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Abstract: For data-driven dynamic stability assessment (DSA) in modern power grids, DSA models
generally have to be learned from scratch when faced with new grids, resulting in high offline
computational costs. To tackle this undesirable yet often overlooked problem, this work develops a
light-weight framework for DSA-oriented stability knowledge transfer from off-the-shelf test systems
to practical power grids. A scale-free system feature learner is proposed to characterize system-
wide features of various systems in a unified manner. Given a real-world power grid for DSA,
selective stability knowledge transfer is intelligently carried out by comparing system similarities
between it and the available test systems. Afterward, DSA model fine-tuning is performed to
make the transferred knowledge adapt well to practical DSA contexts. Numerical test results
on a realistic system, i.e., the provincial GD Power Grid in China, verify the effectiveness of the
proposed framework.

Keywords: autoencoder; deep learning; dynamic stability assessment; time series; transfer learning;
transient stability

1. Introduction

The recent advancement of machine learning (ML) technologies, especially deep
learning (DL) methods, has opened a new door to solving various challenging stability
problems in bulk power systems [1] and microgrids [2] from a data-driven perspective [3–5].
Taking online dynamic stability assessment (DSA), for example, with massive measurement
data acquired by phasor measurement units (PMUs) [1,6], many ML-/DL-based efforts
have been made in the research community to achieve rapid and reliable online DSA in
smart grids. In particular, some inspiring DSA-oriented data-driven schemes have been
proposed in the last three years [7–13], which shapes the state-of-the-art in the area of
data-driven power system DSA. These representative studies are briefly reviewed in the
following.

In [7], a convolutional neural network (CNN)-based learning machine is presented
to perform online transient stability assessment (TSA). With a well-designed two-level
learning mechanism, this machine is able to implement both quantitative and qualitative
TSA with high reliability. A data-driven TSA scheme is realized in [8] by combining a de-
noising stacked autoencoder (AE) with a voting ensemble classifier. With this combination,
the TSA scheme can effectively reduce the dimensionality of the original feature space while
preserving the maximum information for online decision-making. A supervised dictionary
learning method with desirable accuracy and adaptability is proposed in [9] to carry out
online TSA. It exhibits superior TSA performances over existing methods such as singular
value decomposition, though at the cost of compromising the online decision-making
speed. In [10], a recurrent convolutional neural network that combines CNN with the long
short-term memory (LSTM) algorithm is designed to address both TSA and short-term volt-
age stability assessment. With the consideration of various defective conditions in practice
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(e.g., TSA implementation time delays and practical measurement noises), the proposed
learning network has shown to be highly promising in practical systems. By learning from
pre-fault and fault-on measurements of a given system, a fast TSA scheme is presented
in [11], which can issue the online TSA results almost immediately after fault clearance.
In [12], a dual-stream CNN-based learning scheme is utilized to predict the key eigenval-
ues of the monitored system for low-frequency oscillation detection. With high-precision
eigenvalue prediction achieved, this scheme can provide valuable information to support
the implementation of low-frequency oscillation damping control in practice. Taking into
account the reality gap between the simulation model for offline learning data generation
and the practical grid for online monitoring, a generative adversarial network-enabled
learning approach is developed in [13] to produce high-fidelity learning data to support
the reliable realization of data-driven DSA in practice.

Overall, the above-reviewed studies [7–13] have exhibited high potential in addressing
the DSA problem from the data-driven perspective. However, they have two non-trivial
defects when applied to practical large-scale power grids. First, the input sizes of the
DSA models in these studies generally depend on the scale of the specific grids. In this
regard, the input dimensionality would become very high when faced with an extremely
large system involving numerous buses and transmission lines. Consequently, this would
cause the curse of dimensionality, affecting the scalability of these studies in practical
large systems. Second, their data-driven DSA models generally need to be trained from
scratch when applied to new systems, introducing very high computational burdens into
time-domain (TD) simulation-based offline learning data preparation. Although this does
not necessarily impair the online efficiency of DSA model application, it could limit the
applicability of data-driven DSA methods in practice. For example, given the China
Southern Power Grid (with more than 10,000 buses across five provinces in South China)
for data-driven DSA implementation, the dimensionality of the learning inputs can be as
large as tens of thousands. Besides, if 15,000 transient cases need to be generated for offline
learning, according to the authors’ empirical tests, it takes about five days to generate such
a large-size dataset via batch TD simulations. Such a high computational cost would make
it impossible to efficiently implement online model retraining/updating, which could have
helped enhance the data-driven model’s adaptability to unforeseen operation changes
during online monitoring.

With recent advances in transfer learning (TL), concentrating on knowledge transfer
between different yet related learning tasks or domains [14], it is viable to transfer learned
stability knowledge to new scenarios/systems for data-driven DSA in smart grids. Recently,
several inspiring TL-based DSA methods have been reported in the literature. In particular,
a TL scheme is proposed in [15] to assess power grid security under multiple unseen faults
using the data-driven surrogate model learned from a single transient fault. In [16], based
on instance transfer learning, the knowledge of power system dynamics w.r.t. transient
fault-affected areas is incorporated into TSA model training to improve the reliability of
online TSA against specific contingencies. However, to the best of the authors’ knowledge,
none of the existing studies have paid attention to the issue of how to transfer stability
knowledge between different power systems for efficient DSA implementation.

In fact, given two power systems with different scales and complexities yet similar
dynamic behaviors, one may first learn stability knowledge from the relatively small one
(denoted as the source system) and then transfer it to the large one (denoted as the target
system) via TL. By doing so, the DSA model to be derived for the large system can be
efficiently initialized with the transferred knowledge and finely tuned with a small number
of representative learning cases generated from the large system. With no need for learning
from scratch again, the number of learning cases for DSA model derivation in the target
system can be largely reduced. This would significantly alleviate the above-mentioned
heavy computational burden of offline case generation and DSA model training in the large
target system, thereby making data-driven DSA more tractable and scalable in practical
large-scale grids. However, to realize such a TL-based light-weight DSA scheme, two
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challenging yet crucial problems need to be addressed: (1) With structures and dynamic
characteristics varying from system to system, how to appropriately choose a small source
system to implement TL for the target system in practice is the cornerstone of effective
knowledge transfer. (2) To transfer knowledge between systems with different scales and
structures, a compatible TL scheme characterizing different systems’ stability features in a
unified fashion should be carefully designed, so as to make the TL procedure independent
of system scales and thus overcome the curse of dimensionality in practical large systems.

To cope with the above challenging issues, this work develops an intelligent stability
knowledge transfer framework to efficiently implement data-driven DSA in practical
large-scale power grids. Focusing on TSA, a scale-free system feature learner is proposed
to abstract the transient characteristics of individual systems with arbitrary scales and
structures in a unified manner. Based on this learner, a series of typical small test systems
are taken as the source candidates for compatible stability feature learning and stability
knowledge preparation. For a target-practical grid, selective stability knowledge transfer is
intelligently implemented by borrowing TSA models from test systems highly resembling
the target grid, and TSA model fine-tuning is carried out using a small number of cases
collected from the grid. The major contributions of this work lie in two folds:

• This work develops a novel TL framework to carry out data-driven DSA for practical
large power grids in a light-weight way. With the offline computational burden of
DSA model derivation largely eased, it can help enhance existing data-driven DSA
solutions’ applicability in practice.

• A scale-free system feature learner is proposed for the first time to abstract power
system dynamic features from massive operation scenarios in a unified manner, re-
gardless of the scale and complexity of the given system.

The rest of the paper is organized as follows. Section 2 presents the scale-free system
feature learner for system-wide dynamic feature description. Based on this learner, Section 3
describes the proposed TL framework for efficient DSA implementation in practical large
power grids. After that, case studies are carried out in Section 4 to examine the efficacy of
the proposed framework. Finally, Section 5 concludes the whole work.

2. Scale-Free System Feature Learner

Before detailing the main methodology, a fully data-driven system feature learner
with no need for any power network parameters is proposed to characterize system-wide
features of diverse systems in a unified way. To sufficiently capture system dynamic features
in various transient scenarios, this learner is devised to learn from transient trajectories of
numerous transient cases. For a specific system, by acquiring raw responsive time series
(TS) data from n transient cases, a transient case set is first formed as

S = {(xi, yi)|xi = {Vi, θi, ∆ fi}, for 1 ≤ i ≤ n} (1)

where (xi, yi) denotes the pair of multi-variable TS trajectories and binary stability status of
case i (1 ≤ i ≤ n). In particular, assuming m major generators in the system are deployed
with PMUs, xi is acquired from the corresponding generator buses. In this paper, three
types of variables that can be directly measured by PMUs at generator buses, i.e., bus
voltage magnitudes (Vi), relative bus voltage angles (θi, with reference to a given generator
bus) and bus frequency deviations (∆ fi) are sequentially collected to form 3m-variable
TS trajectories, i.e., xi. The reason why these variables are chosen is briefly explained
below. In a specific system, rotor angle swings of individual generators are the most
straightforward indicators of system transient stability. However, as demonstrated in
existing TSA studies [10,17–19], generator bus voltages (including both voltage magnitudes
and phases) evolving much faster than rotor angles can be employed to predict transient
stability more efficiently. Besides, as the frequency deviations of generator buses are related
to the speeds of generators, they have been verified to be informative variables as well for
the prediction of system transient stability [18,20]. Taking into additional account the factor
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that all the variables should be conveniently measured by PMU devices to support the
implementation of a fully data-driven TSA scheme in practice, this paper thus selects the
data of {V, θ, ∆ f } acquired from individual generator buses as the major input variables
for data-driven TSA.

For the sake of helping carry out online TSA with a high response speed, a short
observation time window Twin (|Twin| < 1 s) is utilized for acquiring TS data of {V, θ, ∆ f }.
In particular, it is set to start from the instant of fault occurrence and end at early post-fault
stages. The stability status of case i, i.e., yi, is determined by the following widely-used
stability criterion [21]:

yi =

{
1 if ηi > 0 (stable)

0 else (unstable)
, for ηi =

360o − |∆δ|max i
360o + |∆δ|max i

(2)

where |∆δ|max i is the maximum absolute value of rotor angle differences between any two
generators during the transient process of case i.

Taking the 3m-variable TS trajectories xi as both the input and output, the feature
learner is designed to learn the transient features of the system in an unsupervised way.
Specifically, it is realized in the form of a sequential AE by combining the LSTM network
with the AE algorithm [22], as illustrated in Figure 1.
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Figure 1. Sequential AE-based system feature learning.

With both its encoder and decoder modules consisting of two sequential LSTM units,
the learner first learns the temporal evolution of multiple TS trajectories and encodes them
with compact vectors. Then, it decodes these vectors to reconstruct the original trajectories
as precisely as possible. Its overall learning objective is given by

minL1 = min

√
1
n∑n

i=1

∣∣xi − x′i
∣∣2 (3)

where L1 is the loss function, and x
′
i is the 3m-variable TS trajectories reconstructed by the

decoder. In essence, the hidden states after encoding represent the critical features and
characteristics automatically learned from the system. Hence, the corresponding encoded
vectors are extracted and regarded as the primary system features. Supposing there are m′

hidden neurons after the encoder module for feature encoding, the original 3m-variable
TS trajectories of {Vi, θi, ∆ fi} are concisely described by three featured vectors, which
are briefly denoted by {Xi1, Xi2, Xi3}. Note that the length of such featured vectors is
determined by the number of neurons in the sequential AE, i.e., m′, rather than the initial
dimensionality of xi. Since no power network model or parameter is involved in this
learner, it has a desirable nonparametric feature.

This sequential AE-based feature learner can bring multiple benefits into the whole TL-
based TSA framework. With its help, the original bulky TS dataset can be transformed into
a light-weight featured dataset. This transformation results in automatic dimensionality
reduction and learning efficiency improvement for subsequent TSA model training. More
importantly, when applied to systems with different scales and network structures, it
can serve as a unified data preprocessing tool to yield featured datasets with the same
dimensionality. This makes it possible to quantify the similarities between heterogeneous
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systems, which lays a solid foundation for the implementation of subsequent similarity-
based stability knowledge transfer.

3. Proposed Framework

The TL framework for practical TSA is presented in this section, as shown in Figure 2.
Its implementation includes two phases: (1) With transient case sets generated from small
IEEE test systems, the fully convolutional neural network (FCNN) is employed to train a
group of TSA models, which form a source knowledge base for subsequent TL. (2) The TSA
model whose original test system shares high similarities with the target large system to
be monitored in practice is selected for knowledge transfer, and a small group of learning
cases collected from the target system are fed into it for fine-tuning.

Batch Transient 
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(IEEE test 
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1. System Feature Based Source Knowledge Preparation

System Feature 
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(Sequential AE)

FCNN-Based 
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Source Knowledge 
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2. Selective Knowledge Transfer and Fine-Tuning

Figure 2. Framework of the proposed methodology.

3.1. System Feature Based Source Knowledge Preparation

With K typical IEEE test systems taken as source systems for stability knowledge
preparation, batch transient case generation is first carried out on them via TD simulations.
For each test system, a transient case set is collected from the simulation results and further
converted to a featured dataset using the above feature learner. As the FCNN algorithm has
been demonstrated to outperform conventional TS learning methods on various benchmark
TS datasets in the ML community [23], it is employed as the basic learning algorithm for
source TSA model training. The FCNN used in this work includes a three-channel input
layer (corresponding to vectorized features Xi1, Xi2 and Xi3), three stacked convolutional
layers and a fully connected softmax layer. Taking the binary stability status of the system
as the output, the FCNN is trained by minimizing the following cross-entropy loss function:

minL2 = min
n

∑
i=1

[−yi log2 ȳi − (1− yi) log2(1− ȳi)] (4)

where ȳi and yi are the predicted value (output of the softmax layer) and the true class
label of case i for ȳi ∈ [0, 1] and yi ∈ {0, 1} (0→ unstable, 1→ stable). Given a threshold ε,
the binary stability prediction, denoted by ŷi, can be made via the following rule:

ŷi =

{
1 for ȳi > ε (stable)

0 otherwise (unstable)
(5)

Based on FCNN training, K TSA models are derived from the K test systems. In fact,
such TSA models represent key stability knowledge of respective test systems for TSA.



Energies 2023, 16, 1142 6 of 15

They are gathered to form a source stability knowledge base, which is readily available for
TL application in the next phase.

3.2. Selective Knowledge Transfer and Fine-Tuning

For a target practical system in need of online TSA, the recent historical transient
cases are first collected from system operation records. Alternatively, based on the current
operating condition and presumed contingencies of the system, TD simulations can be
carried out to further supplement transient cases. With the emphasis on alleviating the
heavy computational burden related to offline case preparation, the number of simulated
cases is assumed to be somewhat small. All the historical/simulated cases are gathered as
a learning case set for TL implementation. System feature learning is then conducted to
extract system-wide features from all the learning cases. Afterward, a TSA model is bor-
rowed from the previous stability knowledge base and finely tuned with the learning cases
to generalize to practical TSA contexts. The key issue here is how to select an appropriate
source TSA model. This task is fulfilled by introducing a system dissimilarity measure.

Inspired by multiple TS dataset comparisons in [24], the system dissimilarity measure
is computed by averaging featured datasets in different systems and comparing their
averaged profiles. Instead of simply averaging encoded vectors over all the cases, the pow-
erful dynamic-time-warping barycenter averaging (DBA) algorithm [25,26] is adopted
to estimate the averaged profiles for the source and target systems. Taking a certain
source system for instance, based on DBA, two groups of averaged profiles, denoted as
X s = {X̄s1, X̄s2, X̄s3} and X u = {X̄u1, X̄u2, X̄u3}, are abstracted from the featured vectors
of all the stable and unstable cases, respectively. For the detailed DBA procedure, interested
readers may refer to [25,26]. Similarly, two groups of averaged profiles X ′

s and X ′
u are

extracted from the learning cases of the target system. The dissimilarity between the source
and target systems is defined as

Dsys = min
v∈{s,u}

D
(
X v,X ′

v

)
(6)

where D(X v,X ′
v) is the distance between the averaged profiles of stable/unstable cases.

Specifically, it is calculated by

D(X v,X ′
v) =

√
∑3

i=1

(
X̄v,i − X̄ ′v,i

)2
, for v ∈ {s, u} (7)

Based on (6), all the source systems involved in the first phase are compared with the
target system. For those source systems with relatively small dissimilarities to the target
system, their TSA models can be selected for stability knowledge transfer. Concretely,
the structure and parameters of the selected model are directly copied to form the initial
TSA model for the target system. Since both the source and target systems involve the same
sizes of FCNN inputs (three-channel vectors) and outputs (two-class labels), no additional
neural network modification is needed. After that, the featured dataset obtained from
the learning cases of the target system is fed into this model for fine-tuning. By doing so,
the TSA model is able to extrapolate well to the target system.

3.3. Online TSA Implementation

With a well-trained TSA model, when a transient fault occurs in the target system,
the fault-on and post-fault TS data of {V, θ, ∆ f } are acquired by PMUs deployed at individ-
ual generator buses. These real-time measurements are collected as a measured case, which
is then fed into the TSA model for transient stability prediction. The TSA model then issues
the stability prediction results, inferring if the system can maintain transient stability. If so,
continuous online monitoring would be carried out by sliding the observation time win-
dow. Otherwise, alerting signals would be activated to alarm system operators that control
actions should be taken as soon as possible to save the system from potential instability.
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To evaluate the online TSA performances in a comprehensive manner, three perfor-
mance metrics, i.e., misdetection rate, false-alarm rate and accuracy [7], are introduced in
this paper:

Mis = Nfs/Nt × 100% (8)

Fal = Nfu/Nt × 100% (9)

Acc = (Nt − Nfu − Nfs)/Nt × 100% (10)

where Nt is the total number of transient cases for online testing, Nfs is the number of
unstable cases wrongly classified as stable; Nfu are the number of stable cases falsely
alarmed as unstable.

4. Case Study
4.1. Simulation Set-Up and Case Generation

The realistic 2417-bus GD Power Grid (GDPG) in China [7,27] was taken as the target
system to verify the performances of the proposed framework. The primary structure of
GDPG is illustrated in Figure 3. Based on PSD-BPA, a commercial power system simulation
package widely used in China, 300 transient cases were generated from the numerical
simulation model of GDPG by considering the recent operating conditions of the system
and some representative transient contingencies. These cases were integrated as a small
learning case set to support TL implementation in GDPG. For online TSA performance
validation, 3000 unseen transient cases with various new operating conditions and transient
faults not covered by the initial 300 ones were generated to simulate online testing cases
in GDPG. Five typical IEEE test systems, i.e., IEEE 9/14/39/118/162-bus systems, were
chosen to build the source knowledge base. Batch TD simulations were conducted in
PSD-BPA to generate transient case sets for these test systems. In each test system, 80% of
the cases were randomly chosen for source TSA model training, while the remaining 20%
for learning performance validation. Since a dedicated validation dataset was provided
here for performance testing in each of the test systems, no additional cross validation was
introduced into learning performance verification in the sequel.

Regular Power Plant

500-kV Substation 
HVDC Converter Station

Nuclear Power Plant

Pumped-Storage Power Plant 

Figure 3. Structure of GD Power Grid in China (500-kV backbone network).

The length of the observation time window for PMU data acquisition was set to
|Twin| = 0.5 s for all systems. The PMU data reporting rate was specified as 100 Hz and
120 Hz for GDPG (with 50-Hz nominal frequency) and the remaining IEEE test systems
(with 60-Hz nominal frequency), respectively. All the systems shared the same DL struc-
tures and parameter settings. As for the sequential AE-based feature learner, the numbers
of neurons of the four LSTM-based encoding and decoding layers were specified as 200,
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100, 100, and 200, respectively. With these settings, the length of featured vectors in in-
dividual featured datasets turns out to be m′ = 100. For the hyperparameters of FCNN,
the numbers of filters in the three convolutional layers were set to 128, 256, and 128, respec-
tively, with kernel sizes of 8, 5, and 3. In the procedure of offline learning, a widely-used
stochastic gradient descent (SGD)-based optimization algorithm called Adam [28] was
utilized for DL model training. The learning rate of the Adam optimizer was set to a default
value of 0.001. With the mini-batch size specified as 128, mini-batch gradient descent was
introduced to help the learning procedure converge in a robust yet efficient manner. All the
DL-related computations were implemented in Python 3.6 with the support of the Keras
library. The calculations were conducted on a PC configured with a 3.60-GHz Intel Core
i7-7700 CPU and an NVIDIA GTX-1080 GPU. As for binary transient stability classification,
in order to make TSA decisions with no bias, the threshold in (5) was designated as ε = 0.5.

4.2. Comprehensive Performance Verification

To illustrate the effect of sequential AE-based learning, the root mean square errors
(RMSEs) of TS reconstruction on both the training and validation sets were calculated for
each of the IEEE test systems. Meanwhile, all the learning and unseen cases generated from
GDPG were taken for RMSE estimation. As shown in Figure 4, the sequential AE is able to
reliably reconstruct the TS trajectories for all the systems, with the overall RMSE kept below
0.035 pu. This implies that the sequential AE-based system feature learner can capture
the critical dynamic features from individual systems with different scales and structures,
thereby enabling dimensionality reduction and effective system dissimilarity quantification.

IEEE 9 IEEE 14 IEEE 39 IEEE 118 IEEE 162 GDPG
0

0.02

0.04
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300 Learning Cases

3000 Unseen Cases

System

Figure 4. Statistics of TS reconstruction errors in different systems.

Based on the FCNN algorithm, five TSA models were derived from the five IEEE test
systems. Their learning performances on respective validation cases are summarized in
Table 1. Obviously, all the TSA models achieve excellent learning performances, with the
overall accuracy remaining above 99.5%.

Table 1. Learning Performances of Source TSA Models (with Validation Datasets).

Source System Ncase Mis/% Fal/% Acc/%

IEEE 9 960 0 0 100
IEEE 14 1280 0 0 100
IEEE 39 1920 0 0.26 99.74
IEEE 118 3600 0 0 100
IEEE 162 4800 0.10 0.10 99.80

Note 1: The second column denotes the total number of training and validation cases generated for each test
system.

All of the five TSA models were then finely tuned with the 300 learning cases ob-
tained from GDPG, and their tuned versions were further applied to online TSA in GDPG.
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For comparison, a TSA model was trained from scratch merely using the 300 learning cases.
Besides, following the conventional data-driven TSA paradigm without TL [7], another
TSA model was directly trained with a large number of learning cases generated from
GDPG. Specifically, by considering a wide variety of operating conditions and transient
events in GDPG, 9000 learning cases covering massive transient scenarios were produced
via batch TD simulations to train this TSA model. All of these experiments resulted in seven
TSA models, and their performances on the 3000 unseen cases are presented in Figure 5.
Note that, for the last two TSA models directly trained with cases generated from GDPG,
no TL is involved, and the trained TSA models were readily applied to online tests. Besides,
the source systems corresponding to these seven TSA models were compared with the
target GDPG, and their system-level distances based on (7) are illustrated in Figure 6.
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Clearly, compared with the TSA model learned from the small 300-case dataset,
the other TL-based models enhance online TSA performances significantly. In partic-
ular, for the three test systems highly resembling GDPG, i.e., IEEE 9/14/39-bus systems,
their well-tuned TSA models achieve highly accurate online TSA in GDPG, with a total
accuracy of more than 97.5%. This reveals that the proposed TL framework is able to
effectively extend knowledge learned from small test systems to a practical grid for TSA
performance enhancement. Note that the TSA models borrowed from the IEEE 14/39-bus
systems are almost competitive with that directly derived from the 9000 learning cases in
GDPG. This reveals that desirable TSA performances can be intelligently achieved in a
TL-based lightweight manner, with no need for generating numerous cases and learning
from scratch. As will be shown in the sequel, this would largely improve the offline com-
putational efficiency. Comparatively speaking, the IEEE 118/162-bus systems with lower
similarities have a smaller improvement in TSA accuracy, which indicates the efficacy of
the system similarity-based model selection for knowledge transfer.

Nonetheless, it is noticed that the IEEE 9-bus system with the highest similarity to
GDPG does not contribute to the best TL result. Instead, the IEEE 39-bus system with a
bit lower similarity leads to the highest TL performance. This is perhaps because the IEEE
9-bus system has a relatively small dataset (768 cases) for source model training, thereby
being difficult to adapt to a wide range of unexpected scenarios in the practical grid. In this
regard, the test systems with both sufficient knowledge learned from a large number of
scenarios and a relatively high similarity to the practical grid would be a more suitable
choice for stability knowledge transfer. Hence, the IEEE 39-bus system is finally selected as
the source system for TSA-oriented knowledge transfer toward GDPG.

To analyze the data characteristics of the cases generated in the source (IEEE 39-
bus) and target (GDPG) system, the t-distributed stochastic neighbor embedding (t-SNE)
method [29] was utilized for data visualization here. With the help of t-SNE, the TS data of
the training and validation/testing cases generated in the two systems were embedded
into two-dimensional spaces, as illustrated in Figures 7 and 8, respectively. For the cases
produced in the IEEE 39-bus system, since the training and validation datasets were
separated via random sampling (see simulation settings in Section 4.1), their corresponding
data distributions are similar to each other, as shown in Figure 7. For the 9000-case training
dataset and 3000-case testing dataset generated in GDPG, as depicted in Figure 8, the two
groups of datasets have distinct data distributions, which indicates that the testing cases
are quite different from the initial training cases. Based on this observation, it can be
concluded that the satisfactory TSA performances achieved in Figure 5 does not result from
the similarity between the specific training and testing data; instead, it is attributed to the
good generalization capability of the proposed TL framework.
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Figure 7. Distributions of training and validation data generated from the IEEE 39-bus system.
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Further, the fine-tuning procedure of the TL framework was discussed with the
illustration of the learning procedure. As shown in Figure 9, with the 300-case dataset fed
into the TSA model transferred from the IEEE 39-bus system, the fine-tuning procedure
converges rapidly in 100 epochs. This implies that the proposed TL framework can be
implemented in a highly efficient manner, saving a large amount of time during TSA model
fine-tuning.
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Figure 9. Illustration of the fine-tuning procedure (with 300 training cases generated in GDPG).

4.3. Comparative Test

To further demonstrate the advantage of the proposed TL framework in tackling the
TSA issue, comparative tests were performed. Specifically, some conventional ML methods
introduced into existing data-driven DSA studies, including decision tree (DT) [30], sup-
port vector machine (SVM) [17], multilayer perceptron (MLP)-based neural network [31],
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eXtreme Gradient Boosting (XGBoost) [32], CNN [7], and CNN + LSTM [10], were con-
sidered for comparison. All of these comparative methods were provided with the same
9000-case training dataset generated in the GDPG for TSA model training, and the ob-
tained models were fed with the same 3000-case testing dataset for performance evaluation.
The corresponding test results are summarized in Table 2.

Table 2. TSA Performance Comparisons (with 3000 Testing Cases Generated in GDPG).

Method Mis/% Fal/% Acc/%

Proposed 0.80 0.37 98.83
DT 1.70 1.97 96.33

SVM 1.83 1.63 96.54
MLP 1.90 2.27 95.83

XGBoost 2.07 1.17 96.76
CNN 0.70 0.43 98.87

CNN + LSTM 0.43 0.67 99.90

As can be observed, the conventional DT, SVM, MLP, and XGBoost methods involving
shallow learning structures fall behind the proposed TL framework, with much higher
misdetection and false-alarm rates. On the contrary, the other two DL methods, i.e., CNN
and CNN + LSTM, exhibit superior performances, with the overall TSA accuracy being a bit
higher than that of the TL framework. However, it should be mentioned that the desirable
performances of these DL methods are achieved at the cost of learning from a bulky training
dataset with 9000 cases. As will be shown in subsequent tests, the preparation of such a
large-size dataset would be extremely time-consuming (costing more than 1.5 days), making
the whole offline learning procedure computationally prohibitive. In contrast, the proposed
TL framework only requires the preparation of a small dataset with 300 cases, which would
save large amounts of computation time during offline learning. Therefore, compared
with the existing ML methods, the proposed method is able to achieve competitive DSA
performances without introducing high computational costs into offline learning data
preparation, being more applicable in practical large-scale power grids.

4.4. Computational Efficiency

With special attention to the TL-based TSA scheme borrowing stability knowledge
from the IEEE 39-bus system and the conventional TSA solution directly learning from
9000 cases, their computation times in learning/testing procedures were recorded. As sum-
marized in Table 3, while both of them can rapidly carry out online TSA in less than
5 ms, the TL-based scheme has much lighter offline computational burdens than the latter.
Specifically, with the help of TL, the total time consumption of offline dataset preparation
is cut down by more than 40 h. This is mainly due to the fact that the number of learning
cases for GDPG is largely reduced after the introduction of TL, which dramatically allevi-
ates the computational burdens caused by batch TD simulations in the large-scale GDPG.
Although thousands of cases also need to be prepared for the IEEE 39-bus system, with a
much smaller size, its TD simulation efficiency is much higher than that of GDPG. Given
the significant improvement of offline computational efficiency, the TL-based TSA scheme
would be more helpful in practical contexts, where timely TSA model retraining/updating
is required during online monitoring.
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Table 3. Summary of Computation Times (with/without TL).

Scheme Offline Dataset
Preparation/s

Offline TSA Model
Training/s

Online
Computation/s

With TL 18174.234 1563.586 0.003
Without TL 163684.732 2479.351 0.003

Note 2: The second column represents the total time consumption of offline transient case generation and data
preprocessing; the third column stands for the time consumption of all the offline ML/DL procedures; the fourth
column corresponds to the average computation times for the 3000 unseen cases during online TSA application.

5. Conclusions

Aiming at transferring stability knowledge learned from test systems to practical
power grids, this work proposes a light-weight TL framework for online DSA. Based
on sale-free system feature learning and system dissimilarity quantification, it is able to
strategically select appropriate test systems that generalize well to online DSA contexts in
practice. As demonstrated in the realistic GDPG, this framework can significantly alleviate
the offline computational burden of data-driven DSA without sacrificing its reliability.
In future studies, more systematic learning schemes such as ensemble learning can be
designed to leverage a set of similar test systems to further boost the DSA performances.

Author Contributions: Conceptualization, W.W.; validation, W.W.; formal analysis, W.W.; investi-
gation, W.W.; resources, X.L.; data curation, W.W.; writing—original draft preparation, W.W. and
J.L.; writing—review and editing, W.W., X.L. and J.L.; supervision, X.L. and J.L.; project adminis-
tration, J.S.; funding acquisition, J.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported in part by Hunan Provincial Key Laboratory of Internet of
Things in Electricity (Grant No. 2019TP1016) and in part by Science Technology Project of State Grid
Hunan Electric Power Company Limited (Project No. 5216A220008).

Data Availability Statement: Not appicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this paper:

AE Autoencoder
CNN Convolutional neural network
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