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Abstract: The widespread introduction of functionally-smart inverters will be an indispensable
factor for the large-scale penetration of distributed energy resources (DERs) via the power system. On
the other hand, further smartization based on the data-centric operation of smart inverters (S-INVs) is
required to cost-effectively achieve the same level of power system operational performance as before
under circumstances where the spatio-temporal behavior of power flow is becoming significantly
complex due to the penetration of DERs. This review provides an overview of current ambitious
efforts toward smartization of operational management of DER inverters, clarifies the expected
contribution of machine learning technology to the smart operation of DER inverters, and attempts to
identify the issues currently open and areas where research is expected to be promoted in the future.

Keywords: smart inverters; distributed energy resources; machine/deep learning; power grid
operation; coordination; net zero

1. Introduction

The global goal of carbon neutrality and related policies accelerate the diffusion of
distributed energy resources (DERs) such as photovoltaic solar power generation systems
(PVs), battery energy storage systems (BESSs), electric vehicles (EVs), and heat-pump
water heaters (HPs) to the consumer side. For example, the global renewable net capacity
addition in 2022 is estimated to exceed 300 GW for the first time [1]; in particular, about 20%
of this capacity will come from new distributed PV installations, such as those installed
in residential houses. The International Energy Agency (IEA) also reported that nearly
600 GW of BESS capacity will be needed worldwide in 2030 [2] to achieve the net-zero
emissions by 2050 scenario (NZE) [3] and that 16.5 million EVs have already been installed
by 2021 [4]. The IEA also reported that the global heat pump capacity needs to be increased
to nearly 3,000 GW in 2030 [5] to realize NZE, although its compatibility with regional
heat demand characteristics needs to be taken into account. Such a remarkable change
in the components of the whole power system fundamentally alters the unidirectional
nature of power flow behavior in the conventional power grid, from the generation side
to the demand side, resulting in spatio-temporally complex power flows that change bi-
directionally depending on weather conditions and the DER utilization patterns of various
customers [6]. For example, in the task of maintaining power quality at the distribution
system, a voltage regulation framework based on on-load tap changers (OLTCs), which
uniformly raises/lowers the voltage of a target section of a distribution line throughout the
tap stepping operation [7], has conventionally functioned well. However, the increasing
complexity of the power flow behavior due to the spatially-biased DER deployment [8]
makes it extremely difficult to maintain the voltage at the various user endpoints of the
distribution system within an appropriate range through such a uniform control. Similarly,
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the task of maintaining frequency in the power system, which has been performed by large-
scale controllable generators using governor-free and load frequency control functions
to regulate output, will become further difficult to achieve stably as renewable energy
connected to the grid replaces conventional synchronous generators; this is one of the major
challenges that can be expected to emerge with the widespread penetration of inverter-
interfaced DERs, and many researchers [9,10] have mentioned this concern of insufficient
inertia to maintain grid frequency.

On the other hand, the recent progress of digital transformation (DX) of power sys-
tems [11] provides important elemental technologies to address the above issues. For
instance, concepts such as a wide area monitoring system using phasor measurement
units (PMUs) [12] will play an important role in understanding the stability of a wide
area power system. Meanwhile, in the distribution system, which is the capillary that dis-
tributes power to end-users, the penetration of sensor built-in sectionalizing switches [13]
and smart meters with communication capabilities [14] is presenting new possibilities for
understanding the complex behavior of the power system. In particular, from the perspec-
tive of improving controllability to cope with the increasing complexity of power flow in
power grids, attempts to add various ancillary service functions (e.g., power factor control,
volt-watt control, volt-var control, frequency-watt control, etc.) to the DER inverters [15]
are being promoted. These smart inverters (S-INVs) can flexibly realize a wide variety
of autonomous output controls that respond to individual DERs on the millisecond order
by setting control parameters via external communication. Therefore, S-INVs hold great
promise, for example, in terms of generating virtual inertia through appropriate control of
DER output to maintain frequency and voltage during sudden load-balance fluctuations.
However, in the real world, only the functional smartness of inverters associated with DERs,
mainly in terms of communication and configurability of various control parameters, has
been well-studied in advance, and we have yet to reach a common view on the important
issue of how to smartly utilize these S-INVs in operation.

Machine learning (ML) is expected to provide a powerful way to properly orchestrate
such smart components in the DX of such power systems. In particular, the realization of
smart operational management of DER inverters in a data-centric manner is believed to
further enhance the value of functionally-smart inverters in terms of their contribution to
ancillary services. Therefore, research on the smarter operation of S-INVs in the system
is considered to be indispensable to achieve solid operation of the next-generation power
system as before, which is extremely difficult due to large-scale installation of DERs, and
many researchers have eagerly worked on related fields in recent years. This review paper
aims to provide an overview of the various efforts to apply ML techniques that are expected
to lead to the smart operation of functionally-smart DER inverters; we will then attempt to
identify scientific challenges in related fields and research topics that are expected to be
promoted in the future.

The rest of this manuscript is organized as follows. In Section 2, we give a brief
overview of S-INVs and trends in their real-world deployment and follow up with general
observations on the roadmap for a step-wise transition of the implementation phase. This
section also provides an overview of the recent efforts to realize operational smartization
of S-INVs and roughly categorizes their application scenarios. In Section 3, based on the
categorization results, we organize the scientific challenges targeted by research in related
fields that propose the application of ML techniques. Section 4 summarizes this survey and
outlines the open scientific issues that ML techniques are expected to address in the future
to further smartize the operation of smart inverters.

2. Smartization of the Operation of Smart Inverters
2.1. Smart Inverters

Inverters are responsible for converting DC power sources of DERs to AC, which
is required when connecting to the power grid. Especially in the early stages of PV
deployment, there has been much discussion about how to implement maximum power
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point tracking (MPPT) to achieve high system efficiency and smart functionality from the
perspective of the power generation system. Later, however, the need for grid-supporting
functions to realize ancillary services such as voltage regulation in addition to general
functions began to be actively discussed. So-called “smart inverters” provide such ancillary
services by offering flexible control of the active/reactive power of DERs. On the other hand,
current source inverters, which have been often used in PV interconnection, cannot operate
without AC voltage generated by other generators connected to the grid. These inverters
themselves generally do not generate voltage and follow the voltage on the grid side, so
they are called grid-following (GFL) inverters. These GFL inverters have been used not only
for PV but also for BESS interconnection. In many real-world implementations, wind power
interconnection is also being considered, in which the AC generated is converted to DC and
sent to the grid via a GFL-type inverter. Therefore, there is a concern that a large number
of grid-following-type DER inverters will lead to a relative lack of inertia contributed by
conventional power generation facilities on a grid scale. Thus, DER inverters that have a
voltage source called grid-forming (GFM) inverters, which create such inertial forces and
enable frequency control and voltage magnitude control, are being developed to provide
even smarter functionality.

Regarding the characteristics required for such DER inverters to provide ancillary
services, ref. [15] has provided a well-organized review in terms of self-security, self-adapting,
self-governing, and self-healing. For example, the self-governing feature categorized by them
represents the capability of inverters to operate in grid-following and/or grid-forming
control modes [16]. Meanwhile, the self-adapting feature represents the flexibility realized
by adaptive inverter controllers for stable dynamics under various grid conditions. Typical
functionalities that are often discussed from this perspective include the following:

• Constant power factor control: a function to ensure that leading reactive power is
output at a set power factor to suppress the increase in distribution line voltage due to
the active power supplied to the grid from various neighboring energy resources.

• Active power limitation: a function to design the maximum active power that can be
output through the inverter.

• Active power control: a function to immediately control the active power output by
command from the distributed energy resource management system (DERMS).

• Ramp rate control: a function to mitigate the impact on the power system by limiting
the rate of change of active and reactive power during DER interconnection and
disconnection operation.

• Freq-watt control: a function to reduce the active power output of DER for sup-
pressing the increase in frequency when a large number of loads drop off the power
system due to, e.g., an accident on a transmission line, resulting in a suppression of
frequency increase.

• Volt-watt control: a function to reduce the active power output of DER when the
voltage of the connecting point increases, thereby suppressing the voltage increase.

• Volt-var control: a function to suppress voltage rise/drop by supplying reactive power
when the voltage of the connecting point increases/decreases.

• Dynamic reactive power control: a function to suppress voltage fluctuations by supply-
ing reactive power in the direction of canceling out the fluctuation when the voltage
suddenly changes: leading reactive power when the voltage rises, and lagging reactive
power when the voltage falls.

• Reactive power control: a function to immediately control the reactive power output
by command from the DERMS.

In addition, in the context of self-securing in their categorization, the following func-
tionalities may be naturally important.

• Monitoring: a function to remotely monitor DER inverter status and measurements
with DERMS.

• Communication: a function to establish intercommunication with external systems
such as DERMS.
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• Data handling: a function to handle specific data models and protocols.

On the other hand, from the perspective of self-healing, which has been defined as
fault-tolerance and stress reduction under abnormal conditions, the following functionali-
ties will be important.

• Scheduling: a function to schedule for DER connection/disconnection, control modes,
and control parameters.

• Soft start: a function to mitigate the impact on the power system by limiting the rate
of change of active power during reconnection.

• Disconnection/reconnection: a function to disconnect and reconnect DERs from the
power system with remote control from DERMS.

• Fault ride-through (FRT): a function to prevent DERs from disconnection in response
to voltage and frequency fluctuations while adhering to the conditions for continued
interconnection operation.

• Islanding detection: a function to detect that the target distribution system has been
disconnected from the grid power supply and properly disconnect the DER.

• Maintenance: a function to maintain inverter and DER systems.

For S-INVs with the various functionalities described here to be introduced into
the real world, their impact should be empirically demonstrated in multiple stages. In
particular, as the role of DERs in the stable supply of electricity changes with the spread of
DER installations, grid codes are also being developed based on this change. For example,
the U.S. state of California, where DER has been massively adopted, has declared the
requirements for grid interconnection of PVs and BESSs through Rule 21 [17], a grid code
established by the independent system operator: in this grid code, it is noted that the
functionalities of S-INVs will be equipped in a step-wise manner, generally as shown in
Table 1. In the real world, the functionality of the DER inverter is advancing in this way due
to innovations in hardware technology and the organization of communication protocols.

2.2. Smartization of the Management of “Smart” Inverters

ML technology is considered to play a very important role in realizing a data-centric
framework for appropriate control based on the exchange of data realized through limited
communication, and a great number of related technologies have been discussed in recent
years. Firstly, we focus on representative keywords in recently published related papers
to give a brief overview of the research field on the smartization of the S-INV operation.
Figure 1 represents a word cloud generated from the abstracts of 130 papers related to
S-INVs published since 2017 in some representative journals to provide an overview of
recent research topics related to S-INVs. We have included 55 journal papers published in
IEEE Xplore (https://ieeexplore.ieee.org/Xplore/home.jsp accessed on 28 October 2022)
containing smart inverter as index terms, 30 journal papers published on ScienceDirect
(https://www.sciencedirect.com/ accessed on 28 October 2022) containing smart inverter as
keywords, and 45 papers published in Energies (https://www.mdpi.com/journal/energies
accessed on 28 October 2022) containing smart inverter as keywords. All the articles were
retrieved on 28 October 2022. The figure shows several rough trends of recent studies
on S-INVs. The first thing that can be seen from this figure is that the voltage control
aspect of the power system is expected to be prominent. While the contribution of DER
inverters to the frequency control of power systems has been discussed well, there seems
to have been even more active research areas in recent years that claim to contribute to
the voltage control aspect of the power system. As for functionalities of the inverters,
topics related to specific operations such as volt-var control (VVC) seem to be mentioned
frequently. The inclusion of other voltage regulators, such as on-load tap changers (OLTCs),
suggests that the scientific interest of the community has been focused on topics related to
the sharing of roles and coordination with other control systems that have been responsible
for voltage regulation in conventional distribution system operation. The appearance of
the words communication and centralized may suggest the need for coordinated operation
among multiple inverters and existing voltage regulators. In addition, the frequent use

https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.sciencedirect.com/
https://www.mdpi.com/journal/energies


Energies 2023, 16, 1330 5 of 26

of words such as hosting as well as photovoltaic and solar confirms the expectation that the
smartization efforts of inverters will promote the introduction of renewable energy.

Table 1. Summary of functional requirements for S-INVs.

Phase Description

Phase 1 (autonomous functions):
implementation of autonomous control
function.

• Dynamic volt-var control
• Constant power factor control
• Low/high voltage ride-through control
• Low/high frequency ride-through control
• Anti-islanding control
• Reconnect soft-start methods
• Ramp rates control

Phase 2 (communication functions):
implementation of intercommunication
function among S-INVs and other
systems.

• Communication interface
• Transport protocols
• Mapping to application protocols
• Data model
• Transport and user cyber security

Phase 3 (additional advanced functions):
implementation of advanced DER control
functions utilizing communication
functions.

• Volt-watt control
• Limit maximum active power mode
• Set active power mode
• Scheduling power
• Frequency-watt control
• Dynamic reactive power support
• Smooth frequency deviations
• DER disconnect and reconnect command
• Monitor alarms
• Monitor key DER data
• Provide DER information at interconnection
• Start up
• Scheduling modes and parameters

Source: authors’ own elaboration based on CA Rule 21 [17].

Based on these research trends and the ongoing discussion of functional requirements
for S-INVs in the w world, we categorize the research related to the smartization of DER
inverter operations into the following six categories, focusing on the main application
scenarios of the developed technology; each category has the following aspects:

• Individual DER system operation: methodology development to support interconnec-
tion and operation of individual DER systems.

• Wide-area grid support: methodology development for the provision of ancillary
services in wide-area operations expected with the mass introduction of DERs.

• Voltage regulation: methodology development to regulate the voltage around the
interconnection point during the operation of the DER systems.

• Emergency control: methodology development aimed at DER operation during emer-
gencies caused by physical factors from a power system perspective.

• Security/anomaly detection: methodology development for cyber security and anomaly
detection during operation via information and communication systems.

• Utilization of probe data: methodology development to utilize the data acquired by
DER inverters for further service operation.
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Figure 1. Word cloud generated from abstracts in recent works on smart inverters. The color and
font size indicate the relative frequency of the word appearing in the set of abstracts.

3. Machine Learning Challenges

In this section, we look at the big picture of related research for smartizing the op-
eration of DER inverters for each of the categories corresponding to the six application
scenarios described in Section 2.2, with particular attention to the aspects where ML meth-
ods are being actively applied in realizing a data-centric approach. Figure 2 summarizes
the targets that each category primarily covers. We will then clarify the motivation and
awareness of the issues involved in the introduction of ML technology in each category,
accompanied by a survey of relevant studies published by authors affiliated with research
institutions located in the various regions shown in Figure 3.
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3.1. Individual DER System Operation

Here, we focus on the perspective of smartization for the sustainable operation of
individual DER systems that are directly controlled by the inverter. The studies shown
in Table 2 are those that focus on the perspective of individual DER systems aiming for
sustainable operation. Particularly, inverter control for PV systems has been the subject
of many studies as part of the smartization of control strategy [18], with a variety of
data-centric control mechanisms being considered.

One of the typical smart features required for inverters used in renewable energy
interconnection is the MPPT; this operation strategy allows the output of the renewable
energy source to always follow the optimum operating point under changing weather
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conditions. To realize such an operation, various promising approaches have been proposed,
such as tracking the optimal power with a hill climbing approach based on the P–V
curve [19]. Among them, some research groups have proposed the application of ML
frameworks such as an artificial neural network (ANN) [20,21] and reinforcement learning
(RL) [22,23] to realize MPPT in a data-centric manner to achieve even faster tracking of the
optimal operating point, which changes rapidly with solar radiation, as in PV generation;
in these frameworks, MPPT is achieved by learning a model that outputs inverter control
parameters to achieve the maximum power point based on input information such as
solar irradiation and panel temperature at each interconnection point. Thus, MPPT is
one representative field where ML approaches can contribute to the smartization of the
operation of DER inverters.

To sustainably and smartly use the installed DER inverter, attempts to properly quan-
tify the efficiency realized by the inverter [24] and assist maintenance [25,26] are also
important topics. For example, the system performance can be understood by analyzing
the monitoring results of the outputs of neighboring multiple DER systems [25], and the
failure modes common to PV inverters can be analyzed based on the maintenance records,
e.g., by using the term frequency-inverse document frequency (TF-IDF) features extracted
from records containing maintenance details, to make decisions regarding maintenance
implementation [26]. The application of ML techniques is strongly expected in this research
area as well, in terms of estimating situation-specific nonlinear response control results
based on collected data, and, therefore, these types of smartization schemes will play an
important role in sustainable DER system operation.

We should emphasize that the smartization of individual DER system operations is
gradually being applied to real-world operations. For example, MPPT technology in PV
inverters is widely implemented in the real world, with average conversion efficiencies
of around 94–97% [27]. Deterioration diagnosis is another area where real-world services
are being implemented; diagnostic tools for DER system operation, including inverters,
are becoming popular, especially for PV systems [28]. Thus, the individual DER system
operation is the area where the application of ML technology has been most studied with a
view to practical use.

Table 2. Relevant studies on ML-based individual DER system operation.

Main Background/Target ML Perspective Refs.

MPPT ANN-based MPPT control. [20,21]

RL-based MPPT control. [22,23]

Assist of maintenance

Mixed-effect model-based identification scheme of
the aging of PV inverters.

[25]

SVM and LDA (topic model) for maintenance record
analysis.

[26]

Inverter efficiency estimation based on linear model. [24]

3.2. Wide-Area Grid Support

As mentioned in Section 2, one of the smart functionalities that is particularly promis-
ing for DER inverters is the support of daily grid operation. Table 3 summarizes representa-
tive studies for the realization of ancillary services where the connected DER inverters are
intended to contribute rather to the entire power system. Harmonics control, in the sense of
countermeasures against harmonic distortion that can occur due to DER output, is one of
the key smart technologies expected in inverter operation. For example, there is a popular
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index called total harmonic distortion (THD) that measures the impact of distortion due to
harmonics in AC power supply:

THD =

√
I2
2 + I2

3 + I2
4 + · · ·+ I2

N

I1
, (1)

where In(n = 1, . . . , N) is the root mean square value of the n-th harmonics correspond-
ing to the Nyquist frequency; in particular, I1 represents the root mean square value of
the fundamental source current. Taking a specific real-world implementation context as
an example, IEEE Std. 519 defines recommended values for THD derived from source
current. Several popular frameworks have been proposed to suppress the impact of such
higher-order frequencies, including proportional integral (PI) control via a power filter
and an approach that defines control quantities as a solution to a kind of optimization
problem [29,30]. Furthermore, in an attempt to flexibly and appropriately suppress the
effects of dynamic behavior derived from DER in a data-centric manner, some machine
learning approaches have been proposed, such as the quasi-real-time derivation of control
target values and control schemes using ANNs [31–33]. For instance, ref. [31] proposed a
framework for learning an ML-based mechanism that monitors the output voltage of the
S-INV at the interconnection point, derives the modulation index, and then derives the
desired inverter switching state. For another instance, a framework using convolutional
neural networks (CNNs), which have been reported to be highly effective in the context
of image processing [34] and DER output prediction [35], has also been reported to work
effectively in the context of harmonics control for the inverter [36]. In addition, it has been
strongly expected that predicting the immediate frequency trend will be useful to achieve
appropriate control, especially for dynamic harmonics. For this reason, many efforts have
been reported to implement model predictive control (MPC) [37,38] schemes based on pre-
dictors built on ML methodologies such as ANNs [39–42]. Note that most studies assume
that the model for such smart operation can be learned offline in advance. On the other
hand, some research groups have argued the importance of the dynamic updatability of
the model from the viewpoint of sustainable operation. Batch training of ML models, e.g.,
ANNs, typically takes several hours to several days of computation time, depending on
the architecture and the amount of data. Moreover, if such a model is to be updated at the
grid edge, an ML-based framework that requires excessively rich computational resources
would be difficult to implement widely in the real world. For example, a framework such
as the one proposed by [43] that allows models to be updated online in a computationally
inexpensive manner based on the latest data may provide a possible solution that could
support efficient contribution to the real-world operation.

On the other hand, many other efforts have been reported that aim at the effective
operation of DER inverters from the viewpoint of further active realization of virtual
synchronous generators (VSGs), and propose operation methods from the viewpoints of
frequency control and grid synchronization. The potential contribution of such functionally-
smart inverters has been pioneered especially in the context of the microgrid [44]. Ap-
proaches such as droop control, derived by analogy with the conventional synchronous
power generation models, may be one possible framework. However, to achieve further
adaptive and desirable control, ML approaches such as (deep) ANNs [45–47], radial basis
function (RBF) neural networks [48], and RL [49–51] frameworks have been proposed. In
particular, the plausible estimation of the providable virtual inertia of other DERs under
various conditions and the derivation of the appropriate outputs based on this estimation
play important roles in practical operation scenes [52]. For such a problem, ref. [53] has
proposed a framework that realizes real-time estimation of inertia in the current power
system by using time-series frequency data collected from multiple PMUs and derives
control based on a regression model constructed with random forest (RF) [54]. In addition,
as described in Section 2.1, GFL and GFM inverters are each expected to play an important
role in the next-generation power system, and coordination between them will be particu-



Energies 2023, 16, 1330 10 of 26

larly important in a DER-dominated system. To achieve this type of coordination, ref. [55],
for example, has proposed a framework for agent-based consensus control of GFM-GFL
coordinated secondary control for a microgrid with no other major power sources; such
an attempt will be also a topic that is expected to become very important as DERs become
massively penetrated.

Table 3. Relevant studies on ML-based wide-area grid support.

Refs. Background/Target * ML Perspective
HC FC Other Target

[43] X - - ANN-based online learning scheme for dynamic harmonic compensation.
[47] - - Transient stability as-

sessment.
DNN-based online assessment.

[56] - X - ANN-based RL for frequency control.
[57] X - - Fourier analysis and various optimization schemes to minimize THD.
[31] X - - ELM-based harmonic elimination control.
[30] X - - GA-based optimization to minimize THD.
[32] X - - ANN-based output control to minimize THD.
[50] - X - RL for adaptive VSG control.
[39] X - - ANN-based MPC for reducing THD.
[29] X - - Nature-inspired optimization to minimize THD.
[33] X - - Adaptive FNN-based control to reduce THD.
[58] X - Voltage control. ANN-based harmonics control.
[45] - X - DNN for adaptive VSG control.
[36] X - - Deep CNN-based control to minimize leakage current.
[49] - X - RL for adaptive VSG control.
[53] - X - RF-based estimation of inertia and ANN-based surrogate model for evaluation.
[59] - - Current tracking. FNN-based control.
[48] - X - RBF NN for adaptive VSG control.
[60] - X Voltage control. GP-based inference for decision-making in feasible control.
[40] X - - ANN-based MPC to minimize THD.
[61] - X - RF-based frequency response estimation.
[62] X - Voltage control. Iterative learning control to mitigate THD.
[63] - - Grid-forming. Multi-armed bandits framework for online learning of control parameter configura-

tion.
[64] X - Voltage control. Fuzzy inference for fractional order control.
[65] - X - Deep belief network for frequency control.
[55] - - Coordination of GFM

and GFL inverters.
Multi agent-based consensus control.

[66] - X - Deep RL for adaptive VSG control.
[67] X - - DBN-based MPC to reduce THD.
[51] - X - RL for adaptive VSG control.
[41] X - - ANN and TDNN for surrogating controller in MPC.
[46] - X Voltage control. ANN-based active/reactive power control.

* HA: harmonic control, FC: frequency control/synchronization

3.3. Voltage Regulation

As described in Section 2, functionally-smart inverters can realize various output con-
trol mechanisms, such as active and reactive power, utilizing DER. In power systems with
a large number of renewable energy sources, the role of inverters will become increasingly
important in terms of fine-tuning grid operations in rather local areas, such as stabilizing
voltage [68] and improving the three-phase imbalance in the distribution system [69]; such
controllability is also expected to have a significant impact on the hosting capacity of
renewable energy [70]. Table 4 shows representative studies on the sophistication of local
area voltage control through the control of such S-INVs.

From the viewpoint of voltage control support in the distribution system, a uniform
output control scheme based only on information collected at the connecting point is not
necessarily appropriate, and effective realization will be possible only when each DER
performs appropriate control by estimating the impact on the behavior of local power
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flow while also taking into account the interaction with the control of other surrounding
energy resources. Motivated by these points, a great number of researchers have addressed
the topic of coordinated control frameworks among massively deployed S-INVs and with
existing voltage control equipment, and many applications of machine learning techniques
have been attempted in this context. In particular, ML is expected to provide two main
benefits: estimation and prediction of power flow uncertainties, and data-centric derivation
of optimal control parameters and strategies under these uncertainties. For the former
perspective, the primary concern is the prediction of the output of the DERs connected to
the grid via individual inverters. For example, ref. [71] has proposed a framework that
models the spatio-temporal behavior of solar radiation based on copula [72] and uses it for
reactive power control to enhance voltage control for PV-induced voltage fluctuations. Esti-
mation and prediction using linear regression models [73,74], kernel regression models [75],
time series models [76], and DNNs [77,78] have provided important components in the
frameworks for dynamically tuning the control parameters to establish the sophisticated
voltage regulation [79,80]; especially the studies introducing the concept of MPC [81–85]
have been well discussed. In particular, such prediction is effectively achieved not only by
using the information on the DER output and end-point voltage, which can be monitored
by the individual S-INV, but also by using a variety of other information as input, including
weather measurement data such as solar irradiance [71,74] and demand data measured at
each residential house [78] and various points [76]. Meanwhile, for the latter perspective,
many frameworks have been proposed to derive the appropriate control depending on the
situation in a data-centric manner using SVM [86] and ANNs [87–89]. One persistent view
is that edge implementation [90] is preferable from a feasibility standpoint for controlling
a large number of DER systems connected to the power grid, and a framework has been
proposed in which the parameters of the individual inverters are tuned autonomously only
using the information collected at each installation site for the appropriate control [88].
On the other hand, from the viewpoint of a large-scale optimization problem in which
the parameters of a large number of inverters are to be determined appropriately, some
strategies have been proposed, such as a derivation based on fuzzy inference [91], applica-
tion of nature-inspired optimization schemes [92–95], optimization from a game theoretical
viewpoint [96], and Bayes optimization [97].

Meanwhile, in recent years, the application of RL frameworks [78,98–115] has shown
great promise as an effort to comprehensively achieve these two tasks: estimating the
uncertainty of the surrounding situation and searching for an optimal parameter set that
depends on it. In particular, cooperative optimization with other conventional voltage
control equipment is considered to be a very challenging topic in terms of a huge optimiza-
tion problem with a high degree of freedom and complex constraints; for example, the
viewpoint of coordination between various regulators, e.g., on-load tap changers (OLTCs),
and S-INVs, brute force approaches [116], heuristic approaches [117], and multilevel opti-
mization frameworks [118,119] has been studied. The RL scheme provides one promising
approach for learning appropriate operational procedures in situations with such complex
interferences [110,120–122]; compared to the ordinary supervised learning-based frame-
work (see Figure 4a), where the control guideline of S-INVs are derived based on previously
observed data, the RL framework allows the active search for appropriate parameters in
dynamic situations involving uncertainty. Meanwhile, one notable difficulty in adopting
such an RL framework in practical situations would be the evaluation of operational perfor-
mance during the learning process. Such an implementation, shown in Figure 4b, generally
takes a very long period of data acquisition to derive a good control guideline through
exploratory evaluation in the actual system; in some cases, control with inappropriate pa-
rameters may adversely affect the real-world power system operation during the learning
process. To address this difficulty, most RL frameworks have considered the use of power
system simulation models (e.g., [123]) that aim to simulate the real-world power system
response, in the form shown in Figure 4c. Furthermore, the concepts called surrogate
models [124] and response surface approximation have recently been intensively used in
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the context of operational sophistication of power systems of various scales [125–127] to
simulate plausible system responses without access to detailed information on physical
characteristics and still allow for fast and numerous trial evaluations. Hence, the physical
model-free RL scheme [110] introducing a surrogate model of the power system, as shown
in Figure 4d, is expected to be further sophisticated as an important approach to consider
dynamic and computationally cost-effective optimization under various conditions, taking
into account the real-world power flows that dynamically change according to the DER
penetration phase. Another important aspect of practical application of the framework
shown in Figure 4 is the reliability of the simulation/surrogate model to reproduce actual
power system behavior. For example, to realize the power flow of a real-world power
distribution system, a precise understanding of various physical characteristics such as
network topology, equipment, and response characteristics of control appliances is required.
Even if this information is known accurately, the actual power flow behavior and the sim-
ulation results, which are approximated during the model construction process, do not
always match perfectly. Furthermore, surrogate models, which are constructed by focusing
on the statistical relationships among various measurements, allow for faster acquisition
of system response results but may extrapolate responses that do not reflect the actual
physical phenomena in extreme situations that are not included in the training data set.
Therefore, there is a concern that the results tuned by such a model may result in very poor
control of the real system. To address such issues, some researchers have begun to propose
optimization schemes that actively estimate the regions of infeasible parameters in the
optimization process and search for safe parameters while avoiding infeasible regions [97].
In realizing decentralized cooperative control of DER systems in a data-centric manner,
appropriate handling of the effect of deviations in the responses of such models from the
real system behavior will become an important topic in the future.
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Figure 4. Variations of learning schemes for S-INV control parameter.

Especially in a framework aiming to appropriately control the voltage affected by
the uncertainty of the power flow, which is estimated based only on sensor information
at a limited number of points, by controlling many inverters that have very complex
dependencies on each other, flexible decision-making is expected to be performed in real
time in a data-centric manner. The utilization of S-INVs, which can be controlled in various
ways according to the information observed at their endpoints while taking into account the
uncertainties in the power flow behavior in large-scale grids, for fine-tuned voltage control,
remains a very challenging research topic even today; however, that is precisely why this
research field is expected to see breakthroughs via the application of ML methodologies.
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Table 4. Relevant studies on ML-based voltage regulation.

Refs. Background/Target * ML Perspective
STF VB P Q CO CO+ Other Target

[87] - - X X - - - ANN-based active/reactive power control.
[88] - - - X X - - ANN-based edge implementation of volt-var power control.
[98] - - - X X - - RL for coordinated voltage regulation.
[81] X - - X X - - MPC scheme for state estimation-based coordinated volt-var

control.
[75] - - - X - - Loss min. Kernel regression for reactive power control.
[99] - - - X X - - Deep RL for coordinated voltage regulation.
[92] - - X X - - - Nature-inspired parameter optimization.
[128] - - X - X - - Multi-agent deep RL for coordinated voltage regulation.
[100] - - - X X - Loss min. RL-based coordinated reactive power control.
[79] - - - X X - - SVM-based coordinated reactive power control.
[94] - - - X - - - Nature-inspired optimization for parameter search.
[101] - - - X X - Loss min. Deep RL-based coordinated volt-var power control.
[93] - X X X - - - K-means load clustering for nature-inspired optimization-based

parameter selection to balance voltage.
[96] - - - X X - - Linear regression for online game-theoretic coordinated volt-var

control.
[129] - - X X - X - Deep RL for coordinated voltage regulation.
[120] - - - X X - Loss min. DNN-based reactive power control (model-free approach).
[130] - - - X - X - Mixture model-based scenario generation for representation of

uncertainty in the power grid behavior.
[73] X - - - - - - Linear regression with elastic net regularizer for prediction of

voltage behavior.
[83] X X X X - - Multiobjective

control.
MPC scheme based on nature-inspired optimization.

[131] - - - X - - - Online deep RL for volt-var control of individual S-INV.
[102] - - - X - X - Multi-agent deep RL for volt-var control.
[132] - - - X - - - ANN-based reactive power control.
[84] X X X X - - - MPC-based control of BESS-interfaced S-INV.
[133] X X X X - - Multiobjective

control.
MPC-based control of BESS-interfaced S-INV.

[134] - - X X X - - RL for coordinated voltage regulation.
[85] X - - X X - - MPC-based volt-var control.
[135] - - - X X - - Nature-inspired optimization-based volt-var control.
[136] X X - X X - - Multi-agent deep RL-based volt-var control for voltage balanc-

ing.
[121] - - - X - X - Deep RL for coordinated volt-var control.
[137] - - X X - - - Online learning for active/reactive power control of individual

S-INV.
[95] - X - X - X - Nature-inspired optimization for coordinated voltage regulation.
[104] - - - X X - - Multi-agent RL-based coordinated online volt-var power control.
[122] - - - X - X - Multi-agent deep RL-based volt-var control coordinated with the

other regulators.
[105] - - - X X - - Multi-agent RL-based coordinated online volt-var power control.
[107] - - X X X - - Deep RL for coordinated voltage regulation.
[76] X - X X X - - AR model for forthcoming voltage prediction.
[108] - - X X - - - DNN-based RL for regulation parameter search.
[77] - - - X - X Loss min. Deep CNN-based reactive power control for PVs.
[106] - - - X X - - Multi-agent RL for coordinated voltage regulation.
[97] - - X X - - - Bayes optimization for optimal search of inverter parameters.
[109] - X - X X - - Deep RL-based volt-var control for voltage regulation in unbal-

anced distribution network.
[78] X X - X X - - DNN-based load prediction.
[110] X - - X - X - GP-based prediction and multi-agent deep RL-based volt-var

control coordinated with the other regulators (model-free ap-
proach).

[111] - - - X X - - RL for coordinated voltage regulation.
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Table 4. Cont.

Refs. Background/Target * ML Perspective
STF VB P Q CO CO+ Other Target

[74] - - - X X - - DNN-based inverter control policy.
[112] - - - X X - - Multi-agent deep RN-based coordinated volt-var control.
[113] - - X X - X - Multi-agent deep RL-based active and reactive power control.
[114] - - X X X - - Deep RL for coordinated voltage regulation.
[89] X - X X - - - ANN-based load forecast and decentralized control.
[80] X - - X X - Loss min. and

peak shaving
control.

Deep RN-based control (model-free approach).

[86] - - - X - - - Linear regression and SVM for online reactive power control.
[71] - - - X X - - Copula-based relationship modelling of spatio-temporal behav-

ior of solar irradiance for evaluation of reactive power control
effect.

[115] - X X - X - - RL for coordinated voltage regulation.

* STF: short-term forecast, VB: voltage balancing, P: active power control, Q: reactive power control, CO: coopera-
tion among S-INVs, CO+: cooperation w/ other regulators.

3.4. Emergency Control

Efforts for S-INV operations have not only targeted daily operations, but also infre-
quent emergency operations. Table 5 summarizes representative studies related to these
topics and involving ML perspectives. For instance, the fault ride-through (FRT) [138],
which is often specified in grid codes for renewable energy interconnection, is a func-
tion that requires power supplies to continue operation without stopping in the event
of a voltage sag or frequency fluctuation disturbance in the event of a grid accident. In
this context, ref. [82] has proposed an MPC-based active/reactive power control to re-
alize data-centric FRT besides the general voltage control. Detection of grid accident
events [139] is also important in the decision-making process for emergency operations.
In order to detect such system accidents, ML approaches such as the autoregressive (AR)
model [140], K-nearest neighbor (K-NN) approach [141,142], SVM [140,142–145], Random
Forest [142,146,147], Bayesian network [148], adaptive neuro fuzzy inference system (AN-
FIS) [149], auto-encoder [150], CNN [151,152], and LSTM [153] have been applied in various
studies. In particular, ref. [154] considered the application of a bootstrap-based ensemble
learning scheme in the decision-making process for control against fault-induced delayed
recovery [155]. In addition, in a framework that identifies events that are expected to occur
infrequently, such as power system accidents, by learning discriminators in a data-centric
manner, the difficulty of achieving learning with high generalization performance due
to significantly skewed data [156,157], known as the class imbalance problem [158], can
be a barrier [142], for example, has focused on such a class imbalance problem, which
can be serious in fault diagnosis, and proposed the application of the synthetic minority
over-sampling technique (SMOTE) [158] to resolve the imbalance.

Islanding detection [159] is another important topic, in terms of the smartization of
inverter operation in emergencies, that has been studied intensively, especially in the
context of microgrids. In an attempt to realize islanding detection in a data-centric
manner, many ML approaches have been considered, including the AR model [160],
LSTM [161], SVM [145,160], sparse model [162], ANN [163], probabilistic fuzzy neu-
ral network (FNN) [164], self-organization model (SOM) [165], ANFIS [166], and auto-
encoder [167]. For example, ref. [168] has proposed an ANN-based mode control scheme
to realize mode transition control, in which the PV inverter should be operated in grid-
connected mode or standalone mode by collecting the time-series information of voltage
and current at the DER interconnection point. Thus, there are high expectations for ML in
efforts to smartize the operation of DER inverters so that they can operate appropriately
even in a kind of emergency.
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Table 5. Relevant studies on ML-based fault/islanding detection.

Refs. Background/Target * ML Perspective
FD ID Other Target

[166] - X - ANFIS-based detection.
[160] - X - AR- and SVM-based detection.
[143] - - Fault diagnosis. Fourier analysis and SVM-based diagnosis.
[165] - X - SOM-based detection.
[164] - X - Probabilistic FNN-based detection.
[154] - - Fault-induced delayed recovery. Bootstrap-based ensemble learning for decision-making model.
[161] - X - LSTM-based islanding detection.
[145] X X - SVM-based detection.
[82] - - Active/reactive power control for FRT. MPC-based FRT scheme.
[144] X - - SVM-based fault classification.
[151] X - - CNN-based detection.
[146] X - - Wavelet transformation and RF-based detection.
[167] - X - Auto-encoder-based detection.
[162] - X - Fourier and wavelet transform and sparse representation-based

classification.
[153] X - - Fault prediction based on LSTM.
[163] - X - Wavelet transform and ANN-based detection.
[149] X - Fault elimination. ANFIS-based detection.
[141] - - Fault diagnosis. K-NN-based diagnosis.
[142] X - - SMOTE and various classification approaches (DT, SVM , K-NN,

and RF) for detection.
[150] X - - Auto-encoder-based detection.
[147] X - - Boosting/bagging DTs and KDE for detection.
[168] - - Mode transition control. ANN-based control.
[148] - - Fault diagnosis. BN-based diagnosis.
[140] X - - AR- and SVM-based detection.
[152] - - Fault diagnosis. CNN-based diagnosis.

* FD: fault detection, ID: islanding detection

3.5. Security/Anomaly Detection

Various security assurance frameworks [169,170] have begun to be considered from a
cyber-physical perspective for the introduction of DERs. Discussion of the impact of the
controllability and information provided by such resources on the power system has been
of broad interest in the field [171–173]. Particularly, in recent years, there has been much
discussion of security and anomaly detection in terms of the control of individual inverters,
as shown in Table 6.

For example, in a typical study in the context of anomaly detection, ref. [174] has
focused on the erroneous voltage data detection task in the voltage data monitoring process
and proposed a volt-var and volt-watt inverter control scheme based on the idea of least
absolute shrinkage and selection operator (LASSO) [175], which is a typical framework
for models assuming sparseness and is one of the core technologies for black hole shadow
observations by an Event Horizon Telescope [176], and has often been used in the physical-
model-free description of energy systems [177,178]. In the context of anomaly detection,
other approaches based on, e.g., SVM [179] and LSTM [180], also have been proposed.

Meanwhile, efforts to detect cyber/physical attacks [181,182], such as false data in-
jection [183] and data integrity attacks [184], have been gradually increasing in recent
years. For example, binary matrix factorization [185] is an approach to analyze patterns
in signals and is one of the techniques that has been reported to be useful for power sys-
tem applications [186]; ref. [182] has discussed the data-centric identifiability of attacks
by classifying voltage and current features monitored at multiple points in the power
system based on this binary matrix factorization technique. For another example, ref. [183]
has proposed the application of a federated learning mechanism [187], i.e., a distributed
ML framework, for the detection of false data injection attacks on inverters at multiple
solar farms; although their research was less focused on achieving decentralized model
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learning with less intercommunication and more motivated by data privacy secure, such a
framework is also expected to be effective to achieve decentralized cooperative control for
individual inverters for proper daily operation. These studies suggest great promise for the
contribution of recent advances in ML technology to smartize the operation of S-INVs.

Table 6. Relevant studies on cyber security of S-INVs.

Refs. Background/Target ML Perspective

[179] Anomaly detection. Anomaly detection based on SVM.
[184] Detection of data integrity attack. LSTM-based detection.
[180] Anomaly detection. MPC-based anomaly detection by using LSTM.
[174] Erroneous voltage data detection in

volt-var, and volt-watt control.
Linear model and Lasso approach for S-INV control.

[182] Cyber and physical attack detection. Matrix factorization-based detection (and t-SNE-based
visualization).

[181] Cyber attack mitigation. Deep RL for attack detection.
[183] Detecting false data injection attack. Federated learning for cyber attack detection.

3.6. Utilization of Probe Data

In the context of operational smartization of S-INVs, the topics presented in Sections 3.1–3.5
represent the major research trends that have been discussed in related fields. However,
several frameworks, such as those shown in Table 7, have been proposed to utilize data
obtained via inverters, i.e., inverter probing data, to identify the physical components of
the power system. For example, ref. [188] has discussed an idea to learn the estimation
mechanism for other loads based on voltage response behavior to inverter injection changes;
their proposed framework will be a promising way to identify non-metered loads connected
to the grid by using probing data from S-INVs. Ref. [189] has proposed an ANN-based
framework for grid impedance identification based on inverter measurements, and ref. [190]
has focused on a framework for network topology inference based on inverter probing data
using graph Laplacian [191], and proposed an estimation of distribution network topology
using this framework.

The information provided by this type of framework may be trivial to DSOs having
detailed system information, e.g., network configuration; however, such a framework
may become particularly important for servicers who are in a position to evaluate system
configurations with many DERs from a data-centric perspective. Furthermore, the approach
of utilizing inverter probing data in conjunction with data measured by PMUs, smart
meters, and sensor built-in sectionalizing switches to understand physical characteristics
and identify power system response may become a core element of technology in terms of
fully data-centric modeling of power system behavior, which is important in the context of
S-INV control, as described in Sections 3.2–3.3.

Table 7. Relevant studies on inverter probing.

Target ML Perspective Refs.

Load identification. Probing-to-Learn approach for load identifi-
cation.

[188]

Distribution network topology pro-
cessing.

Graph Laplacian-based network topology
inference by inverter probing data.

[190]

Impedance identification. ANN-based identification. [189]

Evaluation of system configurations
of S-INV and DER system.

Bootstrap- and linear regression-based eval-
uation.

[192]

4. Conclusions

The development of functionally-smart inverters with flexible output controllability
has been a major driver of the penetration of DERs, and some of these technologies have
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already been implemented in the real world. On the other hand, however, in order to
actively introduce and utilize more DERs in society via power grids, it is essential to further
smartize the operation of inverters to make the most effective use of their functionality.
ML corresponds to one of the core technologies contributing to smartize operation of such
DER inverters, and it is of great significance to explore current research trends in order
to understand the awareness of implementation challenges, research gaps, and expected
contributions of ML technologies.

This study reviewed relevant research from the aspect of machine learning, which is
being considered for introduction with the expectation of maximizing the functionality of
DER inverters and contributing to advanced system operation. In this paper, the context
of related research on the smartization of inverter operation was divided into six major
categories: (1) individual DER system operation, (2) wide-area grid support, (3) voltage
regulation, (4) security/anomaly detection, (5), emergency control, and (6) utilization of
probe data. The trends in the particularly active research areas (1)–(5) can be described
as follows:

In the context of individual DER system operation, ML techniques have been used in
research from the perspective of improving system efficiency and maintenance support. In
particular, from the viewpoint of improving system efficiency, the applications of machine
learning techniques have been proposed for learning optimal control for steep changes in
the output of renewable energy and high-speed dynamic response. Meanwhile, sustainable
operation of the installed DER system is expected to become important in the future. ML
will be expected to contribute to maintenance support by utilizing the data accumulated
locally during operation.

The role of ML technology in harmonics and frequency control, which is becoming
increasingly important in the context of wide-area grid support, is that of a brain for ap-
propriate high-speed control. Many research groups believe that the MPC-like framework
is particularly important for dynamic and appropriate control of harmonics; thus, many
applications of prediction frameworks based on machine learning techniques have been
proposed. Meanwhile, in the context of frequency control, it is especially necessary to
estimate the inertia that the power grid itself has and the contribution that each DER control
result makes, to appropriately control each DER. Recent research trends in this area suggest
that there is strong hope for a data-centric framework that defines appropriate control
guidelines to circumvent the difficulty of having complete a priori information about the
detailed physical characteristics of such power systems.

In the context of voltage regulation, there has been a great deal of activity in recent
years in attempts to smartize the operation of DER inverters; ML is expected to make
particularly significant contributions in this area. Especially in distribution systems, which
are directly affected by the dynamics of various loads and outputs of DERs around the
interconnection point, ML schemes have been actively applied to predict the impact of
power flow and to realize appropriate control of DERs. From the viewpoint of how to utilize
a very large number of DER inverters deployed in a distributed manner for voltage control,
there are several open barriers, such as the realization of a distributed and cooperative
mechanism and the sharing of optimal control on a large scale including existing other
types of voltage regulators; however, some ambitious studies have begun to overcome
these barriers and realize data-centric control. This is an area where breakthroughs are
expected through the application of machine learning frameworks.

In the context of emergency control, many attempts have been made to perform fault
detection and islanding detection in a data-centric manner. This is a very important area for
safety and security, and, in particular, there are concerns about interference with inverter
functions that try to contribute to system inertia, so there are great expectations for the
application of ML technology to support emergency control.

Some research topics on system security and anomaly detection in the framework
of inverter control via communication and information systems have come to our atten-
tion. These topics will become important as DER inverters become more widely used



Energies 2023, 16, 1330 18 of 26

and as data-centric group control mechanisms are implemented via communications. The
awareness of this issue has led to research on the application of secure distributed coopera-
tive ML techniques, which will be an inevitable issue for the future deployment of smart
DER inverters.

In terms of the perceived challenges to be addressed in the related field and the ex-
pected future research directions, the key findings of this review study can be summarized
as follows:

• Learning at grid edge: Not all DERs deployed in a distributed manner will have
rich computational resources. The keys to realization will be the derivation of ap-
propriate control parameters for each S-INV with limited computational resources
and the personalization at local points of the decision-making mechanism involved in
the operation.

• Distributed learning: an effective learning scheme via limited communication to
achieve proper operation of the entire system cooperatively considering the mutual
control effects of individual DERs and other facilities via limited communication will
be important.

• Utilization of system models: Simulation and surrogate models used to tune the control
parameters of S-INVs generally do not always match actual system behavior. This
concern will need to be addressed in the practical application for the real-world system.

• Robustness to data perturbation: In power system operation, where the influence
of data-centric control of DERs is dominant, operational robustness against data
modification/loss is required. The ML frameworks used in parameter derivation and
decision-making processes will also need to be robust.

The social deployment of DERs using functionally-smart inverters will become even
more essential for many countries. In this research field, there will be a particular need
to take advantage of technological advances in the field of ML and apply them to the
expansion of the utilization of DERs, including renewable energy sources.
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DERMS Distributed energy resource management system
DNN Deep neural network
DT Decision tree
DSO Distribution system operator
DX Digital transformation
ELM Extreme learning machine
EV Electric vehicle
FNN Fuzzy neural network
FRT Fault ride-through
GA Genetic algorithm
GP Gaussian process
HP Heat-pump water heater
HVDN High-voltage distribution network
IEA International Energy Agency
KDE Kernel density estimation
K-NN K-nearest neighbor
LASSO Least absolute shrinkage and selection operator
LDA Latent Dirichlet allocation
LSTM Long short-term memory neural network
LVDN Low-voltage distribution network
ML Machine learning
MPC Model predictive control
MPPT Maximum power point tracking
MVDN Middle-voltage distribution network
NZE Net-zero emissions by 2050 scenario
OLTC On-load tap changer
PI Proportional integral
PMU Phasor measurement unit
PV Photovoltaic solar system
RBF Radial basis function
RF Random forest
RL Reinforcement learning
S-INV Smart inverter
SM Smart meter
SOM Self-organization map
SVM Support vector machine
SVR Step voltage regulator
SW Sensor built-in sectionalizing switch
TDNN Time-delay neural network
THD Total harmonic distortion
TF-IDF Term frequency-inverse document frequency
TN Transmission network
t-SNE t-distributed stochastic neighbor embedding
VSG Virtual synchronous generator
VVC Volt-var control
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187. Konečný, J.; Brendan McMahan, H.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated learning: Strategies for improving
communication efficiency arXiv 2016, arXiv:1610.05492.

188. Bhela, S.; Kekatos, V.; Veeramachaneni, S. Smart inverter grid probing for learning loads: Part I-identifiability analysis. IEEE
Trans. Power Syst. 2019, 34, 3527–3536. [CrossRef]

189. Qiu, Y.; Wang, Y.; Tian, Y.; Chen, Z. Artificial neural network-based intelligent grid impedance identification method for
grid-connected inverter. In Proceedings of the 2022 International Power Electronics Conference, IPEC-Himeji 2022-ECCE Asia.
IEEJ-IAS, Himeji, Japan, 15–19 May 2022; pp. 992–997.

190. Cavraro, G.; Kekatos, V. Inverter probing for power distribution network topology processing. IEEE Trans. Control. Netw. Syst.
2019, 6, 980–992. [CrossRef]

191. Merris, R. A survey of graph laplacians. Linear Multilinear Algebra 1995, 39, 19–31. [CrossRef]
192. Le, N.T.; Benjapolakul, W. Evaluation of contribution of PV array and inverter configurations to rooftop PV system energy yield

using machine learning techniques. Energies 2019, 12, 3158. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JESTPE.2021.3111728
http://dx.doi.org/10.1109/ACCESS.2022.3163551
http://dx.doi.org/10.1109/TSG.2015.2427380
http://dx.doi.org/10.1016/j.jisa.2020.102518
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.3847/1538-4357/aa6305
http://dx.doi.org/10.1109/ACCESS.2019.2903830
http://dx.doi.org/10.1016/j.apenergy.2020.114752
http://dx.doi.org/10.1016/j.epsr.2021.107024
http://dx.doi.org/10.1109/JESTPE.2019.2943449
http://dx.doi.org/10.1109/TPEL.2021.3114671
http://dx.doi.org/10.1109/TPEL.2020.3017935
http://dx.doi.org/10.1007/s10618-009-0145-2
http://dx.doi.org/10.1016/j.enbuild.2018.10.030
http://dx.doi.org/10.1109/TPWRS.2019.2906316
http://dx.doi.org/10.1109/TCNS.2019.2901714
http://dx.doi.org/10.1080/03081089508818377
http://dx.doi.org/10.3390/en12163158

	Introduction
	Smartization of the Operation of Smart Inverters
	Smart Inverters
	Smartization of the Management of ``Smart'' Inverters

	Machine Learning Challenges
	Individual DER System Operation
	Wide-Area Grid Support
	Voltage Regulation
	Emergency Control
	Security/Anomaly Detection
	Utilization of Probe Data

	Conclusions
	References

