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Abstract: The wind abandonment phenomenon of cogeneration units in regional integrated energy
systems (RIES) under the operation mode of “heat for electricity” and the improvement in the
operation efficiency of the energy storage system under a low-temperature environment are problems
that need to be solved urgently. To this end, a regional integrated energy system optimization
scheduling method based on fine energy storage and wind power consumption is proposed in
the paper. First, a fine energy storage model more adapted to a low-temperature environment is
established on the power side to accurately simulate the actual working state of the energy storage
components and quantify the uncertainty of the wind power output using the conditional value-at-
risk (CVaR) theory. Then, a combined heat and power demand response mechanism is introduced
on the load side to reduce the peak-to-valley difference in the heat and power loads, it is realized to
promote the system’s consumption of wind power without increasing the transmission power of the
contact line. Finally, the example is solved on the MATLAB platform with the objective of minimizing
the total cost of the RIES optimal dispatch. The simulation results show that the proposed model is
not only more adaptable to a low-temperature environment compared with the traditional model but
also reduces the overall cost of the system by 2.58% while realizing the complete consumption of wind
power. This innovative study provides a feasible and efficient solution to improve the performance
of integrated energy systems, especially the operation capability in extreme environments.

Keywords: regional integrated energy system; fine energy storage model; wind power consumption
condition; value at risk; demand response mechanism

1. Introduction

With the intensification of the energy crisis, increasing the utilization rate of renewable
energy and reducing fossil energy dependence has become an important research direction.
Integrated regional energy systems have rapidly developed as an effective way to increase
the utilization of renewable energy and reduce pollutant emissions [1]. Cogeneration units
centered on combined heat and power (CHP) technology are capable of generating both
electricity and heat and are used in a wide range of applications. As CHP units are often in
heat-determined power operation in winter, the heat load is at its peak during the nighttime
when the electric load is in the trough, and the system peaking capacity is smaller than that
of conventional units, making it more prone to the phenomenon of wind abandonment [2].

In integrated energy systems, energy storage devices change the load distribution
in the spatial and temporal dimensions to improve system stability and economics. One
study [3] verified the effect of a ground source heat pump and energy storage device on the
system’s economy based on the RIES optimal scheduling model containing a ground source
heat pump and energy storage, but it lacked a more in-depth study on the operational
characteristics of the energy storage device. Another study [4], based on the characteristics
of multi-energy coupling and energy conversion of cold, heat, electricity, and gas, combined
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with the energy storage characteristics of the system, put forward the optimal scheduling
method based on the RIES of the day but failed to take into account the impact of load
fluctuations on the operation of the RIES. Other researchers [5] analyzed the energy storage
capacity and economic benefits of RIES from the perspective of integrated demand response
and uncertainty but failed to consider the impact of the idiosyncrasy of the energy storage
system under different ambient temperatures on the optimal scheduling. Two studies [6,7]
proposed the possibility of using shared energy storage instead of traditional energy storage
to achieve low-cost wind power consumption, but the uncertainty of the effective capacity
of the shared energy storage system makes it difficult to effectively consume wind power. [8]
proposes an integrated electricity and heat system, which can significantly improve the
energy utilization rate under the regulation of distributed management strategy, but the
lack of analysis of heat loss from heat storage tanks in low-temperature environments
will lead to a large discrepancy between the scheduling results and the actual situation.
However, none of the above studies takes into account the differences in the characteristics
of the energy storage devices in the RIES, such as the effect of charging and discharging
power of the battery at low temperatures and the effect of the heat loss of the thermal
storage tanks by the ambient temperature. Therefore, it is particularly important to consider
the characteristics of energy storage devices under low temperatures and other conditions
for accurate scheduling of integrated energy systems.

The RIES addresses the phenomena of wind energy output uncertainty and large
differences in load peaks and valleys on the source and load side, which lead to the
problems of impeded wind energy consumption and a high integrated cost of dispatch.
On the energy supply side, the current mainstream methods for dealing with the wind
energy uncertainty problem include stochastic optimization and robust optimization. [9]
coordinates the robustness and economy of the system by flexibly adjusting the robust
parameters to improve the system’s level of wind power consumption, but effectively
fails to address the shortcoming that the robust optimization results are biased towards
conservatism. Others [10,11] established a stochastic optimization model of an integrated
energy system with electric vehicles and simulated the wind power output based on the
scenario reduction technique with improved probability distance, which improved the
accuracy of the scheduling results, but the stochastic optimization can easily fall into
the local optimal solution, which makes the optimization results lack credibility. Other
research [12,13] proposed to use the conditional value at risk (CVaR) theory to deal with
the uncertainty set to obtain a more economically efficient optimization scheme, in view
of the fact that robust optimization is only affected by the worst-case scenarios of the
uncertain input parameters, and the final results obtained are too conservative. On the
energy demand side, [14] establishes a demand response optimization model based on
electricity price (based on RIES demand-side characteristics), but fails to consider the
demand response mechanism of thermal loads, which has limited capacity for wind power
consumption. Another study [15] established an integrated energy system containing
electricity to gas and energy storage devices based on gas–electricity joint demand response
and established a demand response optimization model based on electricity price based
on RIES energy demand-side characteristics. [16] established an integrated energy system
economic dispatch model with integrated demand response (IDR) for combined heat and
power with the objective of minimizing wind abandonment rate. However, these studies
consider only the impact of source-side or load-side characteristics on system operation and
do not consider the source and load sides together. [17] comprehensively considered the
impact of source- and load-side characteristics on wind power consumption and effectively
improved wind power consumption by integrating high-penetration wind energy through
interconnecting lines but did not consider how to effectively consume wind power when
the transmission power of the contact line could not meet the demand.

Aiming at the above problems, this paper proposes a coordinated optimization model
of RIES based on fine energy storage and wind power consumption. Firstly, a fine energy
storage model more in line with a low-temperature environment is established, and con-
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sideration is given to increasing the thermal load to safeguard the available capacity of
the storage battery and the charge/discharge speed and improve the utilization rate of the
energy storage system. Secondly, to address the uncertainty of wind power output on the
energy supply side, the Latin hypercube–synchronous back-generation elimination method
is used to obtain more accurate wind power output based on the historical data of wind
power output, and the CVaR theory is used to quantify the risk of revenue and enhance
the system’s ability to consume wind power. At the same time, the introduction of a heat
and power demand response mechanism on the load side cuts down the peak-to-valley
difference in the system load and further improves the system’s level of wind power con-
sumption. After comprehensively considering the energy conversion characteristics of the
source and load sides and the operation characteristics of the energy storage device, the
model is solved using MATLAB 2018b to obtain the wind abandonment rate and operation
scheme under the lowest operation cost. The example results show that compared with
the traditional model, the RIES model based on fine energy storage and wind power con-
sumption can effectively improve the level of wind power consumption and reduce the
operating cost of the system.

2. Integrated Energy System Architecture

Due to the cold winter climate in the north, there is a high demand for heating. At
the same time, the region is rich in geothermal energy, wind energy, solar energy, and
other renewable energy sources, which provide a good foundation for the application of
ground source heat pumps and CHP in the region [18,19]. Compared with the traditional
RIES, which is limited to the independent operation of a single form of energy, this paper
establishes a RIES containing integrated energy storage (IES) equipment, wind turbines
(WT), photovoltaic (PV), ground source heat pumps (GSHP), and CHP units, with the
structure shown in Figure 1, which can utilize and synergize the outputs of different forms
of energy in a more effective way. The power load demand is met by the superior grid,
wind turbines, photovoltaic power plants, and cogeneration units; the heat load demand
is met by the cogeneration units and ground source heat pumps, and the energy storage
equipment includes a heat storage tank (HST) and an IES to provide support for the heat
and power loads. Considering that the actual available capacity of the IES is greatly affected
by the temperature in winter, the working efficiency of the IES is guaranteed by increasing
part of the thermal load.
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Figure 1. Basic structure of the RIES.
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2.1. CHP System

CHP systems are capable of delivering both heat and power at the same time. They
convert high-quality heat from the combustion of natural gas into electricity and absorb the
waste heat to meet the heat load by using a bromine chiller; it usually consists of a bromine
chiller (BC) and a gas turbine (GT) [20] and is mathematically modeled as follows:

PB,h(t) = QG(t)δBλB,h (1)

QG(t) = PGT(t)(1− βG − βl)/βG (2)

where PB,h(t), PGT(t), and QG(t) represent the heating power of the BC and the electric
power output and waste heat generated by the GT at the moment t, respectively; δB, λB,h,
βG, and βl are, in order, the recovery rate of the flue gas of the BC, the heat production
coefficient of the flue gas of the BC, the power generation efficiency of the GT, and the heat
loss coefficient of the GT.

2.2. Ground Source Heat Pump

Compared with traditional heating equipment such as electric boilers, a ground source
heat pump converts a large number of low-temperature heat sources in the shallow ground
into high-quality energy to meet heating and cooling needs with a small electrical energy
input. The mathematical model for its heat supply is as follows:

PGH(t) = λlPGHI(t) (3)

where PGH(t) and PGHI(t) are the heating power and power consumption of the GSHP at
the moment t, respectively; λl is its heating efficiency.

2.3. Fine Energy Storage Equipment

As an important component of the RIES, energy storage equipment mainly includes
thermal storage tanks and batteries. These devices absorb and release energy, thus reducing
system fluctuations, especially suppressing fluctuations due to the uncertainty of new
energy output. The charging and discharging mathematical model of the energy storage
system is as follows:

SIES(t) = (1− ηIES)SIES(t− 1) + (MPin(t)λin∆t− NPout(t)λout∆t) (4)

M + N ≤ 1, M ⊆ {0, 1}, N ⊆ {0, 1} (5)

where SIES(t) is the remaining energy of the energy storage device at time t; Pin(t) and
Pout(t) represent the energy input and output power of the energy storage device at time
t, respectively; λin and λout represent the conversion efficiencies of the energy input and
output of the energy storage device, respectively; M and N are Boolean variables that
represent the state of the energy storage device, which is in a state of charging at M = 1 and
in a state of energy release at N = 1; and ηIES is the energy loss coefficient of the energy
storage device.

2.3.1. Battery Storage Model

The traditional energy storage model does not consider the effect of ambient tempera-
ture on the battery, but the actual usable capacity is related to the surface temperature of
the battery [21,22], which is mathematically expressed as follows:

SIESN(t) = SEIESN[1 + ξa(Ta(t)− TN)] (6)

where SEIESN represents the standard state of the rated capacity of the battery; Ta(t) is
the battery surface temperature at the moment of t; and TN is the standard state of the
temperature, TN taking the value of 25 ◦C.
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The surface temperature of the battery is determined by its heat generation and heat
dissipation during the working period, and its mathematical expression is as follows:

Ta(t) = Ta(t− 1) + Φin(t)−Φout(t)
KtepSele

Φin,e(t) = λIES[Mele·PIES,in(t) + Nele·PIES,out(t)]∆t

Φout,e(t) = KtepSele(Ta(t− 1)− Tevr(t))

(7)

where Φin,e(t) and Φout,e(t) are the heat generation and dissipation of the battery at the
moment of t; PIES,in(t) and PIES,out(t) are the charging and discharging power of the battery
at the moment of t; Mele and Nele indicate the working state of the battery: Mele = 1
when the battery is in the charging state, Nele = 1 when the battery is in the discharging
state; Tevr(t) represents the ambient temperature at the moment of t; ξa is the capacity
temperature coefficient; Sele is the surface area of the battery; Ktep is the heat convection
coefficient; λIES is the battery heat generation coefficient.

In addition, the service life of the battery is also affected by its charging and discharging
rate. If the charge/discharge rate is too high, the service life will be seriously damaged.
Therefore, the maximum charging and discharging power per hour should be limited to not
more than 20% of the actual usable capacity [23], and its mathematical model is as follows:{

PIES,in(t) ≤ 0.2SIESN(t)/∆t
PIES,out(t) ≤ 0.2SIESN(t)/∆t

(8)

In order to improve the utilization of the battery in practical applications, this paper
optimizes the problems that may occur in the energy storage process. Specific measures
include the rational design of battery charging and discharging programs and artificially
increasing the ambient temperature to increase the actual available capacity.

2.3.2. Model of Heat Storage Tank

The heat storage tank model consists of an atmospheric pressure hot water storage
tank, a circulating pump, and additional equipment such as a heat exchanger. In practice,
due to the influence of the ambient temperature, there is a certain amount of heat loss in the
heat storage tank, mainly the inner wall of the tank to transfer heat and the outer surface of
the tank to the surrounding air to emit heat [24,25]. The mathematical model of the heat
storage tank storage and heat release is as follows:

SLES(t) = ηwatmTLES(t)
TLES(t) = TLES(t− 1) + Φin,w(t)−Φout,w(t)

KwatSwat

Φin,w(t) =
(

Hdis(t)ωdis −
Hch(t)

ωch

)
∆t

Φout,w(t) = KwatSwat(TLES(t− 1)− Tevr(t))

(9)

where SLES(t) is the heat storage capacity of the heat storage tank at time t; ηwat is the
specific heat capacity of water; m is the mass of hot water in the heat storage tank; Kwat
and Swat are the integrated thermal convection coefficient and surface area of the heat
storage tank, respectively; Φin,w(t) and Φout,w(t) are the heat input and heat loss from the
heat storage tank, respectively; Hch(t) and Hdis(t) are the storage and discharge thermal
power of the heat storage tank, respectively; and ωch and ωdis are the storage and discharge
efficiencies of the heat storage tank, respectively.

3. Combined Heat and Power Demand Response Mechanism
3.1. Electric Load Demand Response

A price-based DR (PBDR) model is established based on the price-based demand
response mechanism. Through PBDR, the demand side electricity consumption is regulated
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to effectively realize peak shifting and valley filling and to reduce the peak pressure of the
system [26,27]. The demand elasticity of the consumer load is as follows:

Mt1,t2 =
∆Kt1

Kt1
0

·
Ct2

0
∆Ct2

{
Mt1,t2 ≥ 0, t1 6= t2
Mt1 ,t2 ≤ 0, t1 = t2

(10)

where Kt1
0 is the amount of electric load at t1 before taking demand response; ∆Kt1 is

the change of electric load at t1 after taking demand response; Ct2
0 is the electric price at

t2 before taking demand response; ∆Ct2 is the change of electric price at t2 after taking
demand response; Mt1,t2 is the cross-elasticity coefficient when t1 6= t2; and Mt1,t2 is the
self-elasticity coefficient when t1 = t2. After the introduction of the PBDR model, the
change amount in electric load is as follows:

∆K1/K1
0

∆K2/K2
0

...
∆K24/K24

0

 =


M11 · · · M124
M21 · · · M224

... · · ·
...

M241 · · · M2424




∆C1/C1
0

∆C2/C2
0

...
∆C24/C24

0

 (11)

With the introduction of the PBDR model, the magnitude of the electrical load at time
t is as follows:

Kt
load,e = Kt

0(1 + ∆Kt/Kt
0) (12)

3.2. Heat Load Demand Response

The heat load of a residential area consists of two parts: domestic hot water and heating
heat load. The heating heat load is more elastic and accounts for a higher proportion of
the total heat load, while domestic hot water is a rigid load with little change and accounts
for a smaller proportion of the total heat load. In order to accurately assess the impact of
heat load on wind power consumption, we only analyzes and calculates the heating heat
load [28]. The current outdoor temperature and the expression for the relationship between
the required thermal power and the amount of change in the indoor temperature of the
house are as follows: {

Pl,h(t) =
N0
R ( Ti(t+1)−e−∆t/τ Ti(t)

1−e−∆t/η − To(t))
η = RC0

(13)

where Pl,h(t) represents the thermal power required in the room at the moment t; N0 is the
number of heating households in the residential area; C0 is the air heat capacity in the room;
R is the equivalent thermal impedance of the house; and Ti(t) and To(t) are the indoor and
outdoor temperatures of the house at the moment t.

Due to the human body’s ambiguity in perceiving temperature changes in the sur-
rounding environment, when the indoor temperature changes within a slow and small
range, it does not cause discomfort. In order to assess the degree of living comfort, [29]
used the predicted mean vote (PMV) as a quantitative indicator. This research states that
when γPMV is between −0.5 and 0.5, the comfort level of the inhabitants is not affected.
Based on the above, the constraints on indoor temperature are as follows:

Ti,min ≤ Ti(t) ≤ Ti,max (14)

where Ti,max and Ti,min are the maximum and minimum indoor temperatures, respectively.

4. Scenario Selection and CVaR Theory
4.1. Uncertain Scenario Selection

In this paper, using historical wind power output data, the kernel density estimation
method is used to establish the actual probability density distribution function of the
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prediction error of wind power output at each scheduling moment, and Latin hypercubic
sampling is applied to obtain the set of prediction error samples at each scheduling time
point of the system [30]. In order to improve computational efficiency, this paper adopts the
synchronized back-generation elimination method to cut down the scenario s and get the
corresponding probability values. Let the set of scenario s be Ws = {Ws,0, Ws,1, Ws,t, Ws,T},
where Ws,t is the outgoing value of scenario s at time t, and the sum of the probability of
occurrence of each scenario is 1. The expressions for the distances between the different
scenarios are as follows:

D(Ws, Wj) = [
T

∑
t=1

(Ws(t)−Wj(t))
2]

1
2

(15)

In order to make the sample set better approximate the original scenario set, the paper
adopts the scenario -cutting technique to obtain multiple scenario sets with corresponding
probabilities by clustering similar scenarios. At the same time, it is also necessary to
satisfy the minimization of the probability distance between the cut scenario sets. The
mathematical expression is as follows:

min
T

∑
s∈J,j∈J

D(Ws, Wj) (16)

4.2. CVaR Overview

CVaR is developed from value at risk (VaR), which represents the worst possible loss
that a portfolio can suffer at a certain confidence level [31]. Specifically, assuming that the
decision variable is u, the uncertainty variable is v, and its probability density function is
R(v), the loss function of u is S(u, v). Then, when u is fixed, the loss function S(u, v) does
not exceed the cumulative distribution function at threshold θ, as follows:

π(u, θ) =
∫

S(u,v)≤θ
R(v)dv (17)

At a specific confidence level, α, VaR represents the maximum loss of revenue that the
RIES may face in a future dispatch cycle, which is mathematically modeled as follows:

fVaR(u) = min{θ : π(u, v) ≥ α} (18)

CVaR is a measure of the average return loss of the RIES in the event that a given VaR
value is exceeded in the system return. Its mathematical model can be expressed as follows:

fCVaR(u) =
1

1− α

∫
S(u,v)≥ fVAR(u)

S(u, v)R(v)dv (19)

Considering that it is difficult to calculate CVaR directly from Equation (19), [32]
proposes a simple calculation method as follows:

fCVaR(u) = min

{
θ +

1
1− α

S

∑
S=1

max{S(u, v)− θ , 0}
}

(20)

5. RIES Coordinated Optimization Model Considering CVaR
5.1. Objective Function

Due to the uncertainty of wind turbine output, there is a potential risk in the economic
dispatch scheme. In order to comprehensively consider the performance of the model in
different operating environments, this paper adopts the conditional value at risk (CVaR) to
quantify the risk of returns in various situations [33,34]. The RIES coordination optimization
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model is established with the objective function of minimizing the total cost of the RIES
operation, which is shown as follows:

min f = β fEX + (1− β) fCVaR

fEX =
S
∑

S=1
PS · fS

fCVaR(x) = θ + 1
1−α

S
∑

S=1
PS·max{ fS − θ , 0}

fS =
T
∑

t=1
CS

w(t) + CS
grid(t) + CS

e (t) + CS
fu(t) + CS

wt(t)

(21)

where f is the total economic cost of system operation; fCVaR is the CVaR cost; fEX is the
expected cost; θ is the auxiliary variable; α is the confidence level; β is the weighting
coefficient; PS is the corresponding probability of Scenario S; S is the number of scenarios; T
is the period of scheduling; and CS

w(t), CS
grid(t), CS

e (t), CS
fu(t), and CS

wt(t) are the operation
and maintenance (O&M) cost, the cost of power interaction with the superior grid, the cost
of environmental cost with the superior grid, the cost of gas purchased with the superior
grid, and the cost of wind abandonment with the superior grid, at the time t under Scenario
S, respectively.

• O&M costs

The O&M costs consist of the operation and maintenance costs of controllable units,
new energy units, and energy storage equipment, which are expressed as follows:

CS
w(t) =

K

∑
i=1

PS
a (t)Wa +

N1

∑
j=1

PS
b (t)Wb +

N2

∑
n=1

PS
ES,n(t)Wn (22)

where PS
a (t) and PS

b (t) are the output power per unit O&M cost of the controllable unit, a,
and renewable energy machine, b, at moment t under Scenario S, respectively; PS

ES,n(t) is
the transmission power per unit O&M cost of energy storage device n at moment t under
Scenario S, and Wa, Wb, Wn are the unit O&M cost per unit of controllable unit a, renewable
energy machine b, and energy storage device n at moment t under Scenario S, respectively.

• Electricity Interaction Costs

The cost of electricity interaction represents the sum of the cost of electricity purchased
by the RIES from the main grid and the benefit of electricity sold to the main grid, expressed
as follows:

CS
grid(t) = Lg(t) ·max

{
PS

d
(t), 0

}
− Ls(t)·max

{
−PS

d (t), 0
}

(23)

where Lg(t) and Ls(t) represent the prices at which the grid makes power purchases and
sells power at moment, respectively; PS

d
(t) denotes the power on the contact line of the

grid at moment t under Scenario S, which is greater than 0 for power purchases and less
than 0 for power sales.

• Environmental costs

The environmental costs represent the GHG emissions emitted during the operation
of the controllable units and the GHG treatment costs caused by purchasing electricity from
the main grid, which are specified as follows:

CS
e (t) =

M

∑
m=1

λm[EmPS
a (t) + EmPS

d,b(t)] (24)

where PS
d,b(t) is the power purchased by the system at moment t under Scenario S; Em and

λm are the share coefficient of the mth greenhouse gas and the treatment cost, respectively;
and M is the type of greenhouse gas.
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• Wind abandonment costs

The cost of maintaining the wind turbine system during the period of wind abandon-
ment is the cost of wind abandonment, which is expressed as follows:

CS
wt(t) = PS

wt(t)Dwt (25)

where PS
wt(t) and Dwt are the abandoned wind power and unit abandoned wind cost at

moment t under Scenario S, respectively.

• Cost of gas purchases

The cost of purchasing gas for the CHP system can be expressed as follows:

CS
fu(t) =

PS
a (t)
βG

· ∆t
LCH4

DCH4 (26)

where LCH4 and DCH4 are the average calorific value and gas price of the gas, respectively.

5.2. Restrictive Condition

Considering the operating parameters of the various devices, the RIES needs to satisfy
the following constraints.

• Electrical and thermal power balance constraints:


K

load,e
(t) + PS

lh
(t) = PS

GT
(t) + PS

WT(t)+
PS

d
(t) + PS

PV
(t) + PS

IES
(t)

PS
l,h
(t) = PS

BC,h(t) + PS
lp,h

(t) + HS
in(t)

(27)

where K
load,e

(t) and PS
l,h
(t) are the power of the system’s electrical and thermal loads,

respectively.

• Controllable unit operating constraints:

{
Pa,min ≤ PS

a (t) ≤ Pa,max
−λi,min∆t ≤ PS

a (t)− PS
a (t− 1) ≤ λi,max∆t

(28)

where λi,max and λi,min are the upper and lower limits of the climbing rate of controllable
unit i, respectively; and Pa,max and Pa,min are the upper and lower limits of the output force
of controllable unit a, respectively.

• Interactive power constraints with the higher grid:

Pd,min ≤ PS
d
(t) ≤ Pd,max (29)

where Pd,max and Pd,min are the maximum and minimum values of grid interaction power.

• Wind power output constraints:

{
0 ≤ PS

WT(t) ≤ PS
ut(t)

PS
WT(t)

PS
ut(t)

≤ hut
(30)

where PS
WT(t) and PS

ut(t) denote the actual and predicted power of wind power at moment
t under Scenario S, respectively, and hut is the minimum rate of wind power consumption.

• Energy storage device constraints


PS

min
(t) ≤ PS

IES
(t) ≤ PS

max
(t)

ES
min

(t) ≤ ES
IES
(t) ≤ ES

max(t)
ES

IES
(0) = ES

IES
(24)

(31)
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where PS
max

(t) and PS
min

(t) are the maximum and minimum values of the transmission
power of the energy storage device at moment t under Scenario S within the constraints;
ES

max(t) and ES
min

(t) are the maximum and minimum available energy storage capacity of
the energy storage device at moment t under Scenario S.

• Electric load demand response constraints
24
∑

t=1
KS

up(t) =
24
∑

t=1
KS

down(t)

0 ≤ KS
up(t) ≤ δup·Kload,e

(t)
0 ≤ KS

up(t) ≤ δdown·Kload,e
(t)

(32)

where KS
up(t) and KS

down(t) denote the amount of load transfer in and out at moment t
under Scenario S, respectively; and δup and δdown are the proportions of the maximum
upward and maximum downward load transfers, respectively.

6. Calculus Analysis
6.1. Parameterization

In order to verify the RIES model in the paper in terms of the economy of system
operation and scheduling and the timeliness of wind power consumption, the paper sets up
the simulation of the RIES coordinated optimization model in the following four scenarios
for verification. Scenario 1 is the traditional RIES model, without considering demand
response and battery heating; Scenario 2 is the RIES model with fine energy storage, without
considering demand response and battery heating; Scenario 3 is the RIES model with fine
energy storage, considering demand response and battery heating; and Scenario 4 is the
RIES model with fine energy storage, which considers both demand response and battery
heating. Scenario 4 is the model proposed in the paper. The model parameters are taken
as confidence level α = 0.85 and weighting factor β = 0.9. The parameters of the energy
storage system are shown in Table 1, and the pollutant treatment cost and unit operation
parameters are shown in Tables 2 and 3. The forecast data of PV, wind power, and electric
heat loads are shown in Figure 2, and the temperature and the purchase and sale price of
electricity are shown in Figure 3. Taking the economy of system optimization operation
and the timeliness of wind power consumption as the goal, the MATLAB platform is used
to build the RIES coordinated optimization operation model and the CPLEX solver to solve
the model.

Table 1. Parameters of energy storage device.

Parameter Batteries Heat Storage
Tanks Parameter Heat Storage

Tanks Batteries

Capacity/(kW·h) 200 300 Initial energy storage state 0.2 0.2

Charging and discharging rate 0.9 0.88 Maximum energy storage state 0.9 0.9

Attrition rate 0.001 0.01 Minimum energy storage state 0 0.2

O&M unit price (USD/kW·h) 0.051 0.045 Maximum charge and discharge
power/kW 50 50

Table 2. Pollutant discharge and treatment costs.

Type SO2 NOX CO2

Gas turbine emission standard (g/kWh) 0.023 4.795 170.16
Emission standard of purchased power (g/kWh) 6.4 2.32 696

Treatment cost of each pollutant (USD/t) 1000 1950 9.75
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Table 3. Unit operation parameters.

Parameter GT GSHP PW PV Grid

Power upper limit/kW 500 30 400 100 100
Lower power limit/kW 50 0 0 0 0

Climbing rate upper limit/(kW/min) 6 4 — — —
Climbing rate lower limit/(kW/min) 5 3 — — —

Efficiency 0.24 3 — — —
O&M unit price (USD/kW·h) 0.053 0.026 0.029 0.025 —
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We introduce the Latin hypercubic sampling method to deal with the uncertainty intro-
duced by wind power output. The method can quickly generate one thousand typical wind
power scenarios and reduce them to five typical scenarios by synchronized back-generation
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elimination. Its sample space and reduced scenarios are shown in Figures 4 and 5, and the
probability sum after the reduced scenarios is 1. It is assumed that the wind turbine output
day-ahead prediction error is within 20%.
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Figure 5. Wind power landscape reduction.

6.2. Optimized Operation Results and Analysis

The optimal scheduling results of the RIES are shown in Figures 6–9 and Table 4: The
scheduling results of Scenario 1 are shown in Figure 6; at this time, the electric load of
the RIES mainly consists of electricity purchased and sold between the CHP, wind power,
PV, storage battery, and the main grid. During the hours of 1:00–7:00 and 23:00–24:00, the
electricity price is in the trough, so the CHP units and the ground source heat pumps are
operating in the heat-to-power mode. However, limited by the transmission power of the
contact line, there is wind abandonment in the system, resulting in energy waste.
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Figure 6. Scenario 1 scheduling results. 

3 6 9 12 15 18 21 24

-200

0

200

400

600

Po
w

er
/k

W

Time/h

 
        Storage Discharge

 Photovoltaic

CHP
 Purchased Power

Energy Storage

 Wind Abandonment
 

Ground Source Heat Pump

 
           
       
 
Wind Power Feed-in

      

Electricity Sales

 
Figure 7. Scenario 2 scheduling results. 

Figure 6. Scenario 1 scheduling results.

Energies 2023, 16, x FOR PEER REVIEW 15 of 21 
 

 

3 6 9 12 15 18 21 24

-200

0

200

400

600

Po
w

er
/k

W

Time/h

        
    

        Storage Discharge

 Photovoltaic

CHP
 Purchased Power

Energy Storage

 Wind Abandonment
 

Ground Source Heat Pump

 
           
       
 

Wind Power Feed-in
      

Electricity Sales

 
Figure 6. Scenario 1 scheduling results. 

3 6 9 12 15 18 21 24

-200

0

200

400

600

Po
w

er
/k

W

Time/h

 
        Storage Discharge

 Photovoltaic

CHP
 Purchased Power

Energy Storage

 Wind Abandonment
 

Ground Source Heat Pump

 
           
       
 
Wind Power Feed-in

      

Electricity Sales

 
Figure 7. Scenario 2 scheduling results. Figure 7. Scenario 2 scheduling results.



Energies 2023, 16, 7791 14 of 19Energies 2023, 16, x FOR PEER REVIEW 16 of 21 
 

 

3 6 9 12 15 18 21 24

-200

0

200

400

600
Po

w
er

/k
W

Time/h

 

        Storage Discharge

 Photovoltaic

CHP
 Purchased Power

Energy Storage

 Wind Abandonment
 

Ground Source Heat Pump

 
           
       
 

Wind Power Feed-in
      

Electricity Sales

 
Figure 8. Scenario 3 scheduling result. 

3 6 9 12 15 18 21 24

-200

0

200

400

600

Po
w

er
/k

W

Time/h

        Storage Discharge

 
Photovoltaic

CHP
 Purchased Power

Energy Storage

 Wind Abandonment

 
Ground Source Heat Pump

 
           
       
 
Wind Power Feed-in

      

Electricity Sales

 
Figure 9. Scenario 4 scheduling result. 

  

Figure 8. Scenario 3 scheduling result.

Energies 2023, 16, x FOR PEER REVIEW 16 of 21 
 

 

3 6 9 12 15 18 21 24

-200

0

200

400

600
Po

w
er

/k
W

Time/h

 

        Storage Discharge

 Photovoltaic

CHP
 Purchased Power

Energy Storage

 Wind Abandonment
 

Ground Source Heat Pump

 
           
       
 

Wind Power Feed-in
      

Electricity Sales

 
Figure 8. Scenario 3 scheduling result. 

3 6 9 12 15 18 21 24

-200

0

200

400

600

Po
w

er
/k

W

Time/h

        Storage Discharge

 
Photovoltaic

CHP
 Purchased Power

Energy Storage

 Wind Abandonment

 
Ground Source Heat Pump

 
           
       
 
Wind Power Feed-in

      

Electricity Sales

 
Figure 9. Scenario 4 scheduling result. 

  

Figure 9. Scenario 4 scheduling result.



Energies 2023, 16, 7791 15 of 19

Table 4. Four scenarios scheduling results.

Cost Category (USD/Day) Scenario 1 Scenario 2 Scenario 3 Scenario 4

Total Cost 5620.5 5706.2 5646.7 5502.5
Expected Cost 5558.8 5648.5 5548.3 5442.4

CVaR 6175.8 6234.4 6208.2 6043.5
Fuel Cost 4292.3 4319.3 4275 4266.9

Maintenance Cost 446.7 441.1 443.7 455.3
Environmental Costs 56.57 58.67 56.64 54.41

Purchase and Sale Costs 766.5 833.8 812.5 665.8
Wind Abandonment Cost 3.96 6.35 3.15 0

Wind Power Consumption Rate 95.54% 91.42% 97.37% 100%

Scenario 2 considers the effect of a low-temperature environment on the available
capacity and energy transfer rate of the energy storage system on the basis of Scenario 1,
and its scheduling results are shown in Figure 7 and Table 4. From the figure, it can be seen
that the peak-to-valley difference in the system increases by 2.33% compared with Scenario
1, the abandoned wind rate increases by 4.12%, and the total cost increases by 1.53%. This is
because the available capacity and the charging and discharging rate of the storage battery
are affected in the low-temperature environment, and in the time period of 1:00–7:00, the
actual available capacity of the electric storage is limited to be insufficient, and it is difficult
to consume the wind power output in this time period, which leads to a significant increase
in the phenomenon of wind abandonment. At 17:00–18:00, the purchase price of electricity
gradually increases, and the battery is limited by the actual available capacity, making
it difficult to provide a sufficient load to the users, which results in the purchase cost of
Scenario 2 being higher than that of Scenario 1. At the same time, the heat loss increases
in a low-temperature environment, and it is necessary to increase the output of bromine
chillers and ground source heat pumps to maintain the heat balance, which further raises
the operating cost of Scenario 2.

Scenario 3 introduces a combined heat and power demand response mechanism
on the basis of Scenario 2, and its scheduling results are shown in Figure 8 and Table 4.
As can be seen from the figure, the system wind power consumption rate increases by
5.95% compared with Scenario 2, the peak-to-valley difference decreases by 5.04%, and
the total cost decreases by 1.04%. The distribution of electricity consumption is optimized
by introducing the combined heat and power demand response mechanism to regulate
the user’s electricity consumption habits. During 1:00–7:00 and 23:00–24:00, the price of
electricity at the customer side is lowered to guide users to use electricity and increase
the consumption of electricity in the valley; during 8:00–22:00, the price of electricity at
the customer side is raised to reduce the willingness of users to use electricity, which
in turn reduces the load of electricity in that period, reduces the difference between the
peaks and valleys of the system, and, at the same time, promotes the consumption of wind
power. In addition, the combined heat and power demand response mechanism allows
for a limited adjustment of the heat load to better adapt to the time-varying electricity
price. At 12:00–18:00, the purchased power price is slightly lower than the generation cost
of the CHP unit, and the temperature is higher, so by appropriately lowering the indoor
temperature, the CHP unit’s output is reduced, and the purchased power is increased,
reducing the overall cost. At 19:00–22:00, the purchased power price is higher than the
CHP unit generation cost, and the purchased power cost of the system is reduced by
appropriately increasing the indoor temperature so that the CHP unit operates at full
capacity, and the excess heat is stored in the heat storage tank.

Scenario 4 adds a battery insulation device on the basis of Scenario 3, which keeps
the battery in the best working condition all the time by increasing part of the thermal
load. The dispatch results are shown in Figure 9 and Table 4. Compared with Scenario
3, the peak-to-valley difference in the system is reduced by 10.03%, and the total cost is
reduced by 2.55%. Although the thermal load of the system is increased by the input of the
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heater device, the increase in the effective capacity enables the electric storage to provide a
large amount of electricity when the purchase price of electricity is higher than the system
generation cost, from 17:00 to 19:00, effectively reducing the purchase cost of the electricity
and realizing the complete consumption of wind power in the time period from 1:00 to 7:00.

The results of the optimal scheduling of heat load and the integrated cost for each
scenario in this process are shown in Figure 10. Scenario 2 takes into account that the
heat dissipation of the heat storage tank increases significantly in a low-temperature
environment, and the heat load increases by 4.71% compared with Scenario 1 due to
heat loss.
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Scenario 3 introduces a heat load response mechanism to regulate the indoor tempera-
ture on the basis of Scenario 2, which reduces the demand for heat load without affecting
the comfort of the residents. As can be seen from Figure 10, the heat load of Scenario 3 is
higher than that of Scenario 2 in the time periods of 7:00–11:00 and 19:00–22:00, and the
heat load of Scenario 2 is higher than that of Scenario 3 in the time periods of 1:00–7:00
and 12:00–18:00.This is due to the fact that the purchased price of electricity is higher
than the cost of power generation of the CHP unit during the time periods 8:00–11:00 and
19:00–22:00, and the heat load of Scenario 2 is higher than Scenario 3 for the purpose of
decreasing the amount of electricity purchased from the power grid. This is due to the fact
that the power purchase price is higher than the power generation cost of CHP units in
8:00–11:00 and 19:00–22:00, and the room temperature is increased to reduce the power
purchased from the grid, which increases the power generation of the CHP units; the
power purchase price is lower than the power generation cost of the CHP units at 1:00–7:00
and 12:00–18:00, and the power purchased is increased by lowering the heat load and
decreasing the power output of the CHP units. This also leads to the ineffectiveness of heat
load optimization in this scenario, and the heat load only decreases by 0.54% compared to
Scenario 2.

Scenario 4 increases the thermal load of the system by 0.42% compared with Scenario
3 due to the additional consumption of thermal load by the additional storage heater, but
it effectively improves the comprehensive benefit of the system by realizing the complete
consumption of wind power.

6.3. Analysis of the Effect of Weighting Coefficients on the Results of RIES Scheduling

The weighting coefficient can reflect the degree of risk preference of the decision
maker [35]; in order to explore the influence of the weighting coefficient β on the schedul-
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ing results of the RIES, the paper derives the scheduling results under different weighting
coefficients under Scenario 4 according to the change of weighting coefficients from 0.1 to
0.9, as shown in Figure 11. The results show that in the process of gradually increasing
weight coefficients, the total system cost gradually increases, the expected cost share gradu-
ally increases, and the CVaR share gradually decreases. This indicates that the greater the
degree of risk preference of the decision maker, the smaller the CVaR percentage While it
can be effective in improving the operational safety of the system, it can also reduce the
economy of the system. In actual scheduling, operators should choose appropriate weight-
ing coefficients to balance the benefits and risks of the system according to specific needs.
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7. Conclusions

By establishing a coordinated and optimized operation model of a RIES considering
wind power consumption in a low-temperature environment, the following conclusions
can be drawn based on the comparative analysis of the four scenarios:

(1) The fine energy storage model takes into account the influence of ambient temperature,
capacity, and other constraints, the equipment output is more in line with the actual
situation than the traditional energy storage model, and the reliability of the system
optimization and scheduling is higher.

(2) Comprehensive consideration of electricity and heat flexible load demand response
can effectively reduce the peak and valley difference in the user load while taking into
account the wind power consumption capacity and economic benefits.

(3) Compared to traditional deterministic models, it is more reasonable to utilize the
CVaR theory to describe the risk of returns from wind power uncertainty.

(4) The adjustment of the weight coefficients in the CVaR theory according to the historical
operation information and the actual situation during the actual scheduling process
can further improve the comprehensive efficiency of the system.
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The following abbreviations are used in this manuscript:
RIES Regional Integrated Energy Systems
CvaR Conditional Value-at-Risk
CHP Combined, Heating and Power
IDR Integrated Demand Response
IES Integrated Energy Storage
WT Wind Turbines
PV Photovoltaic
GSHP Ground Source Heat Pumps
HST Heat Storage Tank
BC Bromine Chiller
GT Gas Turbine
PBDR Price-Based Demand Response
PMV Predicted Mean Vote
VaR Value at Risk
O&M Operation and Maintenance

References
1. Wang, Y.; Wang, Y.; Huang, Y.; Li, F.; Zeng, M.; Li, J.; Wang, X.; Zhang, F. Planning and operation method of the regional integrated

energy system considering economy and environment. Energy 2019, 171, 731–750. [CrossRef]
2. Wang, Y.; Lu, Y.; Ju, L.; Wang, T.; Tan, Q.; Wang, J.; Tan, Z. A multi-objective scheduling optimization model for hybrid energy

system connected with wind-photovoltaic-conventional gas turbines, CHP considering heating storage mechanism. Energies
2019, 12, 425. [CrossRef]

3. Wang, J.; Deng, H.; Qi, X. Cost-based site and capacity optimization of multi-energy storage system in the regional integrated
energy networks. Energy 2022, 261, 125240. [CrossRef]

4. Xu, J.; Wang, X.; Gu, Y.; Ma, S. A data-based day-ahead scheduling optimization approach for regional integrated energy systems
with varying operating conditions. Energy 2023, 283, 128534. [CrossRef]

5. Guo, Z.; Zhang, R.; Wang, L.; Zeng, S.; Li, Y. Optimal operation of regional integrated energy system considering demand
response. Appl. Therm. Eng. 2021, 191, 116860. [CrossRef]

6. Zhang, S.; Miao, S.; Li, Y.; Yin, B.; Li, C. Regional integrated energy system dispatch strategy considering advanced adiabatic
compressed air energy storage device. Int. J. Electr. Power Energy Syst. 2021, 125, 106519. [CrossRef]

7. Zhu, H.; Li, H.; Liu, G.; Ge, Y.; Shi, J.; Li, H.; Zhang, N. Energy storage in high renewable penetration power systems: Technologies,
applications, supporting policies and suggestions. CSEE J. Power Energy Syst. 2020, 1–9. [CrossRef]

8. Zheng, W.; Lu, H.; Zhang, M.; Wu, Q.; Hou, Y.; Zhu, J. Distributed energy management of multi-entity integrated electricity and
heat systems: A review of architectures, optimization algorithms, and prospects. IEEE Trans. Smart Grid 2023. [CrossRef]

9. Zhang, Y.; Huang, Z.; Zheng, F.; Zhou, R.; Le, J.; An, X. Cooperative optimization scheduling of the electricity-gas coupled system
considering wind power uncertainty via a decomposition-coordination framework. Energy 2020, 194, 116827. [CrossRef]

10. Sun, G.; Li, Y.; Chen, S.; Wei, Z.; Chen, S.; Zang, H. Dynamic stochastic optimal power flow of wind power and the electric vehicle
integrated power system considering temporal-spatial characteristics. J. Renew. Sustain. Energy 2016, 8, 053309. [CrossRef]

11. Ju, L.; Li, H.; Zhao, J.; Chen, K.; Tan, Q.; Tan, Z. Multi-objective stochastic scheduling optimization model for connecting a virtual
power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response. Energy Convers. Manag. 2016,
128, 160–177. [CrossRef]

12. Li, P.; Yu, D.; Yang, M.; Wang, J. Flexible look-ahead dispatch realized by robust optimization considering CVaR of wind power.
IEEE Trans. Power Syst. 2018, 33, 5330–5340. [CrossRef]

13. Levy, D.; Carmon, Y.; Duchi, J.C.; Sidford, A. Large-scale methods for distributionally robust optimization. Adv. Neural Inf. Process.
Syst. 2020, 33, 8847–8860.

14. Wang, Y.; Li, F.; Yang, J.; Zhou, M.; Song, F.; Zhang, D.; Xue, L.; Zhu, J. Demand response evaluation of RIES based on improved
matter-element extension model. Energy 2020, 212, 118121. [CrossRef]

15. Zhao, D.; Xia, X.; Tao, R. Optimal configuration of electric-gas-thermal multi-energy storage system for regional integrated energy
system. Energies 2019, 12, 2586. [CrossRef]

16. Yang, L.; Han, Q.; Li, X. Economic Dispatch of Multi Region Electric and Heat Energy System Using Two Stage Demand Response
for Better Integration of Wind Power. J. Electr. Eng. Technol. 2022, 17, 2553–2563. [CrossRef]

https://doi.org/10.1016/j.energy.2019.01.036
https://doi.org/10.3390/en12030425
https://doi.org/10.1016/j.energy.2022.125240
https://doi.org/10.1016/j.energy.2023.128534
https://doi.org/10.1016/j.applthermaleng.2021.116860
https://doi.org/10.1016/j.ijepes.2020.106519
https://doi.org/10.17775/CSEEJPES.2020.00090
https://doi.org/10.1109/TSG.2023.3310947
https://doi.org/10.1016/j.energy.2019.116827
https://doi.org/10.1063/1.4966152
https://doi.org/10.1016/j.enconman.2016.09.072
https://doi.org/10.1109/TPWRS.2018.2809431
https://doi.org/10.1016/j.energy.2020.118121
https://doi.org/10.3390/en12132586
https://doi.org/10.1007/s42835-022-01058-7


Energies 2023, 16, 7791 19 of 19

17. Wang, J.; Zong, Y.; You, S.; Træholt, C. A review of Danish integrated multi-energy system flexibility options for high wind power
penetration. Clean Energy 2017, 1, 23–35. [CrossRef]

18. Zhang, Q.; Zhang, L.; Nie, J.; Li, Y. Techno-economic analysis of air source heat pump applied for space heating in northern China.
Appl. Energy 2017, 207, 533–542. [CrossRef]

19. Cai, B.; Li, H.; Hu, Y.; Liu, L.; Huang, J.; Lazzaretto, A.; Zhang, G. Theoretical and experimental study of combined heat and
power (CHP) system integrated with ground source heat pump (GSHP). Appl. Therm. Eng. 2017, 127, 16–27. [CrossRef]

20. Matjanov, E. Gas turbine efficiency enhancement using absorption chiller. Case study for Tashkent CHP. Energy 2020, 192, 116625.
[CrossRef]

21. Fatullah, M.A.; Rahardjo, A.; Husnayain, F. Analysis of discharge rate and ambient temperature effects on lead acid battery
capacity. In Proceedings of the 2019 IEEE International Conference on Innovative Research and Development (ICIRD), Jakarta,
Indonesia, 28–30 June 2019; pp. 1–5.

22. Low, W.Y.; Abdul Aziz, M.J.; Idris, N.R.N. Modelling of lithium-titanate battery with ambient temperature effect for charger
design. IET Power Electron. 2016, 9, 1204–1212. [CrossRef]

23. Ruetschi, P. Aging mechanisms and service life of lead–acid batteries. J. Power Sources 2004, 127, 33–44. [CrossRef]
24. Arslan, M.; Igci, A.A. Thermal performance of a vertical solar hot water storage tank with a mantle heat exchanger depending on

the discharging operation parameters. Sol. Energy 2015, 116, 184–204. [CrossRef]
25. Cabeza, L.F. Advances in thermal energy storage systems: Methods and applications. In Advances in Thermal Energy Storage

Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 37–54.
26. Yang, C.; Meng, C.; Zhou, K. Residential electricity pricing in China: The context of price-based demand response. Renew. Sustain.

Energy Rev. 2018, 81, 2870–2878. [CrossRef]
27. Shewale, A.; Mokhade, A.; Funde, N.; Bokde, N.D. An overview of demand response in smart grid and optimization techniques

for efficient residential appliance scheduling problem. Energies 2020, 13, 4266. [CrossRef]
28. Wang, Y.; Huang, Y.; Wang, Y.; Zeng, M.; Yu, H.; Li, F.; Zhang, F. Optimal scheduling of the RIES considering time-based demand

response programs with energy price. Energy 2018, 164, 773–793. [CrossRef]
29. Yau, Y.; Chew, B. A review on predicted mean vote and adaptive thermal comfort models. Build. Serv. Eng. Res. Technol. 2014, 35,

23–35. [CrossRef]
30. Gao, B.; Pan, Y.; Chen, Z.; Wu, F.; Ren, X.; Hu, M. A spatial conditioned Latin hypercube sampling method for mapping using

ancillary data. Trans. GIS 2016, 20, 735–754. [CrossRef]
31. Stoyanov, S.V.; Rachev, S.T.; Fabozzi, F.J. Sensitivity of portfolio VaR and CVaR to portfolio return characteristics. Ann. Oper. Res.

2013, 205, 169–187. [CrossRef]
32. Rockafellar, R.T.; Uryasev, S. Optimization of conditional value-at-risk. J. Risk 2000, 2, 21–42. [CrossRef]
33. Dong, L.; Li, M.; Hu, J.; Chen, S.; Zhang, T.; Wang, X.; Pu, T. A hierarchical game approach for optimization of regional integrated

energy system clusters considering bounded rationality. CSEE J. Power Energy Syst. 2023, 1–11. [CrossRef]
34. Li, P.; Yang, M.; Wu, Q. Confidence interval based distributionally robust real-time economic dispatch approach considering

wind power accommodation risk. IEEE Trans. Sustain. Energy 2020, 12, 58–69. [CrossRef]
35. Ju, L.; Tan, Q.; Lu, Y.; Tan, Z.; Zhang, Y.; Tan, Q. A CVaR-robust-based multi-objective optimization model and three-stage solution

algorithm for a virtual power plant considering uncertainties and carbon emission allowances. Int. J. Electr. Power Energy Syst.
2019, 107, 628–643. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/ce/zkx002
https://doi.org/10.1016/j.apenergy.2017.06.083
https://doi.org/10.1016/j.applthermaleng.2017.07.154
https://doi.org/10.1016/j.energy.2019.116625
https://doi.org/10.1049/iet-pel.2015.0639
https://doi.org/10.1016/j.jpowsour.2003.09.052
https://doi.org/10.1016/j.solener.2015.03.045
https://doi.org/10.1016/j.rser.2017.06.093
https://doi.org/10.3390/en13164266
https://doi.org/10.1016/j.energy.2018.09.014
https://doi.org/10.1177/0143624412465200
https://doi.org/10.1111/tgis.12176
https://doi.org/10.1007/s10479-012-1142-1
https://doi.org/10.21314/JOR.2000.038
https://doi.org/10.17775/CSEEJPES.2023.02700
https://doi.org/10.1109/TSTE.2020.2978634
https://doi.org/10.1016/j.ijepes.2018.12.012

	Introduction 
	Integrated Energy System Architecture 
	CHP System 
	Ground Source Heat Pump 
	Fine Energy Storage Equipment 
	Battery Storage Model 
	Model of Heat Storage Tank 


	Combined Heat and Power Demand Response Mechanism 
	Electric Load Demand Response 
	Heat Load Demand Response 

	Scenario Selection and CVaR Theory 
	Uncertain Scenario Selection 
	CVaR Overview 

	RIES Coordinated Optimization Model Considering CVaR 
	Objective Function 
	Restrictive Condition 

	Calculus Analysis 
	Parameterization 
	Optimized Operation Results and Analysis 
	Analysis of the Effect of Weighting Coefficients on the Results of RIES Scheduling 

	Conclusions 
	References

