives, scheduling algorithms, and
implementations. Thus, based on our insights, we provide numerous recommendations for future
research in residential and industrial energy management systems.

Keywords: energy management; renewable energy; demand response; optimization; artificial
intelligence; scheduling; systematic literature review

1. Introduction
1.1. Motivation

The energy crisis and climate change have enforced the transformation of the energy
system within the last decades. While the increasing installation of renewable energy
sources (RESs), such as photovoltaic (PV) and wind turbines (WTs), mitigates pollution,
they also strain the electricity grid as they provide a volatile and uncertain electricity
supply [1]. This challenge intensifies with rising electricity demand in the following
decades [2] and increasing peak loads due to the simultaneous charging of electric vehicles
(EVs). As a result, system complexity increases, power quality issues arise, and reliability,
resiliency, and security are stressed [3]. Thus, the need for an energy management system
(EMS) able to monitor, analyze, and optimize the supply and demand-side is essential.
According to the International Electrotechnical Commission standard IEC 61970, an EMS is
a computer system offering functionalities to effectively operate electrical generation and
transmission while ensuring energy supply security at minimum cost [4].

1.2. Related Work

In the scientific literature, some reviews exist on residential and industrial EMSs, as
shown in Table 1. However, the primary focus is on home and building EMSs, while only
a few reviews address the industrial domain, focusing only on energy-intensive industries
or strategic issues. Industrial EMSs specialize in large-scale facilities with high complexity
and interdependencies, including features such as advanced data analytics, predictive
maintenance, and real-time energy monitoring. Residential EMSs, on the other hand, are
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designed for homes and small buildings, focusing on user-friendly interactions, energy
control, and the reduction of energy bills.

Table 1. Concept matrix of previous reviews for residential and industrial energy management systems.
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[5] X 2022 Demand response (DR) in energy-intensive industries Regulatory barriers, data communication/storing/processing, and lack
of financial incentives

[6] X 2016 Strategic decision making Long-term effects of various measures, non-energy-intensive industries

[7] X 2021 Autonomous systems using artificial intelligence
Real-time semantic feature selection approaches, unsupervised temporal

energy pattern characterization, multi-agent systems, generalized
automated DR

[8] X 2021 Coordinated home EMS: topologies, techniques Cooperative learning, robust coordination, federated reinforcement
learning (RL), uncertainties, blockchain technology, and privacy

[9] X 2021 Data-driven predictive control for demand-side management Robust feature selection, benchmark dataset, data quality, transferrable
and scalable data- models

[10] X 2020 Home EMS with appliances and scheduling Grid reliability, load, and RES coordination, security, and privacy

[11] X 2021 Residential flexibility Standardized representation of flexibility resources, quantifying
energy flexibility

[12] X 2019 Home EMS with concepts, architecture, infrastructure Appliance diversity, multi-objectives, consumption uncertainty, real-time
interaction, continuous updating of feedback

[13] X 2018 Home EMS: DR, scheduling, optimization, and communication Self-learning systems to minimize user involvement
[14] X 2020 Home EMS: concepts, configuration, and technologies -
[15] X 2022 RL and model predictive control Data efficiency, safety, generalization, and robust adaptability

[16] X 2021 Building load prediction Algorithm development, feature selection, extraction,
clustering, forecasting

[3] X 2020 EMS for smart grids considering user behavior
Greenhouse gas (GHG) emissions, DR participation, data security and
privacy, customer awareness, outdated infrastructure, highly uncertain

systems

[17] X 2022 Residential demand-side management, optimization
Include risk minimization in optimization, highly uncertain systems,

standardized load classification, and other objectives, such as
frequency/voltage stability

[18] X 2021 Multi-level EMS: architecture, objectives Smart transformer, reactive power in EMS, an uncertainty factor of EVs
[19] X 2020 Microgrids: control methods -
[20] X 2022 Microgrids: control and optimization methods -

In the industrial EMS domain, Golmohamadi et al. [5] review industrial DR opportuni-
ties in energy-intensive industries, namely the cement manufacturing, aluminum smelting
plants, and oil refinery industries. They classify the flexibility potentials of industrial
processes and identify challenges, such as regulatory barriers, data communication, storage,
and processing. A systematic review of industrial EMSs is provided by Schulze et al. [6], fo-
cusing on strategic planning, implementation, operation, controlling organization, culture,
and conceptualization. They suggest that future research should focus on the long-term
effects of various measures and non-energy-intensive industries.

In the residential EMS domain, Aguilar et al. [7] present a systematic review of smart
building EMSs, emphasizing monitoring, analysis, and decision-making. Therefore, they
group their research according to the “Autonomous Cycles of Data Analysis Tasks”. They
conclude that future research needs to address real-time semantic feature selection ap-
proaches, unsupervised approaches for temporal energy pattern characterization, multi-
agent systems, and a generalized automated DR. The framework, objectives, architecture,
benefits, challenges, and different stakeholders of EMSs are reviewed by Rathor and Sax-
ena [3]. They identify six challenges: handling GHG emissions, DR participation, data
security and privacy, customer awareness and participation, outdated infrastructure, and
highly uncertain systems. Zhang et al. [16] focus on data-driven model predictive con-
trol and RL-based control algorithms for building EMSs. Identified future challenges for
model predictive control are design complexity, model dependency, and time-consuming
computations, while research on RL could tackle data efficiency, safety, generalization,
and robust adaptability problems. The literature on building EMSs, including scheduling
objectives, physical and operational constraints, along with security issues, is surveyed by
Leitao et al. [10]. Further, they provide a list of commonly managed household appliances
and identify the remaining challenges of grid reliability, security, and privacy.



Energies 2023, 16, 1688 3 of 21

Mahapatra et al. [12] focus on concepts, technical background, architecture, and
infrastructure of home EMSs, suggesting that future challenges require productive feed-
back, offering context to provide actionable suggestions, motivating consumers, regular
updating, and decreasing the system’s costs. The review on home EMSs presented by
Zafar et al. [14] refers to the main concepts, configurations, enabling technologies, and
popular communication technologies for DR applications. Shareef et al. [13] review DR
programs, scheduling techniques, communication protocols, and optimization techniques
for home EMSs, concluding that the trend is towards cooperating and self-learning artificial
intelligence techniques to reduce user involvement. Panda et al. [17] present a literature
review on residential demand-side management. They outline future research directions,
such as highly uncertain systems, standardized load classification, and other objectives
such as frequency or voltage stability. Hussain et al. [18] review different EMSs at the
home, aggregator, and network levels, considering objective functions, constraints, opti-
mization algorithms, communication protocols, and the impact of EVs. Smart transformers,
reactive power in EMSs, and EV uncertainty factors are challenges for future research.
Coordinated home EMSs are reviewed by Aliabadi et al. [8], including topologies and tech-
niques. Identified research gaps are cooperative learning, robust coordination, federated
RL, uncertainties, blockchain technology, and privacy.

Other reviews within the residential EMS domain only consider specific elements
of modern EMSs. Li et al. [11] focus on the characterization and quantification of energy
flexibility, metrics, methods, and applications. Future research directions are standardized
energy flexibility representation and quantification of flexibility potentials. Zhang et al. [15]
review the application of machine learning techniques in building load prediction, con-
cluding that algorithm development, followed by data-supporting methods such as feature
selection, extraction, clustering, and weather forecasting, are increasingly relevant. A
review of data-driven predictive control for demand-side management is presented by
Kathirgamanathan et al. [9]. Identified challenges are a methodology for robust feature
selection, finding a benchmark dataset, the influence of data quality, and how to make
data-driven models transferrable and scalable. Salehi et al. [20] review the control strategies
in the microgrid, single- and multi-objective optimization methods, and Pareto-optimal so-
lutions. Elmouatamid et al. [19] focus on control approaches for microgrid EMS, including
centralized, decentralized, and hierarchical management structures.

1.3. Paper Contributions and Organization

Based on the previously analyzed reviews, multiple publications cover residential
EMSs and their infrastructure, architecture, flexibility, demand-side management, mathe-
matical optimization, control structure, and data-based predictions. However, only a few
reviews deal with industrial EMSs, referring to selected industries or specific EMS compo-
nents. Research from residential EMSs is not easily transferable to industrial use cases as it
differs significantly in size, complexity, and dependency of the individual process steps. For
example, a suitable optimization algorithm in the residential domain does not necessarily
satisfy the increased safety, reliability, or optimality requirements in the industrial context.
Consequently, this paper presents a holistic review of industrial EMSs and a comparison
of residential and industrial EMSs to identify differences, similarities, and synergies. To
our knowledge, we are the first to review residential and industrial EMSs comprehensively.
Therefore, the main contributions of this paper are as follows:

• First, to provide a comprehensive overview of state-of-the-art industrial EMSs com-
pared to the residential domain. Here we focus on the EMS’s infrastructure, data-
driven monitoring and analysis, and decision-making.

• Second, to propose a practical guide about the differences between residential and
industrial EMSs.

• Finally, to present a detailed discussion about trends and future research directions.

We organize the remaining work as follows. We formulate the review methodology
in Section 2. In Section 3, we present the literature review, considering the infrastructure
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of the EMS, followed by the data-driven analysis, monitoring, and decision-making. In
Section 4, we discuss future research directions regarding residential and industrial EMS,
and in Section 5, we provide a conclusion of our work.

2. Methods

This review follows the approach of Webster and Watson [21] to increase transparency
and replicability and to prevent researcher bias [22]. To thoroughly comprehend the
research area, we initially explore different search terms (STs) and databases, namely
ScienceDirect, Web of Science, and Scopus. Based on thematic relevance and publication
coverage, we chose ScienceDirect as an adequate database. Later, we include selected
publications from other databases by conducting a forward and backward search, where
we analyze cited articles. We determine the following final ST:

ST = (“energy management system”) AND (residential OR home OR building OR
industry OR industrial OR microgrid).

We then search the database using the ST in the title, abstract, and keywords. To ensure
scientific standards, we restrict the search to academic studies published in peer-reviewed
journals and limit our search to publications from the last five years, as research on this
topic is highly dynamic. As shown in Figure 1, we pre-select 78 articles from the initial
114 publications based on their title. Moreover, given the general criteria of the English
language, full-text availability, and matching research discipline, the thematic relevance of
the article is critical. Here, we sort publications according to the following criteria: (i) lack
of thematic reference to EMSs, (ii) lack of reference to residential or industrial use, and
(iii) lack of reference to simulation or implementation of the EMSs.
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Figure 1. Selection procedure for the literature base.

After analyzing the abstract and full text, 42 publications remain. Next, we con-
ducted a forward- and backward search and select 51 publications for our final litera-
ture base. Finally, we analyze the publications regarding the three categories: (i) de-
sign of the energy management infrastructure, (ii) data-driven analysis and monitoring,
and (iii) decision-making. The categorization is non-exclusive, i.e., each article can be
assigned several categories.

3. Review of Residential and Industrial Energy Management Systems

To further analyze the state-of-the-art research in residential and industrial EMSs, we
first outline the design of the EMS infrastructure. Here we focus on energy demand, supply,
storage, and advanced metering infrastructure (AMI). Secondly, we address data-driven
analysis and monitoring, including data generation and processing. Thirdly, we analyze
the decision-making, considering multiple optimization objectives, scheduling algorithms,
implementation, and software tools used. The results are presented in Table 2. Within
the concept matrix, we distinguish between the EMS categories home (H), building (B),
microgrid (M), and industrial (I). Further, we outline if the EMS can actively shift the energy
consumption of some devices (flexible loads), integrate RESs, or ESSs, and whether the
publications provide a detailed description of the applied sensors and communication pro-
tocols. While the monitoring section highlights the usage of openly available datasets and
data preprocessing algorithms, the analysis section shows whether the EMS includes energy
demand forecasting or clustering algorithms to perform non-intrusive load monitoring
or error detection. Finally, we distinguish whether the EMS can simultaneously consider
multiple objectives and outline the scheduling technique used to optimize the energy flow.
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Table 2. Concept matrix in the literature of residential and industrial energy management systems.

General Demand and Supply AMI Monitoring Analysis Objectives Scheduling
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[23] ′21 H X X X
[1] ′20 H X X X X X
[2] ′19 H X X X X
[24] ′21 H X X X X X X
[25] ′19 H X X X X (X) X X
[26] ′21 H X X X (X) X X
[27] ′21 H X X X X (X) X X X X
[28] ′22 H X X X X X X X
[29] ′21 H X X
[30] ′20 H X X X X X X X
[31] ′20 H X X X X X X
[32] ′21 H X X X X X X X
[33] ′21 H X X X X X X
[34] ′18 H X X X X X
[35] ′18 H X X X X X X X
[36] ′21 H X X X X X X X X X X
[37] ′20 H X X X X
[38] ′22 H X X X X X X
[39] ′22 H X X X X (X) X X
[40] ′19 H X X X X X X
[41] ′21 H X X X X X X
[42] ′20 H X X X X X X
[43] ′20 B X X X X X X
[44] ′22 B X X X X
[45] ′18 B X X X X X
[46] ′18 B X X X X X X X
[47] ′19 B X X X X
[48] ′21 B X X (X) X X
[49] ′22 B X (X) X X
[50] ′18 B X X (X)
[51] ′19 B X X X (X)
[52] ′21 B X X X (X) X X X
[53] ′20 M X X X X X X
[54] ′20 M X X X X X
[55] ′18 M X X X X X X
[56] ′18 M X X X (X) X X X
[57] ′18 M X X X
[58] ′22 I X X
[59] ′19 I X X X X X X
[60] ′20 I X X X X X X X
[61] ′22 I X X X X X X X
[62] ′22 I X X X X
[63] ′21 I X X X X X X
[64] ′21 I X X X X X
[65] ′21 I X X X X X X
[66] ′21 I X X X X X X X
[67] ′20 I X X X X
[68] ′19 I X X X X X
[69] ′20 I X X X X X
[70] ′20 I X X X X
[71] ′19 I X X X X X

3.1. Design of the Energy Management System Infrastructure

Today’s energy systems have significantly increased in complexity and ambiguity [3].
As shown in Figure 2, an EMS coordinates heterogenous loads, volatile RESs, and energy
storage systems (ESSs) by applying AMI, modern communication standards, and external
information systems. The following sections present a detailed review of these components
within the residential and industrial domains. In particular, we address DR, flexible and
non-flexible loads classification, and RESs, including PV, WTs, and heat pumps. Further,
we consider ESSs, such as batteries and EVs, sector coupling, and AMI, including smart
meters, sensors, and wireless and wired communication protocols.



Energies 2023, 16, 1688 6 of 21

Energies 2023, 16, x FOR PEER REVIEW 6 of 22 
 

 

General Demand and Supply AMI Monitoring Analysis Objectives Scheduling 

R
ef

. 

Ye
ar

 

C
at

eg
or

y 

N
on

-F
le

xi
bl

e 
Lo

ad
 

Fl
ex

ib
le

 L
oa

d 

R
ES

 

ES
S 

Se
ns

or
s 

C
om

m
un

ic
at

io
n 

D
at

a 
A

va
ila

bl
e 

P
re

pr
oc

es
si

ng
 

Fo
re

ca
st

in
g 

C
lu

st
er

in
g 

Si
ng

le
 O

bj
ec

ti
ve

s 

M
ul

ti
-O

bj
ec

ti
ve

s 

R
ul

e-
B

as
ed

 

M
at

h.
 M

od
el

in
g 

M
et

ah
eu

ri
st

ic
 

G
am

e 
Th

eo
ry

 

[62] '22 I ✓   ✓       ✓   ✓   
[63] '21 I ✓  ✓ ✓     ✓  ✓    ✓  
[64] '21 I ✓ ✓  ✓        ✓  ✓   
[65] '21 I ✓ ✓ ✓ ✓        ✓  ✓   
[66] '21 I ✓  ✓ ✓    ✓ ✓  ✓   ✓   
[67] '20 I ✓ ✓         ✓     ✓ 
[68] '19 I ✓  ✓ ✓       ✓   ✓   
[69] '20 I ✓ ✓ ✓        ✓    ✓  
[70] '20 I ✓ ✓         ✓    ✓  
[71] '19 I ✓ ✓ ✓        ✓   ✓   

3.1. Design of the Energy Management System Infrastructure 
Today’s energy systems have significantly increased in complexity and ambiguity 

[3]. As shown in Figure 2, an EMS coordinates heterogenous loads, volatile RESs, and 
energy storage systems (ESSs) by applying AMI, modern communication standards, and 
external information systems. The following sections present a detailed review of these 
components within the residential and industrial domains. In particular, we address DR, 
flexible and non-flexible loads classification, and RESs, including PV, WTs, and heat 
pumps. Further, we consider ESSs, such as batteries and EVs, sector coupling, and AMI, 
including smart meters, sensors, and wireless and wired communication protocols. 

 
Figure 2. A modular design of an energy management system infrastructure. 

3.1.1. Energy Demand, Supply, and Storage 
With the rising installation of RESs, flexibility is increasingly essential to balance en-

ergy demand and supply. To enhance residential and industrial flexibility potentials, ad-
vanced EMSs apply different DR techniques, integrate ESSs, and exploit flexible loads. 
While energy savings due to increased user awareness or energy-efficient technologies 
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3.1.1. Energy Demand, Supply, and Storage

With the rising installation of RESs, flexibility is increasingly essential to balance
energy demand and supply. To enhance residential and industrial flexibility potentials,
advanced EMSs apply different DR techniques, integrate ESSs, and exploit flexible loads.
While energy savings due to increased user awareness or energy-efficient technologies [10]
are the prerequisite for a modern energy system, an EMS can also shift the operation of
flexible appliances to times of local energy generation and off-peak tariffs [72]. To further
exploit this demand-shifting potential, the literature distinguishes between non-flexible
and flexible loads [24,33,36]. While the scheduling of flexible loads does not reduce the user
comfort level significantly [36], non-flexible loads must be started immediately [36] and
cannot be interrupted, adjusted, or curtailed [27]. It is worth mentioning that flexible loads
can be further categorized as curtailable, schedulable, interruptible, and thermal loads [27].
However, depending on the publication, deviating formulations for flexible and non-
flexible loads exist, such as (non-)delayable [23], (non-)schedulable [43], fixed/unfixed [40],
(non-)critical [24], (non-)deferrable [55], (un-)controllable [27], or essential loads [30].

In residential EMSs, several appliances are integrated into the energy system and
classified regarding flexibility, as shown in Table 3. In a nutshell, load flexibility can be
applied by automating flexible device control, exploiting the user’s indifference to minor
temperature changes, considering the user’s behavior, and using existing electrical storage
on the device level. While all authors consider washing machines, dishwashers, and dryers
as flexible, the classification between flexible and non-flexible loads is unclear for other
applications. Apaydin-Özkan et al. [23] suggest that the customer manually operate the
air conditioner, thus classifying it as non-flexible. In contrast, Rochd et al. [36] propose
a model that automatically regulates an air conditioner within a temperature band. Here,
flexibility is gained through automated control and allowed temperature variations that
do not affect users’ comfort. Similar reasoning applies to other thermal loads, such as
refrigerators. Integrating the user’s behavior can increase flexibility for applications such
as toasters, microwaves, vacuum cleaners, or kitchen appliances. Here, Ahmad et al. [53]
propose a human interaction factor, which determines the users’ willingness to interact
with that appliance and to delay its use for each appliance. Tantawy et al. [38] differentiate
between non-active, semi-active, and fully-active users willing to postpone certain activities.
Another option to increase flexibility is exploiting integrated battery storage in appliances
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such as laptops to delay charging in critical periods. Other devices, such as the TV, are
uniformly classified as non-flexible, which would directly decrease users’ comfort.

Table 3. Flexible and non-flexible residential loads analyzed in the literature.

Load Ref. Non-Flexible Ref. Flexible

Washing machine [1,23,24,26,28,30,32,33,36,38,40,43,53,55]
Dishwasher [1,23,24,26,28,30,32,33,36,38,40,43,53]

Dryer [1,23,24,26,28,32,33,36,38,40,43,53]
Refrigerator [23,30,32,33,36,38,40] [24,28,43,55]

Laptop and PC [24,27,36] [26,30,32,33,38,40,43,55]
Air conditioner [23,38] [24,26,27,30,33,34,36,39,46]

Lights [23,24,30,32,33,36,38,40,55] [40,43,55]
Microwave [23,27,36,38] [26,27,30,32,33,40]

Vacuum cleaner [23,27,30,32] [1,26,33,38,40]
Oven [23,27] [24,26,30,32,33,40,43]

EV [26,32,33,38,40,53,55]
TV [23,24,27,30,32,33,43]

Water/pool pump [23,38,43,55]
Water heater [23,30,38,55]

On the industrial demand-side, loads differ significantly in heterogeneity, interdepen-
dency, and size. In addition to automating flexible device control, including the user’s
indifference to minor temperature changes, EMSs can exploit further load flexibility by
sector coupling, hydrogen production, and material buffers. While Lu et al. [66] differen-
tiate between critical, shiftable, and controllable loads in a steel powder manufacturing
system, Klyapovskiy et al. [65] increase flexibility by using a potential electricity surplus for
hydrogen production. Choobineh and Mohaghehghi [73] distinguish between direct load
control, where the utility directly shuts down the load remotely, and indirect load control,
where the customer receives an optional request from the utility. Both Cirera et al. [60] and
Wang et al. [71] increase flexibility by exploiting the users’ indifference to minor temper-
ature changes, considering the modification of a refrigerator within desired temperature
bounds [60] and heating, ventilation, and air conditioneing [71]. In addition, material
buffers are integrated [66,67] to increase industrial flexibility.

Beyond introducing various flexibility potentials in residential and industrial EMSs,
another issue involves encouraging the users to apply their flexibility in a system-stabilizing
way. For this purpose, DR programs are introduced, through which users can benefit from a
grid-stabilizing behavior. These DR programs can be classified into the following categories:
(i) incentive-based DR, such as direct load control, interruptible rates, emergency DR
programs, and demand bidding programs [10], and (ii) pricing-based DR, namely real-time
pricing, critical peak pricing, time-of-use pricing, or hourly pricing [55].

Considering the renewable electricity generation technologies, residential and industrial
EMSs support PV and WTs. While PV can help mitigate global warming and reduce elec-
tricity costs [43], the electricity output mainly depends on solar irradiance, the array area,
the solar cell array efficiency, and outdoor temperature [74]. Thereby, weather conditions,
time of day, or local shading can strongly affect PV generation and thus increase volatility
and uncertainty. Similar to PV, WTs are a promising RES, highly dependent on the average
wind velocity and air density [55].

To mitigate the volatility, ESSs-like batteries or EVs can effectively balance the volatility
of renewable generation [75]. While in unidirectional charging, the electricity flows from
the grid to the EV, in bidirectional charging, EVs supply the grid, buildings, or industrial
sites with electricity [14].

EVs could act as mobile ESSs, charging in low tariff hours and discharging in peak
hours to the electricity grid, assuming bidirectional charging capabilities [43]. EVs have
lower installation and maintenance costs per kWh than ESSs, providing extra financial
benefits [32]. Modern EMSs not only consider electricity generation but also include heat
supply via heat pumps [35] and combined cooling, heating, and power (CCHP) plants to
increase energy efficiency by recovering heat for room cooling and water heating [43].
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3.1.2. Advanced Metering Infrastructure

Based on the energy demand, supply, and storage, an EMS must implement an infrastructure
for communication and data collection among the different components to integrate flexible
loads, DR programs, RESs, and ESSs. An AMI allows bidirectional energy and information
exchange between the EMS, smart meters [56], and sensors using wired and wireless com-
munication technologies. Thus, enabling data logging, remote application monitoring, data
security, and displaying electricity prices to facilitate users’ participation in the electricity
market [17]. Smart meters are intended to send user consumption information to the utility,
receive price information, and control commands through the customer gateway [56]. They
are used in many industrial and residential cases [38,47,50,70].

In addition to smart meters, residential EMSs use various sensors to measure indoor
and outdoor temperature, relative humidity [45,50], occupancy detection [34], meteorologi-
cal data [36], and thermal comfort [45]. Shareef et al. [37] measure room temperature and
humidity with the DHT22 (STMicroelectronics, Shanghai, China) sensing module and light
intensity within the room with the TEMT 6000 (Vishay Americas, Greenwich, CT, USA) light
sensing module. They validate the readings by a comparison with the measurements of
a commercial ST-1309 LUX (ATP Instrumentation, Ashby-de-la-Zouch, UK) meter. To mon-
itor the internal temperature of a refrigerator and the water temperature in a water heater,
they apply the waterproof DS18B20 (Maxim Integrated, San Jose, CA, USA) temperature
sensor. The room’s occupancy status is identified with a passive infrared motion detection
sensor and an SEN 1059 (DF Robot, Shanghai, China) CO2 sensor, which utilizes an inverse
relationship between CO2 concentration and voltage [37]. Mataloto et al. [51] measure
temperature/humidity with a DHT22 (STMicroelectronics, Shanghai, China) sensor, light
with a photoresistor sensor, motion with a passive infrared sensor, and air quality with an
MQ-135 (Zhengzhou Winsen Electronics Technology, Zhengzhou, China) sensor suitable for
detecting smoke, carbon dioxide, and other gases. By comparing the measurements with
a highly sensitive IR temperature thermometer, they excluded the temperature/humidity
sensor “DHT11” (Guangzhou Aosong Electronics, Guangzhou, China) due to unreliable
outputs and low quality.

Advanced industrial EMSs are equipped with sensors to measure physical and elec-
trical quantities, including voltages, power flows, and environmental conditions such as
temperature, humidity, or vibration [73], frequencies, and heat flows [60]. Cirera et al. [60]
operate a refrigeration system, employing the pressure sensors WIKA S20 (WIKA Alexan-
der Wiegand SE, Klingenberg, Germany), the temperature sensors WIKA T15.H (WIKA
Alexander Wiegand SE, Klingenberg, Germany), or valve positioning reeds, and integrate
the controllers 319-3 (Siemens, Munich, Germany) and S7-200 (Siemens, Munich, Germany)
to communicate with a relational MySQL database.

Wired and wireless communication technologies are essential to enable communica-
tion between heterogenous components, such as sensors and meters. Table 4 shows the
different communication technologies for EMSs. In residential EMSs, wired communica-
tion can involve a variety of technologies, such as power line communication (PLC) for
home area networks and fiber optic-based communication for wide area networks [17].
Based on wireless communication, Rochd et al. [36] implement Zigbee and Wi-Fi com-
munication in their home, while Shareef et al. [37] use Zigbee to communicate between
the appliance monitoring and controlling circuitries. Mataloto et al. [51] base their EMS
on three wireless communications protocols, long range wide Area network (LoRaWAN),
Wi-Fi, and infrared. LoRaWAN is especially suited for buildings due to the penetrabil-
ity of walls compared with others, such as Wi-Fi, Bluetooth, ZigBee, or Z-Wave. While
Charoen et al. [44] connect their devices via Wi-Fi, Tantawy et al. [38] link all smart home
appliances, RESs, and ESS over a home area network, considering ZigBee, Z-Wave, and
Wi-Fi as communication technologies.

In industrial EMSs, the reviewed literature provides no detailed overview of com-
munication protocols. However, it is worth mentioning that the same communication
technologies can be considered.
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Table 4. Wireless and wired communication protocols for energy management [3,14,17,76–79].

Technology Data Rate Coverage Range

Wired Narrowband PLC Up to 300 Mbps Up to 1500 m
Broadband PLC Up to 500 Kbps Up to 3 km

Ethernet Up to 100 Gbps Up to 100 m
Fiber optics Up to 100 Gbps Up to 100 km

Modbus Up to 20 Mbps Up to 1200 m

Wireless GSM Up to 14.4 kbps Up to 10 km
GPRS Up to 170 Kbps Up to 10 km

WiMAX Up to 75 Mbps Up to 50 km
Z-wave Up to 250 Kbps Up to 30 m, unlimited with mesh
ZigBee Up to 250 kbps Up to 100 m
Wi-Fi Up to 900 Mbps Up to 100 m

Bluetooth Up to 721 Kbps Up to 100 m
Cellular (LTE) Up to 100 Mbps Up to 100 km

LoRaWAN Up to 50 Kbps Up to 40 km
Infrared Up to 4 Mbps Up to 30 m

3.2. Data-Driven Analysis and Monitoring

Building up on the AMI, data are a crucial component of EMSs. The following chapter
firstly addresses data-driven monitoring, considering different types of data and prepro-
cessing, and secondly presents the data-driven analysis, including advanced forecasting
and classification techniques. Moreover, with machine learning-based forecasting tech-
niques and clustering for data analysis, the focus increasingly turns to data quality, time
resolution, features, and granularity.

3.2.1. Monitoring

Data-driven EMSs store and monitor high volumes of data to improve decision-
making. While large historical datasets assist in detecting seasonal deviations, monitoring
real-time data enables the control of the various EMS components. In this context, real-
time refers to data logging every second, while many EMSs only provide a lower logging
frequency of 15 min up to one hour.

As shown in Figure 3, the data collected in the literature can be divided into six categories:
(i) demand-side data, (ii) supply-side data, (iii) user data, (iv) environmental data, (v)
meteorological data, and (vi) pricing data.
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Regarding demand-side data, residential EMSs consider electric load profiles of indi-
vidual appliances [53] or monitor the whole building load [51]. In contrast, industrial EMSs
focus more on the interdependencies between the different appliances and machines, as
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the complexity of industrial production processes is higher in residential applications [73].
For supply-side data, residential EMSs monitor the electricity grid, PV [24,27,28,30,36],
WTs [27,28], CCHPs [43], diesel generators [54], and heat pumps [2]. In addition, industrial
EMSs include hydrogen production [65]. While residential EMSs include occupancy detec-
tion [25,34], presence detectors [50], and indoor temperature [50] for environmental data,
industrial EMSs also consider pressure sensors [60], temperature sensors [60], humidity
and vibration [73]. Only residential EMSs consider user data, namely consumers’ prefer-
ences and priorities for various applications [53], consumers’ comfort levels [23,43,50], and
consumers’ location [50]. Meteorological data includes outdoor temperature [46,50], solar
irradiance [33,69], wind speed [61], and general weather conditions [69]. Most publications
in residential and industrial EMSs use financial data, namely electricity prices.

In addition to real-time data, historical datasets can help pre-calibrate algorithms and
provide reference values. The number of openly available historical datasets in the literature
is increasing, as shown in Table 5. It is worth mentioning that most of the datasets are based
on a time resolution from 15 min up to one hour, which makes it challenging to analyze the
voltage/frequency stability, harmonic distortion, or the technical implementation of EMSs.
While various datasets for residential loads exist, industrial datasets are very limited. Here
the existing datasets are aggregated to protect private and sensible data [80], making it
impossible to analyze the data on a small-scale level and to assess the power quality.

Table 5. Open available historical datasets for energy management systems.

Ref. Category Description

[81] Res. load Synthetic building operation dataset at 10 min resolution
[82] Res. load Dataset for US residential/commercial buildings at 15 min resolution
[83] Res. load Residential load profiles of a kindergarten school for three years
[84] Res. load Hourly application load profiles of 3053 energy meters from 1636 buildings
[85] Res. load Power consumption of one household with a one minute sampling rate over four years
[86] Res. load Individual household electric power consumption
[87] Res. load HVAC system-attack detection, building (3-floor, 12-zone)
[88] Res. load Dataset for NILM: two year, one min resolution of electricity, water, natural gas
[89] Ind. load Hourly electricity load profiles of paper-producing/food-processing industries
[90] Ind. load Steel industry energy consumption dataset
[80] Ind. load EMSx: benchmark set with 70 industrial historical photovoltaic/load scenarios
[91] EV EV charging, Norway, two years: user ID, plugin, plug out, charged kWh, duration
[92] EV Lithium-ion battery aging dataset based on electric vehicle real-driving profiles
[93] Wind Meteorological/power/forecast data from computer model for 2007–2013
[94] Wind Offshore wind resource data in the US at 5 min resolution
[95] Solar Metadata and performance data from experimental PV generation sites
[24] Solar Temperature, irradiation
[96] Heat pump Heat pump generation
[97] Technical Baseline report of cost/performance data for electricity generation/ storage

Apart from the data collected, preprocessing is essential to improve the data quality
for residential and industrial EMSs. Among the analyzed publications, only a few address
data quality and specify the preprocessing methods used. The techniques most commonly
used are data cleaning, formatting, and scaling. Data cleaning involves removing outliers,
filling in missing values [66], and noise detection [15]. For example, Kim et al. [47] removed
25,979 missing values by applying the sliding window algorithm to use multivariate time
series data as input. To tackle value ranges of different data points, the min-max scaling
approach and the sine-cosine scaling technique exist for scaling [49,66]. Luo et al. [49]
normalize meteorological data such as temperature, wind velocity, or solar radiation into
a range of [0–1] by applying min-max scaling. Further, they apply sine-cosine scaling to
convert cyclical measures into corresponding sine and cosine values. For example, with
categorical or original hour variables, there would be a 23 h difference between 23:00 and
0:00 instead of the actual one-hour difference. Meanwhile, day and month are converted
into binary variables using a one-hot encoding approach.

Yet, a detailed analysis quantifying the effect of the applied preprocessing techniques
on the forecasting and optimization performance is missing. Since data cleaning and format-
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ting provide the basic requirements regarding data quality, benchmarking the influence of
min-max scaling and sine-cosine scaling on the analysis performance would be interesting.

3.2.2. Analysis

While forecasts predict the uncertain behavior of RESs, clustering algorithms can
identify patterns and trends in energy data, thus supporting robust EMSs. Therefore, in this
section, we differentiate between different forecasting techniques and present different use
cases for clustering. In the literature, two forecasting procedures exist: (i) machine learning-
based modeling and (ii) mathematical and statistical modeling, as shown in Figure 4.
Further, forecasts can predict uncertain outcomes regarding demand, supply, EVs, and user
and financial applications.
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Various prediction algorithms exist in the residential EMS literature for machine
learning-based forecasting methods. Charoen et al. [44] predict the temperature setpoint of
an air-conditioning system by applying an artificial neural network (ANN) with three fully
connected layers while considering the features: outdoor temperature, outdoor humidity,
and weather conditions. In contrast to most ANNs, which are primarily trained offline with
historical datasets to obtain fixed weights and biases, Youssef et al. [56] use an adaptive
online training technique. They introduce a feed-forward ANN, using the Levenberg–
Marquardt back-propagation algorithm, comparing the load for each subsequent hour with
the forecasted value and backpropagating the error to fine-tune the weights and biases.
In addition, Rafique et al. [52] use a feed-forward ANN with back-propagation learning
to predict the household load and solar PV generation. Luo and Oyedele [49] present
a self-adaptive and robust deep-learning model powered by ranking selection-based parti-
cle swarm optimization to predict electricity load in buildings with moving horizons.

Further, they test four typical activation functions: sigmoid, hyperbolic tangent, recti-
fied linear unit, and exponential linear unit. Two forecasting models for real-time prices,
PV and WT generation, are proposed by Koltsaklis et al., combining unsupervised and
supervised machine learning algorithms [27] and a general regression neural network
(GRNN) [28]. While the unsupervised machine learning part corresponds to K-medoid
clustering, the supervised part refers to the Elman neural network (ENN). Kim et al. [47]
present a convolutional neural network with a long short-term memory (CNN-LSTM)
that can effectively extract spatial and temporal features to predict housing energy con-
sumption. While CNN removes noise and considers the correlation between multivariate
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variables, LSTM models temporal information and maps time series into separable spaces
to generate predictions.

For industrial EMSs, Lu et al. [66] propose a deep learning-based forecasting model for
renewable generation and electricity prices to overcome uncertainties while considering
prediction errors. They use a hybrid CNN-LSTM model with multivariate time series data
as input and multistep single time series data as output. Gao et al. [63] apply a generative
adversarial network (GAN) to predict PV generation, while for load power prediction,
simple averaging (SA) is used.

Only residential EMSs use mathematical and statistical-based forecasting models.
Rafique et al. [52] predict EV availability, travel distance, and range by applying probability
distribution functions to historical time series data. Ma and Li [31] apply the exponentially
weighted moving average (EWMA) model to predict the energy consumption of a room
and to adapt to seasonal changes. A combination of the weighted moving average (WMA)
and linear approximation is used by Varzaneh et al. [41] to predict the next day’s electricity
demand. Koltsaklis et al. [27] evaluate the performance of their ENN by comparing it to
an auto-regressive integrated moving average (ARIMA) model.

In addition to forecasting, clustering is a vital feature of advanced EMSs. In the
literature, clustering is used for (i) non-intrusive load monitoring (NILM) and (ii) attack
detection. While intrusive load monitoring involves installing sensors on each appliance,
NILM measures appliances’ aggregated power consumption profiles and returns individual
consumption profiles. Therefore, NILM is both time and cost-effective [98].

For residential EMSs, Keramati et al. [98] use NILM to disaggregate the total power
consumption of a household into individual consumption of the appliances. To tackle the
challenge of differentiating devices consuming nearly equal power, they incorporate the wa-
ter consumption patterns of machines to separate otherwise-indistinguishable appliances.
Elnour et al. [99] present an analysis of a heating, ventilation, and air conditioning (HVAC)
system’s security analysis using the Isolation Forest (IF) approach for attack detection.

In industrial EMSs, Cirera et al. [60] propose a data-driven methodology that improves
the refrigeration systems’ efficiency on the load side. They validate the NILM approach
with a MATLAB simulation.

3.3. Decision-Making

After analyzing the different energy systems’ infrastructure, data monitoring module,
forecasting, and clustering techniques, this chapter further investigates decision-making.
Therefore, we present the objectives used in the literature, examine the scheduling algo-
rithms, and summarize the differences in realization and software tools used.

3.3.1. Objectives

Modern energy systems can control energy demand, supply, and storage, consid-
ering various, possibly contradictory, objectives. As shown in Table 6, in the literature,
four objectives exist: economical, technical, environmental, and social.

Economic objectives minimize different cost functions. While residential EMSs focus
primarily on electricity costs, industrial EMSs also consider operational and total costs.
It is worth mentioning that the underlying formula of the objective functions can differ
slightly, based on the modeling technique. Regarding technical objectives, residential
EMSs mainly minimize the peak-to-average ratio, while industrial EMSs minimize asset
degradation [73]. Only residential EMSs consider social objectives: the user’s discomfort
and waiting time. Here, the user’s comfort can be considered by minimizing the difference
between a reference temperature and the actual room temperature [35]. When considering
environmental goals, residential and industrial EMSs minimize emissions, namely CO2,
NOx, and SOx [43]. In addition to these objectives, Javadi et al. [26] also address uncertainty
by considering the probability of different scenarios [26], and Ali et al. [43] add conditional
value at risk to the objective function to overcome the risk of lost load.
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Table 6. Objectives for residential and industrial energy management systems.

Objective Ref. Residential Ref. Industrial

Economical objectives

Min electricity/ energy cost [1,2,23,25–28,30–34,36–41,43,46,52,53,55–57] [63,66,69–71]
Min total fuel cost [24]

Min generation cost [54]
Min operational cost [59,62,65,73]

Min total cost [58,61,64]
Max profit [64]

Technical objectives

Min peak average ratio [23,26,30,32,38,40,55]
Min battery degradation [52]
Min asset degradation [73]

Max grid support [35]
Min power losses

Ecological objectives

Min emissions [43] [73]
Min electricity consumption [25,48]

Max H2 production [65]
Min grid energy use [29,35]

Social objectives

Min discomfort [23,26,32–36,40]
Min waiting time [38,40,55]

In addition to comparing different objective categories, another differentiation criterion
is whether the objective has a single- or multi-objective function. In the literature, some resi-
dential and industrial EMSs address the complexity of modern energy systems by consider-
ing multiple objectives from different objective categories. In residential EMSs, the follow-
ing objectives are combined: (i) energy costs and emissions [43], (ii) energy cost and discom-
fort [33,34,36], (iii) energy cost, peak-to-average ratio, and discomfort [23,26,32], (iv) energy
cost, peak-to-average-ratio, the user’s waiting time [38,55], and (v) self-consumption, dis-
comfort, and grid support [35]. Industrial EMSs minimize operational costs, emissions, and
asset degradation simultaneously [73] and combine the objectives of operating costs and
green hydrogen production [65].

In the literature reviewed, the weighted sum method [2,32,34,42,68] and lexicographic
goal programming [26,73] exist to solve a multi-objective optimization problem. While the
multi-sum method transforms the optimization problem into a single-objective optimization
problem by assigning weights to the individual objectives, extended lexicographic goal
programming uses priority ordering amongst the different objectives.

3.3.2. Optimization Techniques

Based on the predefined objective function, EMSs schedule energy demand, sup-
ply, and storage by applying various optimization techniques. As shown in Figure 5,
five categories of optimization techniques exist: (i) rule-based optimization, (ii) mathemati-
cal optimization, (iii) metaheuristic optimization, (iv) RL, and (v) game theory approach.

Rule-based algorithms coordinate and prioritize the energy system according to
a predefined set of rules. While the logical structure makes the decision-making com-
prehensible, these algorithms are challenging to extend [36]. Only residential EMSs apply
rule-based optimization techniques in the literature reviewed. While Shareef et al. [37]
define if/then statements to manage household appliances, considering user preferences,
day-ahead electricity prices, and room occupancy, Rochd et al. [36] manage energy shar-
ing among power sources to fulfill the demand optimally. The rule-based algorithm of
Varzaneh et al. [41] enables PV integration for off-peak demand shifting, including an ESS.
MATLAB software is used to simulate and implement the algorithms [36,37,41], and the
considered time resolution differs from real-time [37], over 10 min intervals [36] to hourly
intervals [41]. It is worth mentioning that all publications that apply rule-based algorithms
not only simulate the EMS but implement it technically [36,37,41,56].
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Mathematical optimization algorithms model the energy system by formulating
an objective function and various constraints. Here, a distinction can be made between
(i) deterministic methods, such as linear programming, non-linear programming, and dy-
namic programming, and (ii) uncertainty-based methods, such as stochastic programming
and fuzzy programming. While deterministic methods do not consider uncertainties about
future events, such as PV generation or electricity demand, uncertainty-based methods
reflect these uncertainties directly in modeling.

• Linear programming (LP) expresses the objective function and constraints in linear
and deterministic relationships. It is often used due to its relatively low computation
burden and the availability of specific software packages [10]. In residential EMSs,
Annes et al. [57] schedule electric appliances in a smart home community with an LP
algorithm. A mixed-integer linear problem (MILP) is proposed by Elazab et al. [24]
for load scheduling of an offline smart isolated home and by Koltsaklis et al. [27]
for a smart home to minimize cost while determining the optimal day-ahead energy
schedule for all load types. In industrial EMSs, LP is used to improve the efficiency of
refrigeration systems [60], optimize industrial thermal batch processes [62], identify
the potential of combined energy and production scheduling in industrial energy
hubs [64], and schedule industrial facilities with PV generation, DR potential, and
EVs [71]. Klyapovskiy et al. [65] propose a MILP, considering DR flexibility, from
an electrolysis plant, a hydrogen storage tank, an electric battery, and hydrogen-
consuming plants. While Lu et al. [66] present an adaptable online EMS based on
a MILP for industrial microgrids, Mohy-ud-din et al. [68] formulate an EMS as an LP.
Software tools for solving the LP are MATLAB [24], Cplex, and GAMS [27], while time
resolutions are 5 min [34], 15 min [27,62], and 1 h [64–66,71].

• Non-linear programming either models the underlying criteria, constraints, or both by
non-linear relationships. These techniques are more potent than LPs, but computation
burdens are more significant [10]. In residential EMS, Rafique et al. [100] model non-
linear EMSs in a grid-connected residential neighborhood in Sydney with EVs, ESS,
and PV generation. Rao et al. [35] provide a control scheme for the phase balancing of
a home EMS, which maximizes self-consumption, user comfort, and grid support with
mixed-integer quadratic programming. In industrial EMS, Choobineh et al. [73] apply
a multi-objective non-linear mixed-integer problem to improve the operational costs,
emission levels, assets lifetime, and sustainable operation level of an industrial plant.
Software tools for modeling and solving are MATLAB [52,60] and GAMS [52,73], with
an hourly time resolution [52,73].
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• Dynamic programming (DP) can solve complex problems [19] by dividing optimiza-
tion problems into simpler sub-problems [17]. In the literature analyzed, only indus-
trial EMSs consider DP. Casini et al. [59] model the control of an industrial microgrid,
including EVs, and Dreher et al. [61] use a DP-based unit commitment to finding
an upper benchmark for an EMS in the context of CO2-neutral hydrogen production
and storage for industrial combined heat and power application. As a software tool,
MATLAB is used [59], and the time resolution is 1 h [61].

• Stochastic programming (SP) is an uncertainty-based optimization technique where
all or some decision variables follow probabilistic determination [17]. In the literature
reviewed, only residential EMSs consider SP. Beraldi et al. [1] present an SP problem
for an EMS equipped with an ESS and PV, while Esmaeel Nezhad et al. [33] propose
a stochastic MILP for self-scheduling home applications, and Javadi et al. [26] apply
an SP to minimize electricity costs in a self-scheduling smart home. The models are
solved using MATLAB and GAMS, and the time resolution is 1 h [1].

• Fuzzy programming is based upon fuzzy logic [17], which has the main advantage of
computational efficiency and simplicity [48]. In the literature reviewed, only residential
EMSs use fuzzy programming. Hernández et al. [45] implement a fuzzy EMS for
a school in Turkey to increase energy efficiency. Kontogiannis et al. [48] present a fuzzy
controller following the forward chaining Mamdani approach and use decision tree
linearization for rule generation. Qurat-ul et al. [34] propose a fuzzy inference system
that maintains the user’s thermal comfort, and Youssef et al. [56] ensure minimal
expenditure and maximal profit for the microgrid based on a fuzzy logic controller.
The Software tool to model and solve the optimization problems is MATLAB [34,48],
and the time resolution is 10 min [48].

Metaheuristic optimization is suitable for problems where it is easy to find one suboptimal
solution but difficult to find a global solution [10]. Table 7 shows various nature-inspired op-
timization techniques in both industrial and residential EMSs. In addition, some publications
in the literature on residential EMSs combine different techniques to create hybrid meta-
heuristics. Ali et al. [43] propose a hybrid algorithm to increase efficiency and convergence
speed by combining the flower pollination algorithm with MILP. Iqbal et al. [55] present
three hybrid algorithms to reduce electricity costs and the peak-to-average ratio of an EMS.
First, they combine the genetic algorithm, inspired by the genes of living organisms [55],
and the wind-driven optimization algorithm, which works based on the atmospheric mo-
tion of air parcels [55]. Secondly, they combine wind-driven optimization with the grey
wolf optimization technique, representing grey wolves’ hunting mechanism and leadership
hierarchy [55]. Thirdly, they combine the binary particle swarm optimization with the
wind-driven optimization. Particle swarm optimization is based on a group of birds search-
ing for food [38], and binary particle swarm optimization is a discrete variation [36]. The
various nature-inspired metaheuristics impede the selection of an appropriate metaheuris-
tic. While some authors compare the performance of selected nature-inspired optimization
techniques [38,40,43,55,70], the high variability of the best-performing algorithms indicates
that the performance is dependent on the underlying data and cannot be generalized to
other data sets. All nature-inspired metaheuristics are modeled in MATLAB, while the time
resolution differs between 15 min [54], 30 min [32], and 1 h [55].

RL is based on an intelligent agent that iteratively learns how to best act in a dynamic
environment while performing a given task. An agent aims to maximize rewards or their
expected values [10]. In residential EMSs, Lissa et al. [29] propose an RL algorithm for
indoor and domestic hot water temperature control, and Ul Haq et al. [39] present an RL
algorithm for monitoring household electric appliances to lower energy consumption. In
industrial EMSs, Dreher et al. [61] present an RL-based EMS for CO2-neutral hydrogen
production. All the RL models are simulated via MATLAB and are validated by different
use cases with a time resolution of 30 min [29].
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Table 7. Metaheuristic optimization techniques for energy management systems.

Algorithm Ref. Residential Ref. Industrial

Metaheuristic optimization algorithm

Genetic algorithm [38,40,55] [63,69]
Firefly algorithm [40] [70]

Moth-flame optimization [40] [70]
Cuckoo search algorithm [40] [70]
Ant colony optimization [40] [70]

Grasshopper optimization algorithm [43] [70]
(Binary) Particle swarm optimization [2,32,36,38,55]

Simulated annealing [43]
BAT algorithm [43]

(Two-cored) Flower pollination algorithm [43]
Slap swarm algorithm [43]
Polar bear algorithm [43]

Coyote optimization algorithm [43]
Grey wolf optimization [55]

Wind-driven optimization [55]
Sine cosine algorithm [38]

Whale optimization algorithm [38]

Hybrid nature-inspired optimization techniques

MFPA-MILP [43]
WDGA [55]

WDGWO [55]
WBPSO [55]
TG-MFO [40]

Game theory approaches are usually employed within a multi-agent framework,
where each agent chooses a strategy to maximize an individual utility function [10]. This
approach is only used for industrial EMS by Lu et al. [67], who propose an industrial
manufacturing system initially formulated as a partially-observable Markov game. Then,
a multi-agent deep deterministic policy gradient algorithm is adopted to obtain the optimal
schedule for different machines.

4. Challenges, Trends, and Future Research Directions

Building on the literature review, in this chapter, we identify trends and future re-
search directions for residential and industrial EMSs. It is worth mentioning that our
results depend on the literature analyzed. Thus, selecting different databases could lead to
complementary results and future research directions.

Design of the energy management system infrastructure:

• A trend towards aggregated and coordinated EMSs: The increased demand for flex-
ibility leads to aggregating residential and industrial EMSs. Therefore, future work
should focus on: (i) proposing standardized interfaces and communication archi-
tectures to aggregate EMSs within and between the residential and industrial do-
mains [18]. (ii) Introducing load classifications for the industrial domain, including
industrial dependencies in time, materials, and workflows. (iii) Addressing stan-
dardized communication of flexibility potentials between different local EMSs to
coordinate demand and supply flexibility over geographically distributed spaces with
heterogeneous applications [11]. (iv) Proposing new business models and interop-
erable interfaces to offer aggregated flexibility to the utility [57]. (v) Considering
multi-energy EMSs and sector coupling, including heat flows, industrial hydrogen
production, and large-scale integration of EVs with V2G capabilities [65]. (vi) Address-
ing industrial participation in DR by further nudging user behavior and integrating
human interaction factors.

• A trend towards resilience, security, and advanced metering: The need for secure
and resilient EMSs increases with the rising system’s complexity and interdependency.
Future work should focus on: (i) increasing local resilience of industrial sites, private
households, and neighborhood solutions in terms of black start and off-grid capabili-
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ties [10]. (ii) Proposing architecture requirements and frameworks for a data secure
aggregation of the bidirectional charging processes and load profiles [14]. (ii) Investi-
gating industrial communication protocols and standards. (iii) Comparing different
sensors and meters based on security, data privacy, accuracy, and costs. (iv) Proposing
new business models for smart meters.

Data-driven analysis and monitoring:

• A trend towards improved data quality: With the increasing data volume of EMSs, the
importance of data quality is rising. Therefore, future work can focus on: (i) Publishing
residential and industrial datasets that are openly available, in high resolution, and
over a multi-year horizon to compare seasonal effects [9]. (ii) Proposing frameworks
to publish high-resolution industrial datasets without violating security standards.
(iii) Introducing benchmark datasets for specific applications, such as load profiles,
PV generation, or EV charging, to compare different algorithms and the influence
of data quality [9].

• A trend towards automated and adaptive algorithms: Data supporting techniques,
such as feature selection, extraction, clustering, and the automation and adoption
of algorithmic optimization, are increasingly important. Therefore, future work can
focus on: (i) proposing a methodology for robust and real-time semantic feature selec-
tion [7]. (ii) Automating data preprocessing, feature generation approaches extraction
techniques and hyper-parameter tuning [9]. (iii) Improving forecasting algorithms
by deep learning and hybridization techniques. (iv) Analyzing unsupervised learn-
ing approaches for temporal energy pattern characterization [7]. (v) Automating the
integration of domain and expert knowledge into the optimization process. (vi) Ad-
dressing modular and automated setup processes for RL and multi-agent systems [7].
(vii) Reviewing working NILM use cases to decrease the sensor’s installation costs
and time. (viii) Analyzing automated cyber-attack and error detection.

Decision making:

• A trend toward multi-objective optimization: While various objectives exist for en-
ergy systems, future research should focus on: (i) finding frameworks to balance the
objective functions correctly and automatically. (ii) Improving robust multi-objective
optimization [8]. (iii) Analyzing further objectives such as frequency, voltage stability,
and total harmonic distortion [17].

• A trend towards transferrable, robust, and scalable optimization: Regarding the
scheduling algorithms, future work should focus on: (i) RL, considering data effi-
ciency, safety, generalization, and robust adaptability [15]. (ii) Cooperative learning,
robust coordination, federated RL, and self-learning artificial intelligence techniques to
replace user involvement [8]. (iii) Benchmarking different optimization techniques for
specific use cases to evaluate the performance, robustness, and generalizability. This
is especially important as nature-inspired optimization techniques, and hybrid algo-
rithms are often only applied to one use case [43]. (iv) Including game theory in EMSs.
(v) Implementing the EMS, as many publications only simulate the decision-making
process and optimization. (vii) Stochastic and fuzzy optimization for industrial EMS.
(viii) Analyzing the effect of physics-informed learning algorithms.

5. Conclusions

This systematic literature review comprehensively reviews the state-of-the-art research
on residential and industrial EMSs to identify trends, challenges, and future research di-
rections. First, we analyzed the design of the EMS infrastructure, differentiating between
flexible and non-flexible energy demand, incentive-based, and pricing-based DR programs.
Further, considering smart meters, sensors, and wired and wireless communication, we
briefly addressed PV, WTs, and heat pumps as essential RESs, different ESSs, and AMI.
Building upon the EMS’s infrastructure, we reviewed the literature on data-driven monitor-
ing, considered historical and real-time data for various applications, and presented data
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preprocessing techniques. Next, we focused on data-driven analysis, including advanced
forecasting and classification techniques.

Regarding the decision-making process, we differentiated between economic, tech-
nical, environmental, and social objectives and considered single- and multi-objective
optimization. Further, we grouped the optimization techniques into rule-based optimiza-
tion, mathematical optimization, metaheuristic optimization, RL, and game-theory-based
optimization. Finally, we presented several trends and future research directions.
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