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Abstract: Horizontal fractures are one of the factors that significantly affect the ultimate productivity
of shale oil reservoirs. However, the prediction of horizontal fractures by using seismic methods
remains a challenge, which is due to the complex elastic and seismic responses that are associated with
horizontal fractures. A framework that predicts horizontal fractures by seismic rock physical methods
has been developed in the present study. A shale model is then proposed to quantify the shale
elastic responses that are associated with the properties of the horizontal fractures. The modeling
results that are based on the logging data validated the applicability of the proposed model, and
the predicted fracture properties could be used to evaluate the development of horizontal fractures.
According to the framework of the Poisson impedance, a horizontal fracture indicator is suggested
to represent the logging-derived fracture density in terms of a combination of elastic properties.
By using seismic-inverted elastic properties, the obtained indicator enabled an estimation of zones
with the potential development of horizontal fractures. The established indicator showed a good
correlation with the fracture density and could be used as an effective indicator in the prediction of
horizontal fractures in shale oil reservoirs. Furthermore, seismic data applications show a consistency
between the development of horizontal fractures and the production status of the boreholes. This
result highlights the importance of horizontal fractures for the ultimate productivity and emphasizes
the applicability of the proposed methods.

Keywords: shale oil reservoir; horizontal fractures; fracture density; rock physics model; seismic
interpretation

1. Introduction

As groundbreaking unconventional resources, the shale reservoirs are providing an
ever-increasing amount of oil and gas around the world, and better understanding of shale
microstructures will provide improved characterization of various shale reservoirs [1–4].
Successful predictions of sweet spots in shale reservoirs should consider areas that include
an abundance of organic enrichments. These enrichments are indicated by various factors,
such as the total organic carbon (TOC), the high brittleness of the shale rock that facilitates
hydraulic fracturing, and the development of natural fractures.

Seismic methods have contributed to the characterization of such factors in shale reservoirs.
By using logging data and seismic-inverted elastic properties, the TOC in the shale has been
evaluated by its elastic properties. A low density or an elastic impedance usually corresponds
to a high TOC [5–9]. Also, the brittleness of the shale rock has been estimated by its mechanical
properties, such as Young’s modulus and Poisson’s ratio [10–13]. Other practical brittleness
factors have also been suggested, which were based on the combination of mechanical
properties and the Lamé coefficients derived from elastic properties [14,15]. In addition,
vertical fractures that were associated with tectonic activities could be predicted by using
various azimuthal seismic inversion methods based on the anisotropic shale model [16–23].
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In particular, shale exhibits an intrinsic anisotropy that is represented as vertical
transverse isotropy (VTI). It results from the anisotropy of clay particles, laminated mi-
crostructural fabrics, and layered distributions of minerals and organic matter [24–30].
Moreover, the horizontal fractures that are developed in the shale rock can further enhance
the degree of VTI anisotropy of the shale. Early experimental investigations have shown
that the opening and closing of the aligned fractures in the shale at different stresses can
lead to variations in the anisotropy [31,32]. Recent experiments and core and outcrop
observations have indicated that the presence of horizontal fractures in the shale can cause
substantial anisotropy variations with loading stresses [33–35]. Geological studies have
also confirmed the importance of horizontal fractures for sweet spot predictions in shale
reservoirs [36–39]. Accordingly, some efforts have been made to predict the VTI anisotropy
of the shale based on rock physical modeling using logging data [40]. Furthermore, seismic
dispersion attributes were derived by using the frequency-dependent pre-stack seismic in-
version method in the prediction of fluid-saturated bedding-parallel fractures [41]. Despite
such efforts, it remains a challenge to predict horizontal fractures in the shale, which is due
to the complex elastic and seismic responses of the bedding-aligned fractures.

Rock physical modeling can unravel the elastic characteristics of the shale, which are
associated with various petrophysical properties. So far, numerous modeling methods have
been developed to quantify the elastic responses and the corresponding seismic signatures
of organic matter in the shale [14,24,27–29,32,42–45]. In addition, the shale anisotropy that
is related to clay lamination and microstructural fabrics has been investigated by using
modeling methods [43,46,47]. The shale brittleness has also been incorporated in the rock
physical modeling for the prediction of engineering sweet spots in shale reservoirs [9,48].
However, shale models that quantify the effect of horizontal fractures on the shale elastic
properties are rare. Further investigations are, therefore, needed to develop practical
methods with which it is possible to predict horizontal fractures from logging data, in
addition to seismic data that are based on the shale model.

In the present study, rock physical modeling and seismic methods are developed
for the prediction of horizontal fractures in shale oil reservoirs. At first, a shale model
is proposed for the description of elastic responses associated with horizontal fracture
properties. As the next step, various horizontal fracture properties are estimated by using
logging data and the established shale model. Based on the framework of the Poisson
impedance, a horizontal fracture indicator is, thereafter, proposed to represent the logging-
derived fracture density in terms of elastic properties. The obtained indicator is then
applied to seismic data from a shale oil reservoir for a quantitative interpretation of the
horizontal fractures from seismic-inverted elastic properties. Finally, the calculated results
are compared with TOC and validated with the production status of the boreholes in the
studied areas.

2. Methods
2.1. Rock Physics Model of Shale Oil Reservoirs

As shown in Figure 1, a framework for the modeling of shales has been proposed for
the quantification of the effect of horizontal fractures on the shale elastic properties. At first,
the theory of Hashin-Shtrikman (HS) bounds [49] was used to calculate equivalent elastic
moduli of the shale solid matrix. According to the core analyses, the shale matrix is mainly
composed of clay, quartz, calcite, and kerogen. In the modeling, the organic kerogen mate-
rial was treated as a part of the solid matrix. Furthermore, the elastic moduli of the porous
shale matrix were obtained by using the self-consistent approximation (SCA) theory [50],
which considered the effect of fluid-filled matrix pores. Finally, the Hudson model [51] was
used to add fluid-filled horizontal fractures to the porous matrix to obtain elastic properties
of the shale rock. Specifically, in the proposed modeling method, the total porosity (φ) was
considered as pore spaces that consisted of matrix pores (φm) and horizontal fractures (φf)
(Figure 2). In addition, fluid mixtures of water and oil were assumed to be homogeneously
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distributed in the matrix pores and horizontal fractures [52]. The rock physical theories
that were used in the modeling are described in the following sections.
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Figure 1. Flowchart of rock physical modeling for shale oil reservoirs.
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Figure 2. Schematics of the pore spaces in the shale matrix, which consist of matrix pores and
horizontal fractures.

2.2. Hashin-Shtrikman Bounds

Hashin and Shtrikman (1963) [49] proposed a method to predict the equivalent elastic
moduli of a mixture of mineral particles (Equation (1)):

KHS± = K1 +
f2

(K2−K1)
−1+ f1(K1+

4
3 µ1)

−1

µHS± = µ1 +
f2

(µ2−µ1)
−1+

2 f1(K1+2µ1)

5µ1(K1+
4
3 µ1)

(1)

where KHS± and µHS± represent the narrowest upper and lower limits of bulk and shear
modulus of the mixture consisting of two or more mineral phases, respectively. Ki and
µi represent the bulk and shear moduli, respectively, of each component. Also, f i is the
volume fraction component.

When the mixture has more than two types of mineral particles, the equivalent elastic
moduli could be expressed in a general form (Equation (2)):

KHS+ = Λ(µmax), KHS− = Λ(µmin)
µHS+ = Γ[ζ(Kmax, µmax)], µHS− = Γ[ζ(Kmin, µmin)]

(2)

where

Λ(z) =
〈

1
K(r)+ 4

3 z

〉
− 4

3 z

Γ(z) =
〈

1
µ(r)+z

〉−1
− z

ζ(K, µ) = µ
6 (

9K+8µ
K+2µ )

(3)
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where K(r) and µ(r) represent the bulk and shear modulus corresponding to the r’th
component of the solid matrix; z represents the corresponding argument in Equation (2).
The <·> bracket denotes the volumetric average of each component.

2.3. Self-Consistent Approximation Theory

Berryman (1980) [50] presented the SCA theory for an equivalent medium. A method
was presented to calculate the elastic moduli of a model composed of multiphase minerals
and pore spaces. The corresponding equations were represented in Equation (4):

N
∑

i=1
xi(Ki − K∗

SC)P∗i = 0

N
∑

i=1
xi(µi − µ∗

SC)Q
∗i = 0

(4)

where K∗
SC and µ∗

SC are the equivalent bulk and shear modulus of the entire rock, respec-
tively. The subscript i represents each mineral phase or pore space, and xi represents the
volume fraction of each phase. Also, Ki and µi represent the bulk modulus and shear
modulus, respectively, for each phase. The superscript *i of P and Q is the geometric
factor for the inclusion material i. Furthermore, the coefficients P*i and Q*i represent the
geometries of the inclusions.

2.4. Hudson Model

Hudson (1981) [51] established a penny-shaped microfracture model for the calculations
of stiffness coefficients for a rock embedded with parallel microfractures (Equation (5)):

cij = c0
ij + c1

ij (5)

where c0
ij represents the elastic stiffness matrix of the host medium, and c1

ij represents the
first-order disturbances by the microfractures. The corresponding equations were presented
in Equation (6):

c1
11 = − λ2

µ ε f U3

c1
13 = − λ(λ+2µ)

µ ε f U3

c1
33 = − λ(λ+2µ)2

µ ε f U3

c1
44 = −µε f U1

c1
66 = 0

(6)

where λ and µ represent the Lamé constants of the host medium. Also, U1 and U3 depend
on the states of the microfractures, and εf is the fracture density (Equation (7)):

ε f =
3φ f

4πα
(7)

where φf and α represent the fracture porosity and the aspect ratio, respectively.
The definitions of the fluid-filled fractures were presented in Equation (8):

U3 = 4(λ+2µ)
3(λ+µ)

1
1+κ

U1 = 16(λ+2µ)
3(3λ+4µ)

(8)

where κ is the parameter that is used to describe the fracture characteristics (Equation (9)):

κ =
K f (λ + 2µ)

παµ(λ + µ)
(9)

where Kf represents the fluid bulk modulus.
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2.5. Domenico Equation for the Fluid Mixture

Domenico (1977) [52] proposed a method for calculations of the bulk moduli of fluid
mixtures. In the modeling of the shale oil reservoirs in our paper, the fluids were assumed to
be a mixture of oil and water, homogeneously distributed in the spaces of matrix pores and
horizontal fractures. The modulus of the mixed fluid was estimated by using Equation (10):

K f = SwKw + SoKo (10)

where Kw and Ko represent the moduli of water and oil, respectively, and the corresponding
saturations of water and oil are represented by Sw and So, respectively.

Also, the density of the mixed fluid was calculated by using Equation (11):

ρ f = Swρw + Soρo (11)

where ρw and ρo represent water and oil density, respectively.

2.6. Prediction of the Horizontal Fracture Properties by Using the Shale Model and Logging Data

The proposed model for the shale oil reservoir (Figure 1) was used to develop a
method for the estimation of horizontal fractures based on a model-based framework.
By using well-log data, the shale model acted as a modeling tool in the prediction of the
horizontal fracture density, εf (Figure 2). Specifically, the volumetric fractions and moduli
of the minerals, kerogen, and fluids were as input data for modeling P-wave and S-wave
velocities (i.e., VP-calculated and VS-calculated) for a set of preset values of horizontal fracture
porosities (φf) and aspect ratios (α). An objective function (Equation (12)) was, thereafter,
constructed to find the optimized values of (φf, α) by minimizing the difference between
VP-calculated and VS-calculated and the corresponding measured values (i.e., VP-measured and
VS-measured) in the borehole:

f
(

φ f , α
)
= min

(∣∣∣VP−calculated

(
φ f , α

)
− VP−measured

∣∣∣2 + ∣∣∣VS−calculated

(
φ f , α

)
− VS−measured

∣∣∣2) (12)

Based on Equation (12), a simple grid-searching method has in the present study been
used to find the optimized values of φf and α. According to Equation (7), the estimated φf
and α values were finally used to compute the fracture density, εf.

2.7. Estimation of the Horizontal Fracture (HF) Indicator from Elastic Properties

For the characterization of horizontal fractures by using seismic data, it is essential to
find an applicable seismic attribute that correlates with the fracture density, εf, estimated
by using the method presented in Figure 3. Based on the framework of the Poisson
impedance [53–55], a horizontal fracture (HF) indicator was then proposed, as represented
by seismic attributes in Equation (13):

HF(θ) = IP cos θ − VP/VS sin θ (13)

where θ represents the rotation angle that transforms the P-wave impedance (IP) and
P-to-S-wave velocity ratio (VP/VS) to HF.

Then, the maximum correlation between HF(θ) (as represented by Equation (13)) and
εf (as predicted from well-log data) was determined by optimizing the θmax value. By
using the seismic-derived elastic properties, the obtained HF(θmax) was, thereafter, used to
estimate the horizontal fractures in the shale oil reservoirs.



Energies 2023, 16, 7514 6 of 19

Energies 2023, 16, x FOR PEER REVIEW 6 of 19 
 

 

estimated by using the method presented in Figure 3. Based on the framework of the Pois-

son impedance [53–55], a horizontal fracture (HF) indicator was then proposed, as repre-

sented by seismic attributes in Equation (13): 

( )HF cos / sinP P SI V V  = −  (13) 

where θ represents the rotation angle that transforms the P-wave impedance (IP) and P-

to-S-wave velocity ratio (VP/VS) to HF. 

 

Figure 3. Workflow for the prediction of horizontal fractures using the shale model and well-log 

data. 

Then, the maximum correlation between HF(θ) (as represented by Equation (13)) and 

εf (as predicted from well-log data) was determined by optimizing the θmax value. By using 

the seismic-derived elastic properties, the obtained HF(θmax) was, thereafter, used to esti-

mate the horizontal fractures in the shale oil reservoirs. 

3. Results 

3.1. Studied Area and Datasets 

As can be seen in Figure 4a, the Nanxiang Basin is located in the middle south of 

China. Biyang Sag is a secondary structural unit of the Nanxiang Basin, which is located 

northeast of the Nanxiang Basin (Figure 4b). In the present study, the studied area of the 

shale oil reservoirs is located in the lower middle of the Biyang Sag, as denoted by the red 

box in Figure 4b. Also, Figure 5 illustrates the stratigraphic units and sedimentary facies 

in the studied area. For the studied area, the Taicangfang-Yuhuangding, Hetaoyuan, and 

Liaozhuang formations have been developed in the Paleogene, while the Shangsi for-

mation has been developed in the Neogene in the studied area. The deposition period of 

the Hetaoyuan formation in the Biyang Sag overlaps with the peak period of the lacustrine 

basin development, and the sedimentary facies are characterized by shallow to deep 

Figure 3. Workflow for the prediction of horizontal fractures using the shale model and well-log data.

3. Results
3.1. Studied Area and Datasets

As can be seen in Figure 4a, the Nanxiang Basin is located in the middle south of
China. Biyang Sag is a secondary structural unit of the Nanxiang Basin, which is located
northeast of the Nanxiang Basin (Figure 4b). In the present study, the studied area of the
shale oil reservoirs is located in the lower middle of the Biyang Sag, as denoted by the red
box in Figure 4b. Also, Figure 5 illustrates the stratigraphic units and sedimentary facies
in the studied area. For the studied area, the Taicangfang-Yuhuangding, Hetaoyuan, and
Liaozhuang formations have been developed in the Paleogene, while the Shangsi formation
has been developed in the Neogene in the studied area. The deposition period of the
Hetaoyuan formation in the Biyang Sag overlaps with the peak period of the lacustrine basin
development, and the sedimentary facies are characterized by shallow to deep lacustrine
facies. The shale is mainly developed in the second (Eh2) and third (Eh3) members of the
Hetaoyuan formation, and the Eh3 is the main oil-bearing layer in the Biyang Sag. There are
six sets of organic material-rich intervals (ORI), as indicated by 1-6 from top to bottom, in
the Eh3. Out of these, the ORI 5 is a great organic enrichment layer with a large cumulative
thickness and a high total organic content. It shows a good shale oil resource potential as
the main exploration target reservoir [56,57].

The seismic data were obtained by a three-dimensional seismic acquisition in the
studied area. As can be seen in Figure 6, the map of the seismic two-way time for the target
shale oil reservoir showed that the geological structure of the target layer was relatively
smooth. The positions of the oil wells (A, B, and D) and the dry well (C), as well as the
seismic lines across these wells, are illustrated in Figure 6. Among these, wells A, B, and
C are vertical wellbores, while well D has a range of horizontal trajectories. Furthermore,
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Figure 7 shows the seismic profile where the horizons of the target shale oil layer are
indicated. The bottom line in Figure 7 illustrates the bottom limit selected for seismic
inversion of elastic parameters and the estimation of HF accordingly. For the studied area,
the three-dimensional data volumes of the elastic properties were obtained by a pre-stack
seismic inversion.
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The measured logging curves for well A are displayed in Figure 8, where the interval
of the target shale is especially indicated. The target shale layer had a medium porosity (φ)
and relatively high oil saturation (So). According to the geological analyses of the studied
region, the horizontal fractures were supposed to contribute to the reservoir permeability
and affect the ultimate production. As shown in Figure 9, the formation micro-scanner
image (FMI) for well A indicated the presence of horizontal fractures in the target shale layer
(as indicated by green and blue lines). It is, therefore, important to estimate the horizontal
fractures by using shale modeling and logging data and to predict the horizontal fracture
distributions by using seismic-inverted elastic properties. Accordingly, rock physical
modeling has been performed based on the logging data from well A. The horizontal
fractures were then estimated, followed by the establishment of a correlation between the
horizontal fractures and elastic properties.
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3.2. Prediction of the Horizontal Fracture Density by Using the Shale Model and Logging Data

Based on the shale model (see Figure 2) and the modeling framework (see Figure 3), the
horizontal fracture porosity, φf, and the corresponding aspect ratio, α, have been calculated
using logging data illustrated in Figure 8, with the obtained results presented in Figure 10.
Table 1 presents the elastic properties of the components that were used in the modeling.
The logarithmic value of the aspect ratio (log(α)) of the horizontal fracture was then used
for simplicity In Figure 10, the modeled VP and VS according to Equations (14) and (15):

VP =

√
c33

ρ
, Vs =

√
c44

ρ
(14)

ρ = (1 − ϕ)

n

∑
i=1

fiρi + ϕρ f (15)

where ρ represents the rock density, ϕ is the total porosity, and ρf is calculated using
Equation (11). f 1 and ρi are the volume fraction and density of each component, respec-
tively. Elastic stiffnesses c33 and c44 are calculated using the Hudson model illustrated in
Section 2.4.
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Figure 10. Logging curves and rock physical modeling results for well A, including curves of the
gamma-ray (GR) value, P-wave velocity (VP), S-wave velocity (VS), porosity (φ), logarithm value of
the horizontal fracture aspect ratio (log(α)), fracture density (εf), relative error of VP (error_VP), and
relative error of VS (error_VS).

Table 1. Properties of the components that have been used for the modeling [58].

Clay Quartz Calcite Kerogen Oil Water

VP (km/s) 3.6 6.05 6.84 2.6 0.9 1.47
VS (km/s) 1.85 4.36 3.72 1.5 0 0
ρ (g/cm3) 2.58 2.65 2.75 1.35 0.7 1.04

As can be seen in Figure 10, the modeled VP and VS (red curves) were obtained using
the fitting parameters φf and α. They clearly agree with the corresponding measured values
(black curves), thereby validating the applicability of the modeling method. The predicted
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φf value shows how much pore space was occupied by horizontal fractures in the total
porosity. In addition, the estimated α value shows the geometry of the horizontal fractures.
According to Equation (7), it could be used to obtain the fracture density (εf), thereby
providing a comprehensive evaluation of the horizontal fracture properties.

3.3. Obtaining the HF Indicator for the Horizontal Fracture Estimation of Shale Oil Reservoirs

Based on the results from the rock physical modeling (Figure 10), the HF indicator has
been further evaluated according to Equation (13) for the evaluation of horizontal fractures
in the shale oil reservoirs. As color-coded by εf in Figure 11, the cross-plots of IP and the
VP/VS ratio have been obtained by using the results presented in Figure 10. The separable
distributions of data clusters in the cross-plots showed the possibility for a determination
of εf values from the elastic properties. Furthermore, the optimal rotation angle (θmax) in
Equation (13) has been determined by using the framework of the Poisson impedance.
As illustrated in Figure 12, a maximum correlation coefficient was found between εf and
HF represented by elastic properties (IP and VP/VS) at θmax = 83◦. Accordingly, the
obtained HF indicator shows a good correlation with εf (Figure 13). Higher values of
HF corresponded to an increase in εf, implying that the obtained HF acts as an effective
indicator in the evaluation of the development of horizontal fractures in the shale. However,
it must be stressed that since HF was obtained from the combination of IP and VP/VS, the
values of HF in Figure 13 had no actual physical meaning.
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3.4. Estimations of HF and TOC by Using Seismic Data

The obtained HF was further used for seismic data for a quantitative interpretation of
the horizontal fractures. Figures 14 and 15 illustrate the cross-well seismic profiles of IP
and VP/VS, respectively. The HF factor, calculated from Figures 14 and 15, was presented
in Figure 16. To avoid any confusion, it should be noted that the HF factor in Figure 16 has
been labeled using high and low magnitudes. The reason is that the HF value had no actual
physical meaning, which has also been mentioned above in association with Figure 13.
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As was discussed above, the obtained HF factor could be used as an effective indicator
in the prediction of the development of horizontal fractures in shale oil reservoirs. The
results presented in Figure 16 indicate that the target shale oil layer showed relatively large
HF anomalies in the oil-producing wells A, B, and D, while exhibiting no anomalies in the
dry well C. This consistency showed the importance of horizontal fractures for the ultimate
productivity of shale oil reservoirs.

To further evaluate the importance of horizontal fractures for the ultimate oil pro-
ductivity, the TOC of the shale oil reservoirs has been calculated based on the regression
analysis of TOC versus density (ρ) by using logging data from well A (Figure 17). Subse-
quently, the TOC section (Figure 18) was derived from the seismic-inverted ρ based on the
obtained linear regression presented in Figure 17. As can be seen in Figure 18, the target
shale oil reservoir shows high TOC values for all oil wells (A, B, and D), and a relatively
high TOC value for the dry well C. By comparing Figures 16 and 18, the results indicate
that the shale with the high TOC value, but a low horizontal fracture density (i.e., in well
C), produces no oil. This shows that horizontal fractures are essential for the prediction of
high-quality shale oil reservoirs.
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Finally, the IP and VP/VS maps for the target shale oil reservoir are displayed in
Figures 19 and 20, respectively. Accordingly, the computed map of HF (Figure 21) is of great
help for the comprehensive characterization of the shale oil reservoirs with simultaneous
consideration of the TOC (Figure 22) derived from the seismic-inverted ρ.
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4. Discussion

Numerous shale models have been proposed that relate the microstructures with the
elastic properties of shale rocks. To achieve the objectives in the present study, appropriate
modeling methods have been proposed to successfully predict horizontal fractures in the
shales (Figures 1 and 2). The main purpose of the proposed shale model was to quantify
the elastic properties of the shale that has a total pore space occupied by matrix pores
and horizontal fractures. In the modeling based on the shale model and logging data,
horizontal fracture properties, φf and α, were estimated by using a rock physical inversion
scheme (Figure 3). The obtained results were further used to derive the εf values for a
comprehensive representation of the horizontal fractures (Figure 10). The modeling results
showed that the modeled VP and VS fitted quite well with the measured VP and VS curves,
which validated the applicability of the proposed shale model and the rationality of the
calculated horizontal fracture properties (φf, α, and εf).

The separable distribution of data clusters in the cross-plot of IP and the VP/VS ratio
showed that it is possible to determine εf using elastic properties (Figure 11). Accordingly,
by using the framework of the Poisson impedance, the HF indicator was further proposed
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to estimate εf in terms of elastic properties (Equation (13)). With the calculated optimal
rotation angle, the obtained HF factor showed a good correlation with εf. This result
highlighted the effectiveness of HF in the evaluation of horizontal fractures in shale oil
reservoirs (Figures 12 and 13).

The obtained HF factor was further applied to seismic data for a quantitative inter-
pretation of the horizontal fractures. The results showed that the shale oil reservoir had
relatively high HF anomalies in the oil-producing wells A, B, and D, while exhibiting no
anomalies in the dry well C (Figure 16). This regularity emphasized the importance of
horizontal fractures for the ultimate productivity of the shale oil reservoirs.

The TOC section was further estimated by performing a regression analysis of TOC
versus ρ. The effect of horizontal fractures on the ultimate oil productivity was thereby
further evaluated. Also, a comparison of HF and TOC (Figures 16 and 18, respectively)
indicated that the shale with a high TOC value, but with a low horizontal fracture density,
produced no oil. The results indicated that the horizontal fractures were important in
the prediction of high-quality shale oil reservoirs. Nevertheless, other factors (including
the TOC, brittleness of the reservoir, and hydraulic fracturing performance) should be
considered for an effective evaluation of the shale oil reservoirs.

5. Conclusions

A framework that predicts horizontal fractures in shale oil reservoirs has been devel-
oped in the present study. A shale model was used as a rock physical modeling tool with
logging data as input. An effective indicator for the evaluation of horizontal fractures was
established by using the modeling results. The proposed indicator was then applied to
seismic data for a quantitative interpretation of horizontal fractures in shale oil reservoirs
by using seismic-inverted elastic properties. The main conclusions from this investigation
were as follows:

(1) The proposed shale model was capable of quantifying the elastic responses of shale
oil reservoirs that were associated with horizontal fracture properties. This result was
validated by modeling results based on logging data. In the modeling, the calculated
VP and VS showed a good agreement with the corresponding measured values. In
addition, the predicted fracture properties, φf and α, were used to obtain the fracture
density, εf, for further evaluation of horizontal fractures.

(2) According to the framework of the Poisson impedance, the HF indicator was proposed
to represent εf in terms of a combination of elastic properties (IP and VP/VS). This
enabled a quantitative interpretation of the development of horizontal fractions by
using seismic-inverted elastic properties. Also, the established HF indicator showed a
good correlation with εf. The increasing HF indicated an increase in εf, which showed
that the proposed HF factor was an effective indicator in the prediction of horizontal
fractures in shale oil reservoirs.

(3) The seismic data applications showed that the target shale oil layer had high HF
anomalies in the oil-producing wells, while exhibiting no anomalous response in the
dry well. The consistency between the development of horizontal fractures and the
production status of the boreholes highlighted the importance of horizontal fractures
for the ultimate productivity of shale oil reservoirs. This result indicated that the
horizontal fractures were essential in the prediction of high-quality shale oil reservoirs.

In future studies, the advancement of experiments and modeling methods can provide
further insights into the effects of horizontal fractures on the seismic signatures of shale oil
reservoirs. Based on these developments, other effective shale models, with corresponding
parameters, can be developed for improved characterization of horizontal fractures in shale
oil reservoirs.
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