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Abstract: In this paper, an innovative approach for the fast estimation of the mutual inductance
between transmitting and receiving coils for Dynamic Wireless Power Transfer Systems (DWPTSs) is
implemented. To this end, a Convolutional Neural Network (CNN) is used; an image representing
the geometry of two coils that are partially misaligned is the input of the CNN, while the output
is the corresponding inductance value. Finite Element Analyses are used for the computation of
the inductance values needed for CNN training. This way, thanks to a fast and accurate inductance
estimated by the CNN, it is possible to properly manage the power converter devoted to charge the
battery, avoiding the wind up of its controller when it attempts to transfer power in poor coupling
conditions.

Keywords: deep learning; dynamic wireless power transfer system; fast surrogate model; optimiza-
tion; magnetic field; finite element analysis; field-circuit model

1. Introduction

Wireless Power Transfer (WPT) is a technology that uses magnetic coupling instead of
classical plugs and cables to charge the onboard batteries of electric vehicles (EVs) [1–7].
In general, WPT systems (WPTSs) are based on a pair of coils, a transmitting (Tx) and a
receiving (Rx) one, separated by an air gap [3,5,8–10]. Usually, the Tx coil is buried under
a parking pitch while the receiving coil is fitted under the chassis of the vehicle, and the
onboard battery is charged while the car is parked (static WPTS). Nowadays, dynamic
WPTSs are an emerging method to charge a battery while a vehicle runs over suitable roads
equipped with a set of transmitting coils under the ground [11,12]. In this case, depending
on the car position, the Rx coil could be aligned, partially aligned, or misaligned with
respect to the Tx one [13–16]. Then, it is important to investigate the variation in the mutual
inductance considering different displacements from the fully aligned condition [13,17].
In fact, knowing the value of the mutual inductance for a given car position can be useful
for actively controlling the WPTS, optimizing its efficiency, and maximizing transferred
power [18].

In the past, the authors of this paper have studied WPTSs from different viewpoints,
but this has never been performed in the field of mutual inductance estimation in view
of WPTS control. They have studied the optimal synthesis of compensation networks for
WPTS [15,18] and models for fast and accurate simulations of the magnetic field in WPTS;
moreover, they investigated aspects related to the electromagnetic compatibility of these
systems [16]. In this paper, a deep learning technique, which belongs to the more recent
fields of research in electromagnetism, is exploited for optimizing transferred power in
WPTSs.
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In this paper, a fast method for identifying the mutual inductance of two misaligned
coils at a given distance is proposed. This method, based on a Convolutional Neural
Network (CNN), will allow the mutual inductance at each position of the Rx coil (and
hence the car) to be predicted for any trajectory of the car. The mutual inductance is
predicted by the CNN by processing an image that shows in real time the relative position
of the TX and RX coils while the vehicle is running, and this is used for implementing
real-time control of the power transfer for any trajectory of the vehicle moving over the Tx
coil [19].

The CNN is a deep neural network able to effectively treat images and used to solve
a classification or a regression problem. CNNs have been extensively used in the last
decade by computer scientists for image processing (object detection, image segmentation,
classification, etc.) [20]. However, it is only in the last few years that CNNs have been used
for solving problems in electrical engineering and electromagnetism. In this frame, the use
of CNN for the recognition of electrical machine faults is one of the most investigated fields
of research [21].

In this paper, the innovative idea is to use a CNN to predict the value of the mutual
inductance between the Tx and Rx coils based on their image. A CNN processes images
generated by a camera mounted on the car bottom, which can catch the transmitting coil
position thanks to its shape drawn on the road concrete. On the other hand, the shape
and position of the Rx coil is known and, hence, its image can be superimposed to the
one of the Tx coils. The resulting image is processed by the neural network, which solves
a regression problem: the value of the mutual inductance between the Tx and Rx coils
is predicted. Hence, the CNN is used for solving the following problem: knowing the
image of the Rx and Tx coils and finding the value of the mutual inductance between them.
The information on the coil shapes and on the relative position between the two coils is
embedded in the image itself. The distance between the car bottom and the concrete is
supposed to be constant; hence, the distance between the Tx and Rx coils in the z-direction
is constant too.

The CNN is trained by means of a database of 3D Finite Element Analyses (FEAs).
Once the CNN is trained, it is able to predict the mutual inductance between the two coils
for any displacement between them, i.e., for any vehicle trajectory. To the best of the authors’
knowledge, this approach is new in the field of dynamic Wireless Power Transfer. In the
literature, similar approaches have been proposed recently, but they all refer to different
applications or different machine learning methods. Indeed, there are a few papers dealing
with Wireless Power Transfer based on the use of CNNs: these deep learning methods
are usually applied to other kinds of usage or to different applications. In [22], a CNN is
trained for estimating the overlapping area between a pot and a multi-coil system in the
frame of domestic induction heating appliances: knowing the measured data for each coil
(output power, current and quality factor), the area coverage is predicted using the CNN.

Papers dealing with WPTS propose the use of fully connected neural networks (NNs)
(shallow or deep), which are different from CNNs and are able to treat numbers or a vector
of numbers but not able to properly treat images. For the sake of an example, in [23], the
estimation of the mutual inductance of a wireless power system is conducted by means of a
neural network: a Bayesian neural network is used. This kind of network is able to predict
the inductances of the WPTS by knowing the parameters of the system, i.e., geometrical
and material parameters. A similar result is obtained in [24], where a deep NN accepts
five structural parameters as the input to estimate the self- and mutual inductances of the
coupled coils of a WPTS. In [25], a fully connected neural network is used for estimating the
mutual inductance, knowing the distance between the two coils in a WPTS. However, with
this approach, the distance must be measured, and this is not feasible in the case of dynamic
WPTSs. In [26], a deep fully connected neural network is used for the WPTS parameter
estimation based on the input current and the distance between the coils; this approach
is not suitable for a dynamic WPTS. In [27], an NN is used to estimate the inductive
parameters, the stray magnetic field, and the ferrite magnetic field of two coupled coils
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using their geometrical characteristics as inputs. Paper [28] introduces the use of an NN
to estimate the efficiency of a WPT system that encompasses an intermediate coil. The
efficiency is estimated as a function of the resonance frequency and of the geometrical
parameters of this coil. In [29], a similar layout is considered, but the NN is used to estimate
the electromagnetic emission of the WPT system for a different layout of the intermediate
coil. Paper [30] considers a biomedical application of WPT for transcutaneous power
transfer and uses an NN to estimate the voltages, currents, and transferred power of the
WPT using its geometrical data and coil distance as inputs. Paper [31] deals with the
estimation of the inductive parameters of a circular coil and compares the estimates of an
NN trained using data from the FEM with the analytical results derived from Neumann’s
formula. In [26], a similar topic is faced using the PyTorch framework to train the NN using
data derived from simulations as inputs. The system considered in [32] is formed by the TX
and RX coils and by four detection coils, whose induced voltage is processed by an NN to
detect the presence of a foreign metallic object between the two main coils and to assess
their relative displacement. None of these cited papers deal with dynamic WPTS, whilst
most of them use data derived from the FEM simulations as the input. The processing of
real-time data, whether in the form of images or not, is not considered.

Considering the control of the power converters, NNs have been used in the field of
WPTSs for different purposes. In [33], a radial basis NN has been proposed to adjust the
gains of a PID controller devoted to maintaining the resonant condition of the WPTS. An
NN is also used to assess the gains of a PID controller in [34]; in this paper, the controller
acts on the phase shift angle of the Rx side converter of a bidirectional WPTS. In [35], an
NN is adopted with the aim of adjusting the supply frequency of the system, but in this
case, the NN directly generates the required frequency value without an intermediate
controller. Paper [36] faces the topic of maintaining a constant current on the WPTS load
despite a variation in the coils’ mutual inductance M. The NN is trained to assess the phase
shift angle of the primary side high-frequency inverter as a function of the Tx coil current.
In [37], the maximum power transfer efficiency in an underwater WPTS is maintained by
adjusting the supply voltage according to the outputs of an NN. In [38], the efficiency of a
WPT system is maximized by means of an NN that computes the optimal parameters for a
tunable compensation network in order to enforce the impedance matching of the system
despite a variation in the coils distance or in the load. The NN in [39] is used to estimate the
orientation of the receiving coil with respect to the transmitting ones in an omnidirectional
WPTS. Position estimation is also considered in [40], with the NN processing the signals
coming from four auxiliary coils to assess the relative position of the coupled coils. The
lateral misalignment between the Tx and Rx coils is estimated in [41] using an NN fed by
the dc link current actual value, by its integrated value, and by the actual vehicle speed.
In [42], the NN is used to select and enable the optimal transmitting coil among three
available coils and to tune the relevant compensating capacitor using the distance between
the transmitting and receiving coils as the input.

Considering the most recent papers published in the literature, the approach we
propose in this paper seems not to have been investigated yet.

The remainder of this paper is organized as follows. In Section 2, the WPTS model is
described: the circuit model and the Finite Element (FE) model are presented, along with
the control strategy. Moreover, in Section 2.3, the deep learning strategy is described. In
Section 3, the results are shown: in Section 3.1, the outcome of CNN training is discussed,
and in Section 3.2, the results of the control strategy, based on the trained CNN, are shown.
Finally, in Section 4, a conclusion is drawn.

2. WPTS Model

Finite Element Analysis is used to compute the lumped parameters used in a circuital
model for the supply control of the transmitting coil in a WPTS for the recharge of an
electric vehicle.
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2.1. Lumped Parameter WPTS Model

The lumped parameter first harmonic equivalent circuit of the WPTS is represented
in Figure 1. In the transmitting side, the Tx coil is supplied by the voltage VS through an
LCL compensation network. This topology has been adopted in order to have a current
with a constant amplitude in the TX coils irrespective of the actual reflected load. The
compensation network is formed by the inductor LS and the capacitor CTx. The inductance
LS is equal to the self-inductance of LTx of the transmitting coil and CTx resonated with both
of them. The resistance RS accounts for the parasitic resistances of LS and of the voltage
generator, while RTx represents the parasitic resistance of the TX coil. The TX coil is flown by
the current ITx and is subjected to the induced voltage jωMIRx, which is proportional to the
amplitude of the current IRx in the receiving coil, to the WPTS supply angular frequencyω,
and to the mutual inductance M between the TX and RX coils, which is inherently variable
in time. At the RX side, a series compensation network formed by the capacitor CRx that
resonates with the self-inductance of LRx of the RX coil has been chosen so that the full
voltage −jωMITx induced across the RX coil is available to charge the battery. The resistor
RRx represents the parasitic resistance of the RX coil, while RL represents the equivalent
load of the system. Following the SAE standard [11], the WPTS is supplied by a voltage
oscillating at 85 kHz so that the current flowing in the TX induces a voltage with the same
frequency across the RX coil.
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2.2. Field Model of WPTS for Database Creation: Finite Element Analysis

In order to train the CNN for the mutual inductance estimation, a 3D Finite Element
Model (FEM) is set up. Figure 2 represents the pair coils simulated in the FEM to compute
their mutual inductance at different positions of the Rx coil with respect to the Tx coil. Each
coil is formed by 10 turns having a pitch of 10 mm and a wire diameter of 6 mm; the width
of the inductor is 106 mm. The vertical distance between the coils is set to 200 mm. The
mesh of the FEM has 832,251 nodes and 619,680 s order volume elements.
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The FEA solves a time-harmonic magnetic field problem using Flux 3D version 12.1
(software released by Altair Engineering, Inc., Troy, MI, USA, https://altairhyperworks.
com/product/flux, accessed on 28 November 2023). The model is simple since it considers
an air volume where the coils are described as ideal sources of the magnetic field without

https://altairhyperworks.com/product/flux
https://altairhyperworks.com/product/flux
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discretization (non-meshed coils). In this frame, the magnetic field produced by the coils is
evaluated in a semi-analytical way using the Biot–Savart formula [43], whereas in the air
volume, a reduced scalar magnetic potential, ΦR, formulation is applied [44,45]:

∇·µ0Hs = ∇·µ0∇ΦR (1)

H = Hs −∇ΦR (2)

where H is the magnetic field, µ0 is the vacuum magnetic permeability, and Hs is the
magnetic field generated by the coil and computed using the Biot–Savart law.

A typical magnetic flux density map for three different Rx coil positions is shown in
Figure 3 in terms of an arrow plot of the B vector. The magnetic flux density is visualized
in a xz plane with y = 0, where x = 0 and y = 0 corresponds to the aligned coil case. In
Figure 3a, a perfectly aligned case is represented; Figure 3b corresponds to a particular
position of the RX coil where it is partially overlapped to the TX coil but, nevertheless, it
is flown by a null net flux generated by ITx and, consequently, the mutual coupling M is
equal to 0. Figure 3c corresponds to the coils superposed only on a corner.
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order to have M = 0, and (c) superposition on a corner. Red lines represent the coil position in XZ
plane and black rectangles the coil position in XY plane.

To evaluate the lumped parameters, i.e., self- and mutual inductance, the electromag-
netic model was coupled to an electric circuit [17,46].

The Rx coil was moved on a (Dx, Dy) grid with the origin on the center of the Tx
and ranging from −100 cm to 100 cm in the x direction and from −60 cm to 60 cm in
the y direction, as depicted in Figure 2a. The worst case considered for misalignment is
Dx = 100 mm and Dy = 60 mm; in this case, a 117 mm × 112 mm area of overlapping takes
place. Because the coil width is 106 mm, in the worst case, the overlap between the two coils
occurs in the copper areas. This case, as well as all the cases where a strong misalignment
occurs, cannot be properly treated with analytical formulations for the mutual inductance
calculation because the accuracy of the analytical methods strongly depends on the level
of misalignment. In general, the stronger the misalignment, the worse the accuracy of the
mutual inductance evaluation. However, thanks to the use of 3D FE field analysis, the
fringing field effect is well simulated, even in the case of substantial misalignment of the
coils.

Figure 4 represents the mutual inductance as a function of the Dx shift in the range
from 0 cm to 100 cm for different values of Dy chosen in the range from 0 cm to 60 cm.
The mutual inductance M obtained from the FEA ranges from −2.2 µH to 19.9 µH. The
self-inductances are unaffected by the relative position of the coils and are equal to 245 µH
and 81.9 µH for the Tx and Rx coils, respectively.



Energies 2023, 16, 7865 6 of 17

Energies 2023, 16, x FOR PEER REVIEW 6 of 17 
 

 

 

Figure 4. Mutual inductance in one quarter of the model. Black arrow represents the effect of Dy 

increment. 

The database of solutions is composed of 5000 random samples. The images of the 

coils in different positions are generated using Matlab version 2021a, as represented in 

Figure 5. Each image is saved in .jpeg format with a resolution of 1200 DPI and converted 

to a black and white figure with a given resolution suitable for the Neural Network. In 

particular, the resolution is reduced more and more, and for each resolution, the image 

quality is checked; no holes in nor missing parts of the conductors should be in the image. 

The lower resolution, which allows a good image quality (no loss of information), is 100 × 

120 pixels. Then, each sample is composed of a simplified black and white image of the 

two coils (100 × 120 pixels), as shown in Figure 5b and by the corresponding mutual in-

ductance value. 

  
(a) (b) 

Figure 5. Geometry of the system (a); image for the CNN input (b). 

The image is a black and white image of size 100 × 120 pixels (Figure 5b). 

2.3. CNN-Based Approach 

For predicting the mutual inductance, a CNN is used [47]. The CNN is composed of 

27 layers, as shown in Table 1. 

Table 1. CNN architecture. 

Layers Layers 

(1) Image-based input (size 100 × 120 × 1) (15) Batch normalization  

(2) Convolution 2D (size 3 × 8), (16) ReLU activation function  

(3) Batch normalization  (17) Average pooling layer (size 2 × 2) 

Dy =0 cm

Dy = 60 cm

Figure 4. Mutual inductance in one quarter of the model. Black arrow represents the effect of Dy
increment.

The database of solutions is composed of 5000 random samples. The images of the coils
in different positions are generated using Matlab version 2021a, as represented in Figure 5.
Each image is saved in .jpeg format with a resolution of 1200 DPI and converted to a black
and white figure with a given resolution suitable for the Neural Network. In particular,
the resolution is reduced more and more, and for each resolution, the image quality is
checked; no holes in nor missing parts of the conductors should be in the image. The lower
resolution, which allows a good image quality (no loss of information), is 100 × 120 pixels.
Then, each sample is composed of a simplified black and white image of the two coils
(100 × 120 pixels), as shown in Figure 5b and by the corresponding mutual inductance
value.
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The image is a black and white image of size 100 × 120 pixels (Figure 5b).

2.3. CNN-Based Approach

For predicting the mutual inductance, a CNN is used [47]. The CNN is composed of
27 layers, as shown in Table 1.

The input is a matrix 100 × 120 (the image of the coils), and one value is the output
(mutual inductance). The image resolution has been set up as a trade-off between the
accuracy in the representation of image details and the lowest resolution. In fact, the
image resolution is usually a critical parameter because the lower the resolution image, the
better the CNN training with a given dataset of images, but, on the other hand, no loss of
information is wanted.

During CNN training, the database is used as follows: batches of coil images are
given one by one as the input to the CNN, characterized by a set of weights, as previously
initialized. At each iteration, the predicted value of mutual inductance is compared to
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the true value, given by the database, and an error (usually the Root Mean Square Error,
RMSE) is calculated. From batch to batch, the weights of the CNN are updated based on
the chosen optimization algorithm, e.g., the Adaptive Moment Estimation (ADAM) in our
case, and when the maximum number of iterations is reached or a prescribed tolerance is
met, the training stops.

Table 1. CNN architecture.

Layers Layers

(1) Image-based input (size 100 × 120 × 1) (15) Batch normalization
(2) Convolution 2D (size 3 × 8), (16) ReLU activation function
(3) Batch normalization (17) Average pooling layer (size 2 × 2)
(4) ReLU activation function (18) Convolution 2D (size 3 × 128)
(5) Average pooling layer (size 2 × 2) (19) Batch normalization
(6) Convolution 2D (size 3 × 16) (20) ReLU activation function
(7) Batch normalization (21) Average pooling layer (size 2 × 2)
(8) ReLU activation function (22) Convolution 2D (size 3 × 256)
(9) Average pooling layer (size 2 × 2) (23) Batch normalization
(10) Convolution 2D (size 3 × 32) (24) ReLU activation function
(11) Batch normalization (25) Dropout (40% probability)

(12) ReLU activation function (26) Fully connected layer
(1 output)

(13) Average pooling layer (size 2 × 2) (27) Regression layer
(14) Convolution 2D (size 3 × 64),

Hence, for the supervised training procedure, the problem reads as follows: given
the database of images and relevant mutual inductance values, the network weights are
found by minimizing the error between the predicted and prescribed output according to
the selected algorithm.

In turn, the trained CNN is then used to solve the following problem: given an un-
previously seen image of the two coils as input, find the mutual inductance value utilizing
the trained CNN.

As far as the CNN architecture is concerned, it is possible to highlight some recurrent
sequence of layers: each sequence is composed of an average pooling layer, a convolutional
layer, a batch normalization layer [48], and a Rectified Linear Unit (ReLU) function (see
Table 1).

The ReLU function is one of the most used activation functions for the CNN because it
has shown good performance in training this kind of neural network in terms of avoiding
overfitting [47]. The convolutional layers are characterized by filters sized 3 × 3. The
number of filters varies from 8 to 256. In order to obtain a more stable solution, average
pooling layers with a filter sized 2 × 2 are applied. At the end of the CNN, a dropout layer
is used, and a fully connected layer followed by the regression layer allows for one element
to be obtained as the output of the neural network.

The CNN was trained with 80% of database samples for training and 20% for valida-
tion, i.e., 4000 samples for the training set and 1000 samples for the validation set. The CNN
was trained with the Adaptive Moment Estimation (ADAM) method with the following
hyper-parameter values: mini-batch size 128, initial learning rate 10−4, learning rate drop
factor 0.9, and learning rate drop period 20.

The tuning of the hyper-parameters is conducted by means of a trial-and-error pro-
cedure: the highest sensitivity of the CNN training is given by the initial learning rate.
By increasing the initial learning rate, training can occur faster, but a local minimum of
the weights optimization can occur as well as divergent behavior during the training; this
results in non-accurate training. On the other hand, if the initial learning rate is too small,
the training is very long. The best value of the initial learning rate depends also on the
CNN architecture. For our problem, we found that the best value is 10−4.
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For evaluating the quality of the CNN-based prediction, the Mean Average Percentage
Error MAPE (%) was calculated considering the N points of the validation set, namely, in
percentage:

MAPE = 100
1
N ∑N

i=1

∣∣Ŷi −Yi
∣∣

|Yi|
(3)

where Y is the true value calculated analytically, and Ŷ is the value predicted by the CNN.
Another figure of merit for evaluating the CNN performance is the Root Mean Square Error
(RMSE):

RMSE =

√
∑N

i=1

(
Ŷi −Yi

)2

N
(4)

The MAPE error was preferred in this paper because it has an easy interpretation, and
it is expressed as a percentage. When the outliers (points with large error) are to penalize,
the RMSE is preferred because it increases when the number of outliers increases.

2.4. Control Strategy

Figure 6 gives a more detailed representation of the WPTS. The main difference with
respect to Figure 1 is in the RX side of the system, where the equivalent load RL has been
split into its main components. Indeed, this is formed by the cascade of a diode rectifier, a
buck chopper, a filter inductance, and, finally, by the battery to be charged.
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Figure 6. Scheme of the dynamic WPTS equivalent circuit.

Thanks to the LCL compensation, the current flowing in the Tx coil depends only
marginally on the actual values of the power injected in the battery and of M, so that it can
be considered as a given parameter of the system. Consequently, it is possible to design the
control algorithm focusing only on the RX side of the WPTS.

Battery charging is controlled by means of two nested loops. The outer loop controls
the battery voltage and, by processing the voltage reference and the actual voltage, works
out the reference for the current to be injected in the battery. The inner loop processes the
current reference and generates command signals for power switches of the chopper.

Obviously, when the coupling between the TX and RX coils is very low or when the
coils are not coupled at all, no power transfer can be performed, and the controller of the
abovementioned control loops saturates. When the vehicle moves and the coils are coupled
again, the saturated controllers cause unwanted overshoot on the battery-charging current.
These unwanted solicitations are avoided by exploiting the estimate of M computed by the
CNN. When it is too low to the power, transfer is considered unfeasible, and the outer loop
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controller sets the charging current reference to zero. When the estimate M is high enough,
the current reference is updated in order to go on with the battery charging.

3. Results

The CNN was trained using the database obtained by means of FEAs. The trained
CNN was used in the control of the WPTS, with a focus on properly managing the transition
from couple to uncoupled conditions and vice versa.

3.1. CNN Training

The CNN training progress recorded for 500 epochs is shown in Figure 7.
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validation set.

At the end of the training procedure, the RMSE is low for both the validation and
training sets.

The MAPE error of the CNN trained for 500 epochs is equal to 16%. Because the
MAPE error formula has the true value of the mutual inductance at the denominator, the
highest MAPE errors are given for mutual inductance values close to zero.

Another way of showing the quality of the results is to plot the true values of the
mutual inductance versus the predicted values for the validation set. The solutions of the
validation set obtained with the FEM versus those predicted by the trained CNN are shown
in Figure 8.
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The closer the points to the bisector line, the better the accuracy of the neural network
prediction. As shown in Figure 8, the points are located along the bisector with good
accuracy.

In Figure 9, the prediction of the mutual inductance versus the coil misalignment for
two test cases (linear and V-shaped trajectory) is shown.
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Figure 9. Linear (a) and V-shaped (b) trajectories and relevant estimated and actual mutual induc-
tances. Red rectangle represents the inductor on the road and purple arrows the car trajectory.

In both cases, the value of the mutual inductance is predicted with acceptable accuracy,
and the maximum prediction errors can be recognized to happen in correspondence with
the maximum values of M. As it will be explained in the following section, this characteristic
does not impair the effectiveness of the algorithm that manages the battery charging.
Figure 9a, relevant to the liner trajectory, shows the same profile of M reported in Figure 4.
Along the V-shaped trajectory, considered in Figure 9b, the RX coil moves twice from the
misaligned to the aligned condition while the EV passes on one TX coil. For this reason, the
profile of M exhibits two rounded peaks instead of a flat top like in Figure 9a.

3.2. Battery Charging

The CNN trained as described in Section 3.1 was used in the control strategy that
manages the battery charging according to the approach described in Section 2.4. Two
different trajectories have been used: the linear one and the V-shaped one (see Figure 9).

3.3. Linear Trajectory

When the EV follows a linear trajectory, the induced voltage vr has the waveform
reported in Figure 10 with the blue line.
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The figure refers to an EV running at a constant speed of 130 km/h and considers
a time span of 2 s, during which the EV meets 35 Tx coils. Because of the high supply
frequency of the Tx coils, the oscillations of vr are too fast to be resolved at the time scale of
the figure and only the envelope of the induced voltage can be recognized. The dashed red
line in the figure represents the receiving side dc bus voltage. As shown in Figure 6, it is
obtained as the output of a diode rectifier processes the induced voltage and charges the
dc bus capacitor. For this reason, the dc bus voltage follows the envelope of the induced
voltage but is a little lower because of the voltage drop across the diodes. At the same time,
a buck chopper discharges the capacitor and injects in the battery the power coming from
the Tx coils. On its turn, the battery supplies the traction drive of the vehicle, which is
represented in Figure 6 by a constant current generator.

The control algorithm of the chopper is designed to charge the battery following
the current reference represented by the red dashed line of Figure 11. It is saturated to
the maximum battery-charging current when the battery voltage is much lower than the
reference one, thus implementing the constant current charging stage, and then decays
slowly to zero while the battery voltage approaches the reference value.

Energies 2023, 16, x FOR PEER REVIEW 11 of 17 
 

 

3.3. Linear Trajectory 

When the EV follows a linear trajectory, the induced voltage vr has the waveform 

reported in Figure 10 with the blue line. 

 

Figure 10. Induced voltage vr (solid blue) and dc bus voltage Vdc,r (dashed red). Linear Trajectory. 

The figure refers to an EV running at a constant speed of 130 km/h and considers a 

time span of 2 s, during which the EV meets 35 Tx coils. Because of the high supply fre-

quency of the Tx coils, the oscillations of vr are too fast to be resolved at the time scale of 

the figure and only the envelope of the induced voltage can be recognized. The dashed 

red line in the figure represents the receiving side dc bus voltage. As shown in Figure 6, it 

is obtained as the output of a diode rectifier processes the induced voltage and charges 

the dc bus capacitor. For this reason, the dc bus voltage follows the envelope of the in-

duced voltage but is a little lower because of the voltage drop across the diodes. At the 

same time, a buck chopper discharges the capacitor and injects in the battery the power 

coming from the Tx coils. On its turn, the battery supplies the traction drive of the vehicle, 

which is represented in Figure 6 by a constant current generator.  

The control algorithm of the chopper is designed to charge the battery following the 

current reference represented by the red dashed line of Figure 11. It is saturated to the 

maximum battery-charging current when the battery voltage is much lower than the ref-

erence one, thus implementing the constant current charging stage, and then decays 

slowly to zero while the battery voltage approaches the reference value. 

 

Figure 11. Battery-charging current reference IB,ref (dashed red) and actual charging current IB (solid 

blue). 

This current can be drawn from the dc bus capacitor only if the diode rectifier is in 

the conduction state, otherwise the capacitor voltage decreases below the battery voltage 

and the chopper does not work anymore. In this condition, the current controller must be 

Figure 11. Battery-charging current reference IB,ref (dashed red) and actual charging current IB (solid
blue).

This current can be drawn from the dc bus capacitor only if the diode rectifier is in
the conduction state, otherwise the capacitor voltage decreases below the battery voltage
and the chopper does not work anymore. In this condition, the current controller must
be disabled in order to avoid its windup and the consequent current overshoot as soon as
enough voltage is again available.

Considering that the amplitude of vr is proportional to M, the estimated M computed
by the CNN is used to enable and disable the current controller and the chopper operations.
In particular, when the estimated M is lower than 45% of its nominal value MN, the chopper
is disabled, and the current reference is kept constant. When M exceeds 50% of MN, the
controller and the chopper are enabled again. The 5% hysteresis between disabling and
enabling the controller avoids undue commutation between the two working conditions
during the vehicle run.

In order to speed up the simulations used to test the performance of overall dynamic
WPTS, the battery has been substituted for a large capacitor, and the load current has
been set to zero. In this way, a simulation time of 2 s is enough to check all the working
conditions of the systems.

Figure 11 shows that at the beginning of the charging process, IB,ref saturates to its
maximum value. After about 1 s, it exits from saturation and decreases down to zero at
the end of the simulation time. Due to the high speed of the vehicle, the battery current
IB does not reach IB,ref within the time taken by the vehicle to move over a single TX coil.
Instead, IB is forced to zero every time M falls below 45% of MN and the chopper is disabled.
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The current IB restarts flowing when the power transfer from the next transmitting coil is
enabled again, and a new partial charge of the battery is performed.

When IB,ref decreases, the duration of the coupling with a single TX coil becomes
enough to allow IB to approach IB,ref, as it can be recognized in Figure 11 in the time
interval from about 1.2 s to 2 s. This behavior is highlighted in Figure 12, which reports a
magnification of Figure 11.
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Figure 12. Battery-charging current reference IB,ref (dashed red) and actual charging current IB (solid
blue). Linear Trajectory.

It clearly shows that neither IB,ref nor IB are subject to overshot and that IB,ref is kept
constant while IB is forced to zero. The oscillations of IB,ref are due to the repeated enabling
and disabling of the power transfer. For time longer than 1.6 s, IB,ref is even lower and IB
reaches it within the duration of a coupling with a single TX coil, as shown in Figure 11.

The current IB is forced to zero and the chopper is disabled while M is decreasing. This
means that the amplitude of the induced voltage vr is decreasing as well and given that the
dc bus capacitor is not discharged by the chopper, the diodes of the rectifier are inversely
polarized. In these conditions, Vdc,r does not follow anymore vr but is kept constant to
the value it had when the chopper was disabled. This behavior is confirmed by Figure 13,
which is a magnification of Figure 10 relevant to the same time interval as Figure 12.
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Figure 13. Induced voltage vr (solid blue) and dc bus voltage Vdc,r (dashed red). Linear Trajectory.

The figure confirms that the amplitude of vr, represented by the blue solid shape,
follows the profile of M shown in Figure 4. Between the two Tx coils, Vdc,r, represented by
the red dashed line, is constant. It starts following the envelope of vr as soon as the peak of
vr exceeds Vdc,r and the diode rectifier conducts again.

Despite the intermittent power transfer, the battery is actually charged, and its voltage
increases up to the end-of-charge reference value. This is confirmed by Figure 14 that
reports the behavior of the battery voltage starting from the initial value of 54 V to the full
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load value of 56 V. The stepped profile is due to the subsequent chopper turning on and
off. Indeed, the battery voltage increases while the chopper injects current on it and stays
constant while the chopper is off.
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3.4. V-Shaped Trajectory

In the V-shaped trajectory, M has the profile shown in Figure 9b. Even if it is not
realistic for a driver to follow such a profile, this case has been studied to check the
robustness of the estimates coming from the NN and of the control algorithm that exploits
them to charge the vehicle battery. As in the previous case, the vehicle speed has been
considered equal to 130 km/h. However, because of the longer path to travel over each Tx
coil, the vehicle meets only 25 Tx coils in 2 s. In this time span, the profile of the induced
voltage is not clearly distinguished from that one reported in Figure 11, relevant to the
linear trajectory.

In order to appreciate the differences between the two trajectories it is necessary to
examine the induced voltage profile considering a shorter time interval, as in Figure 15.
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Figure 15. Induced voltage vr (solid blue) and dc bus voltage Vdc,r (solid red). V-Shaped Trajectory.

It should be compared with Figure 13, which is relevant to the linear trajectory and
considers the same time interval. In this interval, the vehicle running on the linear trajectory
meets two Tx coils, each of the originating one of the two blue solid spots in Figure 13.
In the same time interval, the vehicle running on the V-shaped trajectory meets only one
Tx coil, but, as shown in Figure 9b, the mutual inductance M between this Tx coil and
the Rx coil exhibits two maxima. Consequently, Figure 15 reports two solid spots, like
Figure 13, both originated by the same Tx coil. The smaller spot laying in the 1.04 s–1.05 s
time interval corresponds to the condition of having M negative but with a non-negligible
value. Also in this case, the red line in Figure 15 represents the dc bus voltage Vdc,r.
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The presence of a large interval in which the induced voltage is rather low reduces the
time available to enable the buck chopper to charge the battery. Indeed, as shown by the
dashed red line in Figure 15, the dc bus voltage remains constant for most of the time.

The reference for the current charging the battery and its actual value are plotted in
Figure 16. It clearly appears that the current flows for a much shorter time interval with
respect to Figure 12, and that its maximum value is sensibly lower than the one reached
along the linear trajectory.
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Figure 17 shows that, despite this limitation, the battery can still be charged, even if
the increasing rate of its voltage is more than two times lower than the one obtained in the
linear trajectory.
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4. Conclusions

The proposed deep learning method for the fast estimation of the mutual induc-
tance between two coils in a DWPTS shows a rather good accuracy and allows for the
implementation of the control of the power converter for the battery charge.

Being based on the image of the two coils, this approach is suitable for an early
prediction of the mutual inductance before the Rx coil is aligned with the Tx coil if the
camera can capture the image of the forthcoming transmitting coil.

Finally, this method could also be used on the Tx side, considering a camera buried in
the ground, for the control of the power supply. Hence, the proposed approach is general
and could improve DWPTSs from different points of view.
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