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Abstract: Digital twins have provided valuable information for making effective decisions to ensure
high efficiency in the manufacturing process using virtual models. Consequently, AC electric motors
play a pivotal role in this framework, commonly employed as the primary electric actuators within
Industry 4.0. In addition, classification systems could be implemented to identify normal and abnor-
mal operating conditions in electric machines. Moreover, the execution of such classification systems
in low-cost digital embedded systems is crucial, enabling continuous monitoring of AC electric
machines. Self-Organized Maps (SOMs) offer a promising solution for implementing classification
systems in low-cost embedded systems due to their ability to reduce system dimensionality and
visually represent the model’s features, so local digital systems can be used as classification systems.
Therefore, this paper aims to investigate the utilization of SOMs for classifying operating conditions
in AC electric machines. Furthermore, when integrated into an embedded system, SOMs detect
abnormal conditions in AC electric machines. A trained SOM is deployed on a C2000 microcontroller
to exemplify the proposed approach. It should be noted that the proposed structure can be adapted
for implementation with different systems in the context of Industry 4.0.

Keywords: classification systems; Self-Organized Maps; virtual model; electric machines; microcontroller

1. Introduction

Industry 4.0 represents a significant advancement in manufacturing systems, incor-
porating technologies such as IoT, machine learning, digital twins, and cyber-physical
systems [1,2]. This paradigm establishes a robust connection between the physical and
virtual realms to enhance predictive maintenance [1], thus enabling the transition from
reactive to proactive maintenance strategies. Consequently, numerous proposals have
emerged focusing on developing wireless sensors [2] to facilitate the implementation of this
approach. AC electric motors, particularly induction motors, have gained prominence in
Industry 4.0 [3,4], finding extensive applications across different manufacturing domains.
Notably, these motors exhibit lower maintenance requirements than DC motors and are
generally more cost-effective [5,6]. Comprising a rotor and a stator, these motors operate
without an electrical connection between the main components. The stator, which receives
the electric power through its terminals, typically consists of a three-phase winding that
generates a rotating magnetic field [3]. Considering the critical role of electric actuators
in Industry 4.0, continuous monitoring of AC motors during their operation becomes
imperative. Sometimes, these AC motors are called the horsepower of the industry. Thus,
implementing classification systems is essential to effectively detect and monitor AC mo-
tors’ normal and abnormal operating conditions [7]. Table 1 shows a selection of research
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papers on fault detection, illustrating that fault detection has been a subject of significant
interest and study within both academic and industrial sectors.

Table 1. Papers regarding fault detection in electric machines.

The Principal Objective of This
Research Advantages Drawbacks

In this study, the reliability and availability of
induction motor drives are scrutinized by
monitoring the stator current, focusing on
pinpointing mechanical faults, including
rotor eccentricity, bearing faults, and shaft
misalignment. The research probes into the
economic feasibility and the uncomplicated
nature of implementing current sensors and
sheds light on diverse aspects of mechanical
fault detection. This encompasses a
theoretical examination, a detailed
investigation into signal processing
methodologies, and a series of illustrative
application examples [8].

Economically Efficient: The monitoring of stator current is
economically advantageous, leveraging current sensors that
are comparatively low-priced.
Simplicity in Execution: Incorporating current sensors is
straightforward, and most drives are already equipped with
such sensors to serve protective and control functions.
Minimal Sensor Requirement: Monitoring based on current
necessitates fewer sensors than vibration monitoring, which
mandates the placement of multiple transducers on diverse
system components.
Surveillance: The motor, as an intermediary transducer,
becomes a convergence point for various fault impacts,
facilitating an exhaustive system observation.

Complex Examination: The repercussions of
mechanical breakdowns on the motor stator
current present a complex scenario for analysis,
rendering the monitoring based on stator current
more challenging than vibration monitoring.
Challenges in Fault Diagnosis and Differentiation:
Given that many fault effects amalgamate within
the motor, the fault diagnosis and differentiation
processes become increasingly intricate and may
even reach a point of impossibility in certain
instances.

This article meticulously explores the realm
of fault-tolerant motor drives, specifically
emphasizing brushless permanent magnet
AC drives. It integrates redundancy by
featuring a dual motor drive system affixed
to a conventional shaft and methodically
classifies conceivable electrical faults. The
research scrutinizes the identification of
switch and winding short circuit faults and
presents experimental revelations, the
repercussions of switch faults on phase
currents, and output torque. Furthermore, it
advances corrective methodologies to
mitigate the identified faults [9].

Fault Resilience: The manuscript delves into the application
of distinctive motor designs and inverter topologies to render
brushless permanent magnet AC motor drives resilient to
faults, enabling sustained operation amidst the occurrence of
one or multiple faults.
Enhanced Reliability through Redundancy: The study
introduces redundancy by employing a dual motor drive
system on a unified shaft, thereby instilling an augmented
layer of reliability essential for safety-critical applications.
Methodical Categorization: The manuscript furnishes a
meticulous classification of prospective electrical faults,
facilitating an exhaustive comprehension and examination of
faults inherent in motor drives.
Strategic Rectification: The study advances strategic solutions
for switch faults, offering means to counterbalance the torque
loss attributed to such faults.

Expense Implications: The prevalent methods for
detecting inverter faults typically employ an array
of voltage sensors, potentially escalating the
overall expenditure associated with the drive.
Constrained Redundancy in Singular Motor
Drive: When reliant on a singular motor, a
fault-tolerant drive system fails to provide any
form of redundancy in scenarios where the entire
single-motor drive ceases to function.
Consequently, operating with inverter faults
within such a singular motor drive yields
substantial fluctuations in output torque.

This research delves into using data procured
from sensorless flux vector-controlled drives
for condition monitoring and fault detection,
explicitly focusing on mechanical
misalignments. It employs polynomial
models to delineate the non-linear
interrelations of variables obtainable from
these drives and to construct residuals for
immediate fault detection and performance
assessments. The article accurately examines
transient and steady-state system behaviors
to determine the optimum efficacy in
detection [10].

Economical and Proactive Fault Identification: The
manuscript delves into the exploration of data derived from
sensorless flux vector-controlled drives, which are integral for
machine control, for the purpose of condition monitoring.
This approach presents a more economical and pre-emptive
fault detection methodology than traditional schemes.
Optimal Detection Efficacy: The manuscript thoroughly
investigates transient and steady-state system behaviors to
achieve optimal detection performance, concentrating on
torque-related variables that exhibit alterations due to
mechanical misalignments.
Leveraging Commercial VSD Data: The research capitalizes
on data from a commercial Variable Speed Drive (VSD) to
detect mechanical faults in a multi-stage gearbox transmission
system, employing a model-based detection methodology.
Superior Detection Proficiency: The torque feedback signal
demonstrates the highest detection proficiency for mechanical
misalignments during steady and transient operations.

Constraints of Traditional Approaches: The study
underscores the limitations inherent in
conventional condition monitoring methodologies
like vibration, acoustic, ultrasonic, and thermal
techniques. These limitations encompass high
financial implications, diminished reliability, and
suboptimal accuracy.
Implementation Complexity: The realization of
the system investigated in this research entails a
multifaceted configuration, incorporating a
Programmable Logic Controller (PLC), an AC
Variable Speed Drive (VSD) operating under
sensorless flux vector control mode, a DC Variable
Speed Drive (VSD), and dual data
acquisition systems.

This article presents a methodology for fault
diagnosis in induction motors (IM) utilizing
Artificial Neural Network (ANN),
functioning under analogous conditions
spanning various speeds and loads. It
examines ten unique IM fault conditions,
including mechanical faults like rotor
misalignment and multiple electrical faults.
The research utilizes unprocessed
time-domain vibration and current data as
inputs for the ANN model to execute fault
diagnosis. The methodologies developed
demonstrate resilience and robustness across
diverse operating conditions of the IM [11].

Holistic Fault Diagnosis: The manuscript delineates a
methodology for fault diagnosis in induction motors (IM)
based on Artificial Neural Network (ANN), encompassing ten
distinct IM fault conditions. This includes five mechanical
and four electrical faults, offering a holistic approach to fault
diagnosis in IM.
Optimal Identification: The suggested approach utilizes
current and vibration signals, universally recognized as the
most efficient for identifying mechanical and electrical faults
in induction motors (IM).
Robust Diagnostics: The developed methods for fault
diagnosis have demonstrated robustness and flexibility under
different operating conditions, including varying speeds and
loads, of the IM.
Unobtrusive Condition Surveillance: The paper investigates
numerous non-intrusive techniques for condition monitoring,
employing voltage, current, acoustic, angular velocity, and
vibration signals for detailed failure detection.

Complex ANN Configuration: The precision of
the proposed methodology is contingent upon the
structure of the Artificial Neural Network (ANN),
and an augmentation in the number of neurons
did not enhance the overall efficacy, signifying a
degree of complexity in optimizing the ANN
configuration for adept fault detection.
Isolated Fault Examination: Numerous extant
articles and studies have been delineated,
focusing on diagnosing induction motor faults
utilizing vibration and current signals, albeit
analyzing a singular fault in isolation, thereby
constraining the breadth of fault examination.
Impact of Diverse Variables: Various elements,
including load condition, asymmetry in power
supply, and saturation effects, can influence the
pace and precision of failure detection,
introducing potential complexities into the
diagnostic process.

Machine learning has been used in several classification systems. However, machine
learning methodologies, such as deep learning or recurrent neural networks, consume high
computational resources [12,13]. Machine learning methodologies, both supervised and
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unsupervised, can be utilized to design such systems [14]. Yet, the dimensionality of the
system and the training process could be improved in their practical implementation [15].
In this regard, Self-Organizing Maps (SOMs) have emerged as a viable alternative due
to their ability to reduce system dimensionality by creating Self-Organizing Maps [16,17].
Consequently, Self-Organizing Maps (SOMs) present themselves as a compelling alter-
native, considering the information previously explained. The intrinsic complexity in
refining the Artificial Neural Network (ANN) structure for fault detection accentuates
the imperative for a methodology endowed with the capability to organize and delineate
complex data intuitively. SOMs, acclaimed for their adeptness in dimensionality reduction
and generating spatially organized visualizations, potentially proffer a more intuitive and
streamlined data representation and comprehension modality.

Given the prevalent limitation of single fault analysis in existing studies, the ability
of SOMs to cluster analogous data becomes pivotal, enabling the concurrent analysis of
diverse faults. This capability broadens the analytical scope and fosters a more holistic
comprehension of fault conditions and interdependencies. The influence of many variables
on failure detection accentuates the need for a versatile and adaptive methodology [15,16].
SOMs, with their inherent learning and adaptative capabilities, can provide precise and
reliable fault detection amidst varying conditions, mitigating the complexities introduced
by disparate influencing factors. Furthermore, integrating SOMs with the non-invasive con-
dition monitoring techniques discussed, such as those utilizing voltage, current, acoustic,
angular velocity, and vibration signals, can significantly enhance the efficacy and accuracy
of failure detection by effectively processing and organizing the derived data. In addition,
the requirement for robust and comprehensive diagnostic methods that can operate under
diverse conditions aligns well with the robustness and versatile analytical capabilities
of SOMs [17]. Their resilience in handling noise and variations in data can significantly
contribute to formulating robust and comprehensive diagnostic methodologies.

Thus, SOMs have been proposed as a classification system for detecting fault condi-
tions in electrical machines. This approach is demonstrated in [18], where a strategy for
condition monitoring is applied to electric motors. This strategy incorporates a multifaceted
fault detection and identification methodology underpinning a feature-level fusion strategy
and a hierarchical Self-Organizing Map structure. Furthermore, compelling evidence has
been provided for the feasibility of fault recognition using the information acquired through
measured voltage and current in electrical machines. This is achieved using Kohonen’s Self-
Organizing Map (SOM), which necessitates an unsupervised learning process that discerns
the relationship between the locations and their respective voltage and current characteris-
tics [19,20]. Additionally, problems of mechanical imbalances and shaft misalignments in
induction motor-driven machines are addressed in [20]. In this study, the phase current
is utilized to train the SOM in a simulation environment, and then, the trained SOM is
subsequently validated in an experimental context. The authors convincingly demonstrate
that the proposed strategy can detect imbalance and misalignment. Several papers similarly
identified broken bars in fault conditions using the SOM [21–23]. While the methodologies
presented in [18–23] focus on specific applications of Self-Organizing Maps (SOMs) for di-
agnosing faults and identifying mechanical unbalances in electrical machines, the proposed
paper introduces a comprehensive, adaptable, and low-cost technological strategy that
could be utilized to optimize electric motor performance in smart industrial applications.
This paper also explores the integration of SOMs into Industry 4.0, primarily focusing on
AC electric motors and showcasing advantages, particularly when considering the insights
provided by the weight maps corresponding to each feature. These maps could serve
as a core supplementary tool, revealing the relationships between variables in electrical
machines and explicitly representing both normal and abnormal conditions. The first-
principles model might also enhance the clarity and understanding of these representations,
providing a robust framework for interpreting machine states. Moreover, the SOM offers a
distinct advantage by reducing the system’s dimensionality, thereby facilitating the creation
of a reduced-order classification map. This simplification not only aids in more efficient
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data processing but also enhances the accuracy and speed of decision-making processes
related to the operational states of the machines. Furthermore, the reduced-order classifica-
tion map can be deployed on a low-cost microcontroller, ensuring feasible implementation.
The visually rendered information from the SOM can be harnessed to discern various
operational conditions, providing a cost-effective and efficient solution for monitoring and
managing electrical machines. In the context of Industry 4.0, where digital twins are critical,
the significance of the SOM is particularly pronounced, serving as a crucial component to
augment efficiency in the manufacturing process. Using low-cost microcontrollers enables
the deployment of the SOM in various electric actuators within production lines, enhancing
its practicality and adaptability in contemporary industrial settings. The proposed struc-
ture, which integrates SOMs into embedded systems, offers a versatile solution adaptable
to various systems within Industry 4.0, spanning different industries and applications and
aiding in classifying and monitoring electric motor conditions. Moreover, this proposal
could assist in fault detection and diagnosis in classifying operational states and making
real-time, data-driven decisions, which are crucial for optimizing manufacturing processes,
enhancing efficiency, and minimizing operational disruptions. This proposal could enable
predictive maintenance, enhance operational efficiency, provide a cost-effective solution,
and ensure a robust, safe, and optimized manufacturing environment for the industry. On
the other hand, in the emerging landscape of industrial applications, digital twins have
gained prominence, with SOM being deployed in real-time simulators. However, such
sophisticated simulators can present significant cost implications [24]. Moreover, machine
learning coupled with digital twins has been applied to fault detection, diagnosis, and
lifetime prediction in electric machines. Consequently, there is an increasing demand for
cost-effective digital systems capable of fault detection. These systems should be assembled
into the digital twin topology as classifiers, providing valuable resources for industrial
applications. When constructing the SOM, it is crucial to consider the first-principles
model to determine the relevant variables that contribute significant information, avoiding
including redundant or irrelevant variables. Integrating these classification systems into
low-cost, embedded digital systems can facilitate their implementation in various stages of
the production line where electric actuators are employed. Moreover, these systems can
be considered as part of the virtual model integrated within the structure of a digital twin,
enabling effective solutions [25].

2. Electric AC Machines and SOM

Industry 4.0 utilizes electric actuators that undergo continuous monitoring to imple-
ment predictive maintenance and enhance manufacturing process efficiency [26]. Addition-
ally, these electric machines often incorporate controllers and power electronic components
within the motor casing [27], making it appealing to include a classification system that
visually represents the motor’s performance, as can be achieved using Self-Organizing
Maps (SOMs) [28,29]. Employing a first principles-based model of an electric machine
is valuable for determining the relevant variables to be collected for SOM generation.
Including variables that do not contribute to the creation of the SOM may diminish the
classification system’s effectiveness and obscure the SOM’s structure. The following set of
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equations presented in (1) provide the primary descriptions of an induction motor in a (d-q)
framework [30,31]:

vsd = RSisd +
•
ψsd − ωSψsq

vsq = RSisq +
•
ψsq + ωSψsd

0 = Rrird +
•
ψrd − ωslipψrq

0 = Rrirq +
•
ψrq + ωslipψrd

ψsd = LSisd + Lmird
ψsq = LSisq + Lmirq
ψrd = Lrird + Lmisd
ψrq = Lrirq + Lmisq

T = 3
2 p

(
ψsdisq − ψsqisd

)
ωS = ωslip + ωr

(1)

where stator voltage is vsd, vsq; stator and rotor current are isd , isq and isd, isq; stator and
rotor flux are ψs, ψr; electromagnetic torque is T; and angular rotor speed is ωr.

These equations (first-principles model of an induction motor) could help to define
the variables for elaborating and training Self-Organizing Maps (SOMs). The SOM, initially
developed by Tuevo Kohonen in 1982 [17], employs an unsupervised learning methodology
and is often referred to as a feature map, as it aims to capture the salient features of the input
data. Furthermore, SOMs can represent high-dimensional data in a lower-dimensional
space (output nodes) [25]. Figure 1 illustrates the fundamental topology of a SOM, wherein
the input nodes are connected to all of the output nodes. The map nodes, on the other
hand, remain disconnected, while the output nodes are arranged in a two-dimensional
space. Each node’s position within the map can be described using (i,j) values, allowing for
localization. Consequently, the node’s weight is updated based on the information received
from the input [17,28,32].
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The training algorithm for Self-Organizing Maps (SOMs) follows a fundamental
structure comprising six main steps, as outlined in reference [17,32,33].

(A) The initialization of weights is performed for all nodes in the SOM.
(B) A set of training data from the collected data is presented to the network.
(C) The nodes undergo an evaluation to determine the Best Matching Unit (BMU), repre-

senting the winning node. This evaluation involves calculating the similarity between
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the weights of each node and the input vector. Euclidean distance squared, as ex-
pressed in Equation (1), serves as a uniform scale for comparing each node with the
input vector. In Equation (1), the Euclidean distance squared metric quantifies the
dissimilarity between the weights of each node and the input vector. It provides a
measure of how closely the characteristics of the input vector align with those of a
particular node in the SOM. Equation (2) calculates the distance. How to calculate
the BMU:

Dist From Input2 =
i=n

∑
i=0

(Ii − Wi)
2 (2)

I = thecurrent input vector
W = thenode’s weight vector
n = thenumber of weights

(D) The calculation of the radius of the Best Matching Unit (BMU) is an integral step in
the SOM training process. Initially, the radius is set to a large value and gradually
decreases over each time step. This reduction follows an exponential decay pattern,
as Equations (3) and (4) depict. When t (the current iteration number) is zero, the
values of Equations (3) and (4) reach their maximum. As t increases, these values
approach zero. Specifically, in Equation (3), the radius starts with the size of the lattice
and progressively diminishes until it ultimately becomes the radius of the BMU node.
Equation (3) is used to calculate the radius using exponential decay. Determination
of the BMU radius reaching zero at t = tmax: These equations govern the dynamic
adjustment of the BMU radius, enabling the SOM to adapt its neighborhood size
throughout the training process. Initially, considering a broader radius and gradually
focusing on the BMU node, the SOM achieves a refined representation of the input
space. Radius of the neighborhood:

(t) = σ0e−
t
λ (3)

t = thecurrent iteration
λ = time constant
σ0 = theradius of the map
Time constant:

λ =
num Iterations

map Radius
(4)

(E) The adjustment of nodes within the Best Matching Unit (BMU) radius is a crucial
step in the SOM training process, aimed at aligning them more closely with the input
vector. The nodes in closer proximity to the BMU undergo greater weight adjustments.
Equation (5) represents the learning function, where W(t + 1) denotes a given node’s
new trained weight value. This equation gradually modifies the node’s weight over
time, making it more similar to the currently selected input vector, denoted as I. The
disparity between the node’s weight and the input vector influences learning. Nodes
that differ significantly from the current input vector experience more substantial
changes, promoting greater adaptation. This difference is then scaled by the current
learning rate of the SOM (6), denoted as Θ(t) (7). Learning function for weight
adjustment: In Equation (5), the learning function considers the learning rate and the
dissimilarity between the node’s weight and the input vector. By scaling the difference
with the learning rate and the value of Θ(t), the SOM gradually converges towards an
optimal representation of the input space. The new weight of a node:

W(t + 1) = W(t) + Θ(t)L(t)(I(t)− W(t)) (5)

Learning rate = L(t) = L0e−
t
λ (6)
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Distance from BMU = Θ(t) = e
−distFromBMU2

2σ2(t) (7)

(F) The SOM training process involves repeating the steps described above for a specified
number of epochs, denoted as n. Each epoch represents a complete iteration through
the training data, allowing the SOM to continuously adjust and refine its weights
based on the input vectors. During each epoch, the SOM goes through the steps
of initializing weights, presenting training data, evaluating the BMU, updating the
radius, adjusting the weights of nodes within the BMU radius, and iterating through
the remaining epochs. This iterative process ensures that the SOM gradually adapts
to the input data and improves its ability to represent the underlying patterns and
structures. The SOM refines its organization by repeating the training process for
multiple epochs, enhancing its ability to effectively classify and map input vectors.
This paper proposes a general methodology for implementing Self-Organizing Maps
(SOM) to detect normal and abnormal electric machine conditions. The methodology
is delineated into several structured steps, ensuring a systematic approach to devel-
oping and deploying the SOM model for fault detection. The first step involves the
definition of faults (normal and abnormal conditions). The objective here is to define
and categorize the faults that will be classified, setting the scope of the research. The
method employed will utilize first-principle models to identify the type of electric
machine performance and establish the relations and variables essential for classifying
faults according to the type of electric machine. The rationale behind this step is
that it serves as a foundational layer which is pivotal for guiding subsequent feature
extraction and selection processes, ensuring the model’s accuracy and efficiency in
fault classification. Following the definition of faults, the next step is data collection.
The objective of this phase is to accumulate pertinent data through either simulation
or real experimentation. The method involves selecting appropriate sensors and
acquiring data under normal and abnormal conditions when simulations or real ex-
periments are chosen, followed by data preprocessing. The rationale is that collecting
high-quality, relevant data is crucial for training and validating the model, impacting
the overall reliability and accuracy of the fault detection system. Subsequently, the
process of data labeling is undertaken. This step aims to assign accurate labels to
the collected data to facilitate model training. The method systematically labels the
data points under normal and various abnormal conditions. The foundation is that
properly labeled data are essential for classification, impacting the model’s ability to
generalize and accurately detect and classify unseen data. Post data labeling, the SOM
model development is initiated. This phase aims to develop, train, and optimize the
SOM model for fault detection. The method to be employed will initialize the model
with random weights and train it using labeled data, adjusting the learning rate and
neighborhood function as necessary, followed by model evaluation using a validation
dataset. Developing a well-trained model is crucial for accurate and reliable normal
and abnormal conditions and classification in real-world scenarios. Once the model
is developed, the next step is detection (normal and abnormal). The objective here
is to detect and classify different types of normal and abnormal conditions using
the trained SOM model. The method involves utilizing the trained SOM to classify
detected anomalies into distinct fault types. Finally, the last step is model deploy-
ment. This phase aims to integrate the trained SOM model into a microcontroller (see
Figure 2).
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Figure 2. Sequential flow diagram of the proposed methodology.

In this sequential flow diagram, incorporating a Self-Organizing Map (SOM) with a
first-principles motor model can provide an enhanced analytical framework, offering in-
sights into system dynamics and facilitating effective abnormal detection. A first-principles
model is grounded in fundamental physical laws and equations detailing the relationships
between various motor variables such as voltage, current, torque, and speed. Utilizing
a SOM with this model serves various purposes. It can help validate the first-principles
model used via determining the areas where the model accurately or inaccurately mirrors
real-world system behaviors. The insights gathered from the SOM can also contribute
to refining the first-principles model by revealing previously unobserved patterns or
relationships among correlated variables. The inherent relationships between different
variables, described by the equations from the first-principles model, can be visualized
effectively through SOMs. This visualization explores the congruence between motor data
and theoretical relationships, offering insights into potential deviations due to non-modeled
phenomena or faults. In the domain of fault detection, anomalies or faults in the motor
will manifest as deviations from the expected behaviors outlined in the first-principles
model. The SOM can identify these anomalies by recognizing input vectors that map to
unexpected locations on the map.

3. Results

The first study presented in this paper illustrates the connection between the first-
principles model and the Self-Organizing Maps (SOMs) to establish a clear and robust
relationship. A DC motor is selected as the chosen electric machine to demonstrate this
relationship effectively [34]. Subsequently, an AC induction motor is examined. The DC
motor model can be decoupled into two distinct channels: one for the magnetic field and
another for the armature current. Its simplicity allows for a straightforward correlation
between the generated SOMs and the first-principles model. Furthermore, when AC motors
are modeled within a rotating framework (field-oriented model), their representation could
resemble that of a DC motor [35,36]. The representation in this rotatory framework allows
a torque equation in which the current component (d) in the rotatory framework regulates
the value of the flux, and the current component (q) regulates the electromagnetic torque.
This representation is like Equation (7) in DC motors, so it could be possible to use the
d-q currents in a rotatory framework to obtain a similar feature map as a DC motor [35].
Moreover, several other studies suggest varying methodologies for decoupling the models
of induction motors [37]. On the other hand, the field-oriented model works well when the
voltages and currents are balanced [38]. Thus, these maps could be different when there
are fault conditions. Therefore, employing a DC motor as a representation aids to confirm
the necessity of connecting the SOM implementation with the first-principles model. This
connection is vital for determining the variables to be utilized and capturing the information
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more comprehensively within the SOMs. Simulations or real experiments can be conducted
to generate data for training Self-Organizing Maps (SOMs). Given that simulations are
more cost-effective and have been proven to yield high-fidelity models of electric machines,
they are a preferable choice for conducting proof of concept. Thus, in this paper, simulations
are used to collect data and train the SOM. After that, the SOM can be deployed in a real-
time microcontroller. Additionally, simulations can effectively validate newly proposed
concepts and strategies. Figure 3 displays a low-cost microcontroller, specifically the C2000
(TMS320F28379D) Launchpad, connected to a DC motor. This microcontroller can collect
data coming from a DC motor [39,40]. Consequently, the microcontroller’s analog channels
have the capability to receive data which can be stored to train the SOM.
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Figure 3. C2000 (TMS320F28379D) Launchpad connected to a DC motor (collecting data).

Utilizing normalized variables from the motors is essential for training the Self-
Organizing Maps (SOMs), allowing for a more standardized and consistent approach
to analyzing the response of the variables. The normalization of variables is crucial as
it scales the variables to a standard range, essential for comparing and analyzing data
where the original scales of the variables differ. Once normalized, these variables can
be employed within a Per-Unit (P.U.) system, a normalized unit system widely used to
assess the performance of electric machines [41]. The Per-Unit system holds significant
advantages, offering a consistent framework to assess various machines on a uniform scale,
regardless of their actual physical dimensions or ratings [41]. It streamlines the analysis
and design calculations pertinent to electric machines, facilitating a more effective study of
the system’s behavior and performance under various conditions, encompassing normal
and abnormal scenarios. In this context, the normalized variables serve as a universal
metric, enabling the comparison, analysis, and evaluation of different electric machines
to be more streamlined and coherent. Figure 4 illustrates the speed, current, and voltage
signals from a DC motor that were collected during a normal operation using the C2000
(TMS320F28379D) Launchpad with the P.U. system.
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On the other hand, MATLAB/Simulink offers specialized toolboxes designed explic-
itly for simulating electric machines [42]. In addition, public databases detailing electric
machines’ fault conditions are available and can be instrumental data for training Self-
Organizing Maps (SOMs). Several public databases provide rich datasets that illustrate the
progression of typical faults such as commutator defects, winding faults, and brush wear
in cost-effective DC motors under extensive monitoring, including vibration, temperature,
voltage, current, and noise assessments [43,44]. These motors, known for their notably short
operational life when functioning outside nominal conditions—ranging from 30 min to
6 h—are especially intriguing for testing various signal processing algorithms. They serve
as practical introductions for students and researchers to signal processing, fault detection,
and predictive maintenance. For instance, the Squirrel Cage Induction Motor Fault Diagno-
sis Dataset is a comprehensive multisensor data collection, compiled to advance research
in anomaly detection, fault diagnosis, and predictive maintenance, primarily employing
non-invasive methods like thermal observation or vibration measurement [44,45]. Figure 5
shows two MATLAB/Simulink block diagrams, one of a DC permanent magnet motor and
the other one of an AC induction motor; these models can be used to collect data that can
be used to train the SOM to detect normal and abnormal conditions.

The DC motor’s response during normal operation is illustrated in Figure 6. If normal
operation is identified, it enables the potential classification of conditions that deviate from
the normal performance, denoting abnormal operation.
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Figure 6. This figure illustrates the responses of speed, current, and torque of a DC motor during
normal operation, as modeled using MATLAB/Simulink.

The main equations governing the behavior of a DC motor are presented below [34].
In Equation (8), the electromagnetic torque generated by a DC motor is directly propor-

tional to the armature current and the strength of the magnetic field. If the magnetic field
remains constant, the electromagnetic torque becomes proportional to the armature current
alone, multiplied by a constant factor, as expressed in the equation. This configuration is
referred to as an armature-controlled motor.

T = Kti (8)

The relationship between back electromotive force (back emf) and angular velocity of
the shaft in a DC motor is shown in Equation (9), which states that the back emf in a DC
motor is directly proportional to the angular rotor speed using a constant factor (Ke).

e = Ke
.
θ (9)

The motor torque and back emf constant are equal in SI units. Hence, a single variable,
represented by Kt and Ke, denotes the electromagnetic torque and back emf constant.

J
..
θ + b

.
θ = Kt i (10)

L
di
dt

+ Ri = V − Ke
.
θ (11)

The governing Equations (10) and (11) are derived from Newton’s second law and
Kirchhoff’s voltage law, incorporating the inertia (J) and the friction coefficient (b). These
equations provide a foundation for analyzing the behavior and dynamics of a DC motor
within the context of the first-principles model. The present study incorporates a direct
current (DC) motor characterized by a permanent magnet. Determining the map’s dimen-
sions is crucial in influencing the ultimate outcomes of the SOM training. These crucial
elements are typically discerned by evaluating the input data’s attributes and understand-
ing the expected results’ primary goals. While there are no strict protocols for deciding the
number of nodes [46], a foundational principle is that the selected size should allow for the
precise and unambiguous recognition of SOM structures [47]. Adhering to this principle
ensures that the inherent structures within the SOM are easily perceptible and interpretable,
allowing for a more instinctive interaction with and analysis of the map. Following this
principle ensures that the inherent structures within the Self-Organizing Map (SOM) be-
come readily discernible and understandable, facilitating a more intuitive engagement
with and analysis of the map. In this study, a proposed topology of Self-Organizing Maps
(SOMs) has been visually delineated in Figure 7. This topology comprises a 10 × 10 map
and four input variables: current, voltage, rotor speed, and electromagnetic torque. On the
other hand, a smaller map might not be as easily interpretable. A noteworthy correlation is
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evident between the weight maps of the current and the electromagnetic torque (Figure 8).
This association aligns seamlessly with the results inferred from Equation (8), thereby
confirming the linkage between these two variables. Similarly, the voltage and rotor speed
weight maps display a significant correlation. This observation aligns with the insights
from Equation (11), further consolidating a robust linkage between these two variables.
The SOM’s topology, the pictorial representation of the weight maps, and the corroborative
analysis drawn from the corresponding equations underscore the interconnectedness and
interdependence of the input variables within the SOM framework. Figure 9 shows the
weight maps when a load torque increases. The previous correlations are preserved. In
the maps, the most negative connections show as black, zero connections as red, and the
strongest positive connections as yellow.
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(C) rotor speed, and (D) electromagnetic torque.

The correlation between current and torque is significantly high, as validated by
Equation (8), and a similar correlation is observed between voltage and rotor speed as per
Equation (11). In this visual representation of weights, it is essential to highlight the role of
the first-principles model. This model contributes to the dimensionality reduction of the
SOM, as it aids in identifying variables with a low contribution to the study. Consequently,
this identification allows the SOM to be represented with fewer nodes. Furthermore, it is
important to note that collecting all potential variables could be cost-prohibitive. As for the
alternating current (AC) machine, namely the induction motor, the rated performance of
the induction motor, as illustrated through simulation using P.U., is depicted in Figure 10.
For this evaluation, a 10 × 10 output nodes map was used (Figure 11). The features chosen
for constructing the SOM include rotor speed, phase currents for stator a, b, and c, and
electromagnetic torque.
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Figure 10. Normal operation induction motor: speed (A), phase currents (B), phase voltages (C), and
torque (D).
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and electromagnetic torque.

Figures 12–17 present the weights of each feature when the motor operates under
various conditions: no load, rated conditions, load torque disturbances within the rated
values, and an overload torque that is higher than the rated value. The no load torque and
rated torque operation conditions presents a similar weight map, but the overload torque
condition is an abnormal condition that presents a dissimilar weight map, so classification
of this condition is feasible. For the set of the induction motor, Equation (1) shows that
the electromagnetic toque depends on the stator currents, so if they have a fault condition,
such as an abnormal condition like a voltage reduction of 99% in one phase (voltage sag),
the weight map of torque and currents will be drastically different (see Figure 16).
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stator a, b, and c, and (E) electromagnetic torque during no load torque operation.
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The weight maps illustrate the drastic changes in feature representation under abnor-
mal conditions, such as during an overload or voltage sag. Moreover, the first-principles
model offers essential insights regarding the variables that require sensing and the antici-
pated relationships between them. Thus, a voltage sag impacts the current and torque in a
significant manner according to Equation (1), and this can be visually represented using the
weight maps. Therefore, the correlations between different weight maps are more easily
discernible when the first-principles model is employed. Training a Self-Organizing Map
(SOM) under these conditions effectively detects normal and abnormal states. Notably,
electric motors often operate within a particular zone wherein the efficiency is at its peak
so abnormal conditions must be detected. Thus, these weight maps could be utilized as
a tool to detect instances of high efficiency when the motor works close to the rated load
torque and speed. It is feasible to train a SOM during normal and abnormal conditions so
the generated map can be used to detect abnormal conditions. The detailed weight maps
and the trained SOM that include these normal and abnormal conditions are presented
in Figures 17 and 18. Figure 18 depicts the SOM layer, where neurons are represented
as gray-blue patches, accompanied by red lines indicating their direct neighbors. The
neighboring patches are color-coded, ranging from black to yellow, to visually indicate the
proximity of each neuron’s weight vector to its neighboring neurons. Moreover, Figure 11
displays the SOM layer, with each neuron denoting the number of input vectors it classifies.
The magnitude of the colored patch represents the relative quantity of vectors assigned to
each neuron.
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As a result, in an AC induction motor, the interrelation between the current, torque,
and speed is pivotal in understanding the motor’s operational dynamics. Under standard
operational circumstances, the current that the motor draws is generally proportional to
the torque. This proportionality implies that as the load on the motor increases, the current
drawn by the motor also escalates correspondingly. The operational speed of the induction
motor is inherently dependent on two primary factors: the frequency of the alternating
current (AC) supply and the number of poles integrated within the motor. The presence
of slip, a measure of the difference between the synchronous and rotor speeds, results in
the rotor trailing behind the synchronous speed. This phenomenon is crucial in analyzing
the variations in motor speed due to alterations in load conditions. The foundational
methodologies employed remain consistent when leveraging Self-Organizing Maps (SOM)
to study AC induction motors. However, the features defined in the model and the re-
lationships between these features exhibit distinct characteristics. Within the SOM map,
regions representing high slip and torque values are visually identifiable and exhibit a
direct proportionality, mirroring their theoretical interrelation. This visual representation
facilitates an intuitive understanding of the inherent relationships within the motor’s op-
erational parameters. Similarly, regions on the SOM map that depict high current values
typically correlate with high torque values, reflecting their direct proportionality under
diverse load conditions. This correlation is particularly significant in analyzing the motor’s
response to varying operational demands. Regions on the SOM map representing high slip
usually correlate with regions depicting lower rotor speeds, providing valuable insight into
the motor’s operational dynamics and enabling an analysis of speed variations resulting
from load alterations. The SOM is instrumental in detecting anomalies and deviations
from the normal operational states of the motor. Different regions on the SOM indicate
these anomalies, serving as a robust tool for fault detection and validation of theoretical
models. The process of anomaly detection using the Best Matching Unit (BMU) in a SOM
is meticulous. It evaluates whether the BMU or its associated values significantly deviate
from the established normal conditions. To facilitate this, the SOM is initially trained under
the normal operating conditions of the motor, establishing a baseline representation of
the motor’s standard operational states. Each neuron’s weight vector within the SOM
represents a specific normal motor condition. Once this baseline is established, incoming
data are juxtaposed with the map to discern any significant deviations from the learned
patterns, signaling potential abnormal conditions in the motor’s operation. By correlating
the identified anomalies with the specific conditions of the motor, a comprehensive assess-
ment can be made regarding whether the anomaly is indicative of a fault, wear, or another
abnormal condition in the motor. This correlation aids in the precise diagnosis of the type
of abnormal condition and its possible causes, providing insights into the progression
of the condition and facilitating proactive maintenance planning and anomaly diagnosis.
In this study, the trained Self-Organizing Map (SOM) has been evaluated as a proof of
concept, utilizing a low-cost microcontroller, specifically, the C2000 (TMS320F28379D)
Launchpad [39,40]. Table 2 shows a selection of real-time microcontrollers along with
one multicore processor, outlining their principal characteristics and categorizing their
respective costs. In these microcontrollers, it is feasible to implement a Self-Organizing
Map (SOM). Subsequent studies could then evaluate the performance of the SOM across
different microcontroller architectures.
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Table 2. Microcontrollers and one multicore processor.

Microcontroller Main features

Cost is categorized as low when it
ranges between USD 5 and USD 35.
On the contrary, it is considered
high when it is USD 36 and above.

Texas Instruments C2000 [48]

32-bit processing
Designed for real-time control applications
High-resolution PWM units
ADC
Enhanced capture modules
Communication interfaces like CAN, SPI, and I2C

Low-cost

Microchip PIC32MZ [49]

32-bit MIPS architecture
High-speed data transfer with DMA
ADC and DAC
Communication interfaces like UART, SPI, and I2C
RTCC module

Low-cost

ARM Cortex-M4 [50]

32-bit ARM architecture
DSP instructions
Floating-point unit
NVIC
Communication interfaces like UART, SPI, and I2C

Low-cost

NXP i.MX RT Series [51]

32-bit ARM Cortex-M7 core
High-speed GPIO
Advanced multimedia features
Communication interfaces like UART, SPI, I2C, and CAN
Real-time Clock

Low-cost

Xilinx Zynq UltraScale+ MPSoC [52]

Multicore ARM processors
Programmable logic for custom hardware acceleration
Advanced signal processing capabilities
High-speed connectivity options
Extensive security and system protection features

High-cost

The training and deployment of the SOM were conducted via MATLAB/Simulink,
using an execution time of 0.001 s [53,54]. Figure 19 illustrates the microcontroller and
the Simulink front panels. This front panel allows for a visual representation of the SOM.
MATLAB/Simulink, a graphical programming environment, interacts with the Target Lan-
guage Compiler (TLC) file in a specific way, as illustrated in the following pseudocode. The
TLC file is a vital component used by the Simulink Coder throughout the code generation
process [55]. The TLC file enables the transformation of high-level models in Simulink to
source code suitable for specific target hardware or software environments. The provided
pseudocode assists in configuring and customizing code generation for diverse targets,
including the C2000 microcontroller and various software environments, ensuring optimal
translation of model semantics and facilitating efficient, target-appropriate code output.
This customization becomes paramount in tailoring the generated code to adhere to specifi-
cations, constraints, and performance requirements pertinent to different platforms and
operational contexts.

Real-Time Pseudocode Generation in MATLAB/Simulink

1. Initialize System-Specific Variables and Settings SET TargetType TO “RT” SET Lan-
guage TO “C” INCLUDE “codegenentry.tlc”

2. Define Real-Time Workshop Options DEFINE rtwoptions WITH PROPERTIES SUCH
AS PromptMessages, UserInputType, DefaultValues, TLCVariables, MakeVariables,
Tooltips, CallbackFunctions

3. Configure Option Parameters FOR EACH option IN rtwoptions: SET respective
properties ACCORDING TO predefined parameters

4. Configure Code Generation Settings SET BuildDirSuffix TO “_grt_rtw”
5. Define Target-Specific Components and Configurations DEFINE target-specific com-

ponents, classes, AND configurations WITH PARAMETERS SUCH AS targetCompo-
nentClass TO ‘Simulink.GRTTargetCC’
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4. Conclusions

The weight maps corresponding to each feature hold the potential as supplemen-
tary information for determining relationships between variables in electrical machines.
Notably, these maps can explicitly represent normal and abnormal conditions, with the
first-principles model providing further clarity and understanding of these representations.
Moreover, the Self-Organizing Map (SOM) offers the advantage of reducing the system’s
dimensionality, thereby facilitating the creation of a reduced-order classification map. This
map can be deployed on a low-cost microcontroller, and the visually rendered information
can be harnessed to discern various operational conditions. The significance of the SOM is
heightened in the context of Industry 4.0, where digital twins serve as crucial components
to augment efficiency in the manufacturing process. Additionally, the utilization of low-cost
microcontrollers makes it feasible to deploy the SOM in a variety of electric actuators within
production lines. This practicality further underscores the relevance and adaptability of the
SOM in contemporary industrial settings.

Author Contributions: Conceptualization, P.P. and B.A.; methodology, P.P., B.A., A.M. and A.S.D.;
software, P.P.; validation, P.P., A.M., A.S.D. and B.A.; formal analysis, P.P. and B.A.; investigation, P.P.,
B.A., A.S.D. and A.M. All authors have read and agreed to the published version of the manuscript.
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