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Abstract: In this work, a new method for constructing the infinite-dimensional Ornstein–Uhlenbeck
stochastic process is introduced. The constructed process is used to perturb the harmonic system in
order to model anomalously fast heat transport in one-dimensional nanomaterials. The introduced
method made it possible to obtain a transition probability function that allows for a different approach
to the analysis of equations with such a disturbance. This creates the opportunity to relax assumptions
about temporal correlations for such a process, which may lead to a qualitatively different model of
energy transport through vibrations of the crystal lattice and, as a result, to obtain the superdiffusion
equation on a macroscopic scale with an order of the fractional Laplacian different from the value
of 3/4 obtained so far in stochastic models. Simulations confirming these predictions are presented
and discussed.
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1. Introduction

Thermal conductivity in nanomaterials is an extremely interesting research area in
the field of nanotechnology and materials science. In our work, we deal with modeling
heat flow in one-dimensional crystalline bodies, for example nanowires. So, let us focus
our attention on such materials and briefly describe the possibilities of their use. Metallic
nanowires have unique thermal conductivity properties due to their small size and struc-
ture. Research on metallic nanowires and their properties such as electrical and thermal
conductivity began in full force at the turn of the 20th and 21st centuries, and many research
works and experiments have been conducted since then. The study of thermal conduc-
tivity in metallic nanowires is important for both scientific and practical reasons. They
could help design more efficient thermoelectric materials that convert heat into electricity,
and develop advanced thermal materials used in electronics, nanotechnologies, energy
technology, and more.

The phenomenon of thermal superconductivity in model of one-dimensional crys-
talline body was first observed by Lepri, Livi, and Politi, and described in [1]. In this
paper, the system of equations describing the vibrations of coupled nonlinear oscillators
was solved numerically and the divergence of thermal conductivity was demonstrated.
The importance of this research is underlined in review work [2], where the authors write:
“This marked the beginning of a research endeavor that, over more than two decades,
has been devoted to understanding the mechanisms giving rise to anomalous transport
in low-dimensional systems. Far from being a purely academic exercise, this research
has unveiled the possibility of observing such peculiar effects in nanomaterials, such as
nanotubes, nanowires, or graphene [3,4]”. Since then, research into physical and mathe-
matical models has continued [5–11]. A significant voice in the ongoing discussion was
the article [12], in which a stochastic disturbance preserving energy and momentum was
introduced into the harmonic model. The authors pointed out the important role of the
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law of momentum conservation in the anomalous thermal conductivity. The next step
was made in the work [13], where the authors have shown that the microscopic dynamics,
introduced in [12], satisfy the linear Boltzmann equation for phonons on the mesoscopic
scale. In turn, the works [14] and [15] show that the solution of the Boltzmann equation
scaled to the macroscopic scale satisfies the superdiffusion equation with an order of the
fractional Laplacian equal to 3/4. Subsequently, in [16], a direct transition from the mi-
croscopic model to the macroscopic superdiffusion equation was made. In [17], the same
authors modified the stochastic perturbation, introduced in [12], by replacing the Gaussian
noise with the Ornstein–Uhlenbeck process, then obtained the linear Boltzmann equation
at the mesoscopic scale.

All stochastic models discussed led to the same superdiffusion equation. This work
paves the way to obtain the superdiffusion equation with a different order of fractional
Laplacian. Namely, we construct the stochastic disturbance in a different way and present
a proposal, supported by simulations, on how to transform the microscopic model into a
macroscopic model to achieve the intended research goal.

Despite the utilization of highly advanced mathematical techniques, our intention
is to communicate this research to a community primarily focused on experimental in-
vestigations. Our underlying belief is that fostering an exchange of research methods
between these two groups of researchers may yield mutual benefits, potentially leading to
collaborations that unveil new perspectives and avenues of exploration.

In the following part of the introduction, we discuss the construction of the model,
introducing the reader to the topic.

1.1. Stochastic Models of Heat Transport

In insulating solids thermal energy is carried out by lattice vibrations propagating
through the material. This is also the main medium of heat transfer in semiconductors [18].
On a microscopic scale, energy is transmitted by the interactions of neighboring atoms.
We focus on the one-dimensional model. The equilibrium positions of atoms are denoted
by integers x. The deflection from the equilibrium position of the atom at site x is denoted
by qx and its momentum by px. Its total energy ex is

ex :=
1
2
p2

x + W(qx) +
1
2 ∑
|x−x′ |=1

V(qx − qx′), (1)

where 1
2p

2
x is the kinetic energy, and W, V are potentials, wherein V depends only on

relative positions of adjacent atoms [19,20]. The atom transmits energy to its neighbors
through elastic bonds—see Figure 1.

Figure 1. The model of vibrational energy transport through a one-dimensional crystalline lattice—
linear chain of atoms oscillating around their equilibrium positions. Bonds between neighboring
atoms are drawn as springs ([18], p. 1317).

The wave propagating along the chain can be decomposed into sinusoidal oscillations
with a specific direction of propagation—called normal modes. Each normal mode is labeled
by number k, which belongs to the interval [−1/2, 1/2]. Endpoints −1/2 and 1/2 are
identified, as they represent the same normal mode—the sinusoidal wave with wavelength
equal to 2ε, where ε is the distance between equilibrium positions of two adjacent oscillators
(see Figure 1). In this normal mode, every pair of two adjacent atoms oscillate in the
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counterphase. If 0 < |k| < 1/2, then k and −k denote waves of the same space length ε/|k|,
but traveling in the opposite directions along the chain (Figure 2).

Figure 2. Energy carriers—sinusoidal oscillations, ω′(k)—group velocity of mode k.

Total energy of the system E = ∑x ex decomposes into normal mode energies e(k)

E =
∫ 1/2

−1/2
e(k) dk.

We will be always assuming that potential W in (1) is zero, as this is the case when
anomalous heat transport appears in dimension one. Let us for a moment assume that
V is quadratic, V(q) = aq2 for some a > 0. The model is then linear and oscillators are
harmonic. For convenience, we set a = 1. Now, (1) takes the form

ex :=
1
2
px

2 +
1
2 ∑
|x−x′ |=1

(qx − qx′)
2. (2)

Hamilton’s equations derived from (2) are
dqx

dt
= px

dpx

dt
= qx+1 − 2qx + qx−1

x ∈ Z, (3)

see [21] on p. 6. In this case, each normal mode k has the phase velocity

ω(k) = 2| sin(πk)|,

see [22] on p. 68-69 for the derivation. The function ω(k) is called dispersion relation. The
group velocity for a wave packet (Figure 3) is specified by the derivative ω′(k), see [23]
on p. 47.

After proper space-time rescaling of the dynamics of energy propagation given by (3),
we obtain the linear transport equation at the mesoscopic scale (see Figure 4)

∂tu(t, x, k) + ω′(k)∂xu(t, x, k) = 0. (4)

Here, the function u(t, x, k) has physical interpretation of the energy density of the normal
mode k ∈ [−1/2, 1/2] at space coordinate x ∈ R at time instant t. Heuristically, according
to (4), if a quantum of energy is carried by normal mode k, then it travels ballistically along
the chain at constant velocity ω′(k). It also stays in this mode forever.
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Figure 3. A wave packet—superposition of normal modes—propagates through the medium with
the group velocity, which is determined by the derivative ω′ of the dispersion relation.

microscopic dynamics
—oscillators

mesoscopic scale
—phonons

macroscopic
heat transport

Figure 4. Different scales of dynamics for a model of heat energy transport.

If we further rescale the dynamics in space and time in attempt to obtain to the
macroscopic scale, the speed of energy propagation approaches infinity, which is nonsense
in the context of heat propagation, thus the assumption that oscillators are harmonic (V is
quadratic) does not work in modeling heat transfer. On the other hand, if the potential V
has the form

V(q) = aq2 + Vh(q), (5)

where Vh(q) is a nonzero non-quadratic term (see i.g. classical FPU model [24,25]) then
the study of the model encounters major analytical difficulties. Therefore, mathematical
physicists are interested in probabilistic models in which Vh ≡ 0, but the dynamics of
harmonic oscillators is randomly disturbed. Stochastic, time-dependent processes are
introduced into the equations to mimic the chaos occurring in deterministic non-linear
models. With this approach, the dynamics (3) is altered in the following manner:

dqx

dt
= px

dpx

dt
= qx+1 − 2qx + qx−1 +

dζx

dt
,

(6)

where ζx = {ζx(t) : t ≥ 0}, x ∈ Z is a sequence of stochastic processes. Such models result
in the linear Boltzmann equation at the mesoscopic scale ([13], p. 172). Compare it with
Equation (4).

∂tu(t, x, k) + ω′(k)∂xu(t, x, k) = Lu(t, x, k). (7)

Here, L is a scattering operator acting on the variable k. In a heuristic description the
appearance of Lmeans, that—in opposition to the harmonic case—different normal modes
interact and exchange energy. A quantum of energy absorbed by a normal mode is in
this context called phonon. We will say that phonon is in the state k0 when it is absorbed
by mode k0. Being in the state k0, the phonon propagates with velocity ω′(k0) until it is
intercepted (at a random time instant) by a (random) mode k1 and changes its velocity to
ω′(k1)—and so on. In this description, we perceive the thermal energy of the medium as a
cloud of quasiparticles—phonons—traveling in this way. The dynamics of this cloud at the
macroscopic scale gives us the heat equation.

We recall the classical heat (diffusion) equation:

∂tu(t, x) = c ∆xu(t, x), (8)
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where c is a positive constant, t, x are time and space coordinates, and ∆x is the Laplacian
operator acting on x. Microscopic mathematical models try to capture the fact that ob-
served heat propagation does not always satisfy the above equation. The phenomenon of
anomalous, super-diffusive heat flow is observed numerically and experimentally in one
dimensional nanomaterials. It is described by superdiffusion equation

∂tu(t, x) = −c
(
− ∆x

)α/2u(t, x) (9)

where 0 < α < 2 is a parameter and−
(
−∆x

)α/2 is the fractional Laplacian. In recent years,
many articles have been published devoted to understanding such unusual heat propaga-
tion.

1.2. Classical and Anomalous Heat Transport

As we indicated above, the Boltzmann Equation (7) is related to a stochastic process
describing the motion of a phonon traveling with the velocity ω′(k), wherein its state k,
and consequently its velocity, changes randomly at random time instants. More specifically,
the scattering operator L has the form

L f (k) =
∫ 1/2

−1/2
R(k, k′)[ f (k′)− f (k)]dk′.

The function R(k, k′), called collision kernel, determines the probability that a phonon in
a state k will go to a state k′, and the average time the particle stays in any state k. We
emphasize the following facts:

(a) The shape of the kernel, hence the parameters of phonon trajectories, emerges from
the stochastic perturbation put into microscopic dynamics (6);

(b) The shape of the kernel determines type of heat transport at the macroscopic scale.

We elaborate point (b): if the trajectories of phonons are asymptotically diffusive, then the
heat transport satisfies classical heat Equation (8). However, we can deal with models in
which some normal modes weakly interact with other modes, which has an effect on a
macroscopic scale. A phonon that has fallen into such a normal mode travels in ballistic
motion for a relatively long time before it falls out of it and its trajectory becomes diffusive
again, and these ballistic parts of the trajectory make heat transfer anomalously fast.

In the model introduced in [12,19] the stochastic perturbation of microscopic dynamics
is spatially and temporally uncorrelated—it is a Gaussian noise, i.e., ζx, x ∈ Z of (6) is a
family of independent Brownian motions. This model reproduces anomalous heat transport
in the one dimensional chain, which agrees with observations. The collision kernel obtained
for this one-dimensional model is

R(k, k′) =
1
2
(

R+(k, k′) + R−(k, k′)
)

(10)

where
R±(k, k′) := 16 sin2(πk) sin2(πk′) sin2(π(k∓ k′)). (11)

The heat transport related to the model satisfies Equation (9) with α = 3/2. Mathematically,
this value of α results from the fact that the function R(k), defined as

R(k) =
∫

R(k, k′)dk′,

is asymptotically similar to k2 as k→ 0. The model was later modified in [17] by replacing
Gaussian noise with a Ornstein–Uhlenbeck (OU) type random field, which is space-time
stationary Gaussian, Markovian and self-correlated. In the Ornstein–Uhlenbeck process,
the temporal and spatial correlations are determined by two functions, denoted by σ(k)
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and γ(k), wherein γ(k) determines the length of time correlations for the normal mode k.
The collision kernel depends on γ and σ. It reads

R(k, k′) :=
2σ(k + k′)γ(k + k′)R+(k, k′)

γ2(k + k′) +
[
ω(k′) + ω(k)

]2 +
2σ(k− k′)γ(k− k′)R−(k, k′)

γ2(k− k′) +
[
ω(k′)−ω(k)

]2 , (12)

where R+ and R− are given by (11). In this case, it still holds R(k) =
∫

R(k, k′)dk′ ∼ k2

as k → 0, and the only predictable outcome on the macroscopic scale is superdiffusion
with α = 3/2 as in the model with Gaussian noise. On the other hand, one-dimensional
numerical models show different rates of thermal conductivity divergence [2,26]. Therefore,
it is important to look for such models that lead to a superdiffusion equation with fractional
Laplacian of order α/2 different from 3/4 ( α 6= 3/2). If γ is separated from zero, the only
predictable outcome is superdiffusion with α = 3/2. Analyzing the formula (12), it can be
predicted that desirable results can be obtained at the macroscopic scale if we allow the
time correlations to become indefinitely long, i.e., if

γ(k)→ 0 for normal modes k→ 0. (13)

However in [17], this assumption is not possible for mathematical reasons: γ must be
separated from zero because of the way the process is constructed. Our approach based on
the innovative construction of the OU process via the transition probability function opens
the possibility of meeting the assumption (13). To substantiate our hypothesis, we employ
simulations, the details of which are elaborated upon in Section 3.

2. Construction of Ornstein–Uhlenbeck Process
2.1. Mathematical Preliminaries

Let H be a separable Hilbert space over the real field with the inner product 〈·, ·〉H and
the Borel σ-algebra B(H). By L(H) we denote the space of all bounded linear operators of
H into itself, and by L+

tc(H) the space of all Q ∈ L(H) which are

• Symmetric, i.e., 〈Qu, v〉H = 〈u, Qv〉H , u, v ∈ H;
• Positive, i.e., 〈Qu, u〉H ≥ 0 for all u ∈ H;
• Of trace-class, i.e., satisfying

tr(Q) := ∑n〈Qen, en〉H < ∞

for some (and hence every) complete orthonormal system {en} of H.

Given arbitrary Q ∈ L+
tc(H) and m ∈ H, the Gausian probability measure µm,Q

on (H,B(H)) with the mean m and the covariance Q is defined as the measure with
characteristic function

µ̂m,Q(u) = exp
{
−i〈m, u〉H −

1
2
〈Qu, u〉H

}
, u ∈ H.

In the case of m being zero, we will write µQ instead of µ0,Q and call the measure centered
Gaussian. Assume that G ∈ L∗tc(H), and {Tt : t ≥ 0} ⊂ L(H) is a strongly continuous
semigroup, wherein Tt are symmetric, commute with G and for some M > 0, γ > 0, the
following estimate holds

‖Tt‖ ≤ Me−γt, t ≥ 0.

Denote Rt := I − T2t, t ≥ 0. Then, RtG ∈ L+
tc(H) and the formula

Pt f (x) =
∫

H
f (Ttx + y)µRtG(dy), (14)
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x ∈ H, t ≥ 0 defines a Markov semigroup of operators Pt, t ≥ 0 on the space B(H) of
Borel bounded functions equipped with supremum norm, called the Ornstein–Uhlenbeck
semigroup ([27], p. 115). In particular, the formula

p(t, x, A) = Pt1A(x), (15)

(t, x, A) ∈ [0, ∞) × H × B(H), defines the transition probability function for a family
of Markov processes in H related to the semigroup {Pt} (cf. [28]). For any probability
measure η on B(H), there exists a Markov process ζη = {ζη(t) : t ≥ 0} with transition
probability (15), and with the initial distribution, the law of ζη(0), being η. Measure µG
is the unique invariant probability measure for the semigroup (14). For every p ≥ 1, the
semigroup extends uniquely to the Markov semigroup on Lp(µG) (see Theorem 8.20 and
Proposition 8.21 in [27]). If the initial law is the stationary measure, then the covariance of
the process reads

E〈ζG(t), u〉〈ζG(t + s), v〉 = 〈TsGu, v〉.

The OU process we investigate below is a coarser case of Gaussian, Markovian, and
time-homogeneous random field ξt = {(ξt)y : y ∈ Z}, t ≥ 0. It exists in a Hilbert space,
but has no transition probability function in the strict sense and no Markov semigroup on
a space of functions defined pointwise. In [17], it is defined by the covariance function

E(ξt)y(ξt+s)z =

1/2∫
−1/2

e−γ(k)se−2πik(y−z)σ(k)dk, (16)

cf. [29] p. 37. Functions γ(·) and σ(·) are positive, continuous, and even. It follows that
ξ is Markovian and lives in a weighed l2 space H. Let us denote by π the law of ξ0 on
B(H). The Ornstein–Uhlenbeck semigroup {Pt : t ≥ 0} acting on L2(π) related to ξ can
be constructed with use of the Wiener chaos decomposition—details can be read in [30].
In what follows, we obtain it by the formula analogous to (14). Either way, Pt f (x) cannot
be meaningfully determined for every x ∈ H, and our semigroup still exists in L2(π), but
we obtain the equality PtPs f (x) = Pt+s f (x) almost surely in x with respect to a family
of reference measures. It can also be established, for all t, s ≥ 0, pointwise on a dense
linear subspaces of H invariant in mappings playing role of Tt in formula (14). As a result,
the function P(t, x, A) := Pt1A(x), although not being full blown transition probability (not
well defined for every x ∈ H), can be used to construct non-stationary Markov processes
related to the Ornstein–Uhlenbeck semigroup {Pt : t ≥ 0} for a class of initial distributions.
It suffices that candidate for the initial law is absolutely continuous with respect to the
stationary measure, but starting from a single point x, is also possible with additional
assumptions on x.

2.2. Push-Forward Mappings and Related Abstract Wiener Measures

Assume that B is a real separable Banach space and H is a real separable Hilbert space
continuously and densely embedded in B, i.e., there exists a continuous mapping ι : H → B,
such that ι(H) is dense in B. Denote by ι∗ the dual mapping of ι, ι∗ : B∗ → H∗. If µ is
a Gaussian measure on B with characteristic function

µ̂(u) = exp

{
−
‖ι∗u‖2

H∗

2

}
, u ∈ B∗,

then the triple (B, H, µ) is called the abstract Wiener space (cf. [31]).
Let us fix a sequence λ = {λz, z ∈ Z} of positive numbers satisfying ∑z∈Z λz < ∞.

We introduce the following Hilbert spaces over the real field:
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• Hλ—the space of sequences x = {xz : z ∈ Z} with finite norm

‖x‖λ =
(

∑
z∈Z

λz(xz)
2
)1/2

and the inner product
〈x, y〉λ = ∑

z∈Z
λzxzyz;

• H∗λ—the dual of Hλ represented by sequences u = {uz : z ∈ Z}with the inner product
and norm defined by

〈u, v〉λ∗ = ∑
z∈Z

λ−1
z uzvz, ‖u‖2

λ∗ = ∑
z∈Z

λ−1
z (uz)

2.

The dual relation between x ∈ Hλ and u ∈ H∗λ is given by

(x, u) = ∑
z∈Z

xzuz.

We denote by T the interval [−1/2, 1/2] with topology of a circle, i.e., with endpoints
−1/2 and 1/2 identified, and we define the following set of real functions

E := C(T) ∩
{

F(·) : ∀k∈T F(k) > 0∧ F(k) = F(−k)
}

,

where C(T) is the space of all real continuous functions on T. By u, we denote complex
conjugation of complex number u. For fixed F(·) ∈ E , the space of functions

Le
2(F) :=

{
g(·) : g(−k) = g(k), k ∈ T,

and
∫
T
|g(k)|2F(k)dk < ∞

}
is Hilbert space with the inner product

〈 f , g〉F =
∫
T

f (k)g(−k)F(k)dk.

The discrete Fourier transform û = Fu of a sequence u = {uz : z ∈ Z} ∈ l1(Z) is
defined by the formula

û(k) = ∑
z∈Z

uze−2πikz, k ∈ T, (17)

and, for u ∈ l2(Z), it is defined as the extension of (17) to the isometry between l2(Z) and
Le

2(1), here 1 ≡ 1 on T. The inverse Fourier transform F−1 f of a function f integrable on
T will be denoted by f̃ :

f̃z =
∫
T

e2πikz f (k)dk, z ∈ Z.

All norms ‖ · ‖F, F ∈ E , are equivalent. The image of Le
2(F) under the inverse Fourier

transform F−1 is l2(Z), which is dense in Hλ. Any Le
2(F) generates a centered Gaussian

measure µF on Hλ with the characteristic function

µ̂F(u) = exp

{
−
‖û‖2

F
2

}
, u ∈ H∗λ.

The covariance of µF reads∫
Hλ

(x, u)(x, v)µF(dx) = 〈û, v̂〉F, u, v ∈ H∗λ.
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For any measurable mapping J : Hλ → Hλ and probability measure µ on B(Hλ), we
denote by J µ the push-forward measure of µ under J defined by

J µ(A) := µ{x : J x ∈ A}, A ∈ B(Hλ).

By δy = {(δy)z : z ∈ Z} we denote the Kronecker delta: (δy)y = 1 and (δy)z = 0 if
z 6= y.

Lemma 1. Let X = {Xz : z ∈ Z} be a sequence of independent identically distributed (i.i.d.)
standard Gaussian random variables on (Ω,F ,P). We claim the following.

(1) For every u ∈ l2(Z) and F ∈ E , the series ∑z∈Z Xz(JFu)z, where

(JFu)z :=
∫
T

e2πikzû(k)F(k)dk,

is convergent in L2(Ω,F ,P) and almost surely (a.s.) on Ω.
(2) Let us denote by JFu(X), for u ∈ l2(Z), a real-valued random variable almost surely given

by convergent series of point (1)

JFu(X)
a.s.
= ∑

z∈Z
Xz(JFu)z. (18)

The sequence {JFδz(X) : z ∈ Z}, as the RZ-valued function of ω ∈ Ω, is almost surely
Hλ-valued. If J̃F(X) is a Hλ-valued random variable satisfying

J̃F(X)
a.s.
= {JFδz(X) : z ∈ Z},

then the distribution of J̃F(X) is µF2 .

Assume that ξG, G ∈ E , is a Hλ-valued random variable on (Ω,F ,P) with the distribution
µG.

(3) If u ∈ l2(Z), F ∈ E , then the series ∑z∈Z(ξG)z(JFu)z is convergent in L2(Ω,F ,P) and
almost surely on Ω.

(4) Let a real-valued random variable JFu(ξG), for u ∈ l2(Z), be such that

JFu(ξG)
a.s.
= ∑

z∈Z
(ξG)z(JFu)z. (19)

The sequence {JFδz(ξG) : z ∈ Z} almost surely belongs to Hλ. If J̃F(ξG) is a Hλ-valued
random variable satisfying

J̃F(ξG)
a.s.
= {JFδz(ξG) : z ∈ Z},

then J̃F(ξG) has the distribution µF2G.

Proof. Let us prove (1). At first we note that, for u, v ∈ l2(Z), ∑z∈Z(JFu)z(JGv)z = 〈û, v̂〉FG.
This is the Parseval’s identity. For i < j, we obtain

E
∣∣∣ j

∑
z=i

Xz(JFu)z

∣∣∣2 =
j

∑
z=i
|(JFu)z|2 ≤ ‖û‖2

F2 (20)

and we conclude that the series ∑z∈Z Xz(JFu)z is convergent in L2(Ω). By the Doob
martingale convergence theorem, the uniform boundedness of partial sums in (20) implies
that the series converges not only in L2(Ω) but also P-a.s.
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Now, we prove (2). A real valued random variable JFu(X) satisfying (18), as L2-limit
of centered Gaussians, is centered Gaussian. By (20), E|JFu(X)|2 = ‖û‖2

F2 and

E ∑
|z|≤N

λz|JFδz(X)|2 = ∑
|z|≤N

λz‖δ̂z‖2
F2

≤ ∑
z∈Z

λz

∫
T

F2(k)dk < ∞.

It follows that the series ∑z∈Z λz|JFδz(X)|2 is finite P-almost surely. Hence, there exist
a Hλ-valued Gaussian random variable J̃F(X) which equals {JFδz(X) : z ∈ Z} on a set A
of probability 1. For u ∈ H∗λ, ω ∈ A, i < j

∑
i≤z≤j

uz ∑
y∈Z

Xy(ω)(JFδz)y =

∑
y∈Z

Xy(ω)
∫
T

e2πiky ∑
i≤z≤j

uze−2πikzF(k)dk.

Let i→ −∞, j→ ∞. The left hand side is convergent to (J̃F(X(ω)), u). The right hand
side, having L2(A,F ,P)—norm squared equal to

∫
T
∣∣∑i≤z≤j uze−2πikz

∣∣2F2(k)dk, converges
in L2 to ∑y∈Z Xy(JFu)y. We conclude that

(J̃F(X), u) a.s.
= JFu(X).

The covariance of the centered Gaussian J̃FX is

E(J̃FX, u)(J̃FX, v) = 〈û, v̂〉F2 , u, v ∈ H∗λ,

so it has the law µF2 .
Let us now show (3) and (4). We calculate

E
∣∣∣ ∑

i≤z≤j
(ξG)z(JFu)z

∣∣∣2 =

∫
T

∣∣∣ ∑
i≤z≤j

e−2πikz(JFu)z

∣∣∣2G(k)dk.

In Le
2(G), we have ∑z∈Z e−2πi(·)z(JFu)z = û(·)F(·), so the series ∑z∈Z(ξG)z(JFu)z is

convergent in L2(Ω), and by the Doob martingale convergence theorem it also converges
almost surely. In the above considerations, we can replace ξG with J̃√GX as both have the
same distribution µG. Now, we consider the following almost sure equality

∑
i≤z≤j

(J̃√GX)z(JFu)z
a.s.
=

∑
y∈Z

Xy ∑
i≤z≤j

(J√Gδz)y(JFu)z, i < j. (21)

(J√Gδz)y = (J√Gδy)z holds for all y, z ∈ Z. Series ∑z∈Z(J√Gδz)y(JFu)z is convergent,

equals 〈δ̂y, û〉F√G = (JF
√

Gu)y, and ∑y∈Z Xy(JF
√

Gu)y belongs to L2(Ω). We pass to the
L2(Ω)-limits on both sides of (21). We obtain that

JFu(J̃√GX)
a.s.
= ∑

z∈Z
(J̃√GX)z(JFu)z

a.s.
=

a.s.
= ∑

y∈Z
Xy(JF

√
Gu)y

a.s.
= JF

√
Gu(X). By this,
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E ∑
|z|≤N

λz|JFδz(ξG)|2 = E ∑
|z|≤N

λz

∣∣∣JF
√

Gδz(X)
∣∣∣2

= ∑
|z|≤N

λz‖δ̂z‖2
F2G ≤ ∑

z∈Z
λz

∫
T

F2(k)G(k)dk < ∞,

and it follows that the series ∑z∈Z λz|JFδz(ξG)|2 is finite P-almost surely. Denote by J̃FξG
a Hλ-valued Gaussian random variable such that

J̃FξG
a.s.
= {JFδz(ξG) : z ∈ Z}.

We have

(J̃FξG, u) a.s.
= ∑

z∈Z
uz ∑

y∈Z
(ξG)y

∫
T

e2πik(y−z)F(k)dk

a.s.
= ∑

y∈Z
(ξG)y(JFu)y

a.s.
= JFu(ξG).

The covariance of J̃FξG is

E(J̃FξG, u)(J̃FξG, v) = 〈û, v̂〉F2G, u, v ∈ H∗λ.

Definition 1. We denote by AF the set of all x ∈ Hλ for which the series ∑y∈Z xy(JFδz)y converges

for every z ∈ Z, and the sequence
{

∑y∈Z xy(JFδz)y : z ∈ Z
}

belongs to Hλ.

Remark 1. By Lemma 1, for fixed u in H∗λ the series ∑z∈Z xz(JFu)z is convergent on a set of
measure µG equal to 1. Also by the Lemma, µG(AF) = 1 for every G ∈ E .

Definition 2. For any F ∈ E , we define mapping JF : Hλ → Hλ by

(JFx)z :=

 ∑
y∈Z

xy(JFδz)y, x ∈ AF,

0, x ∈ Hλ\AF,

z ∈ Z, here 0 = (. . . 0, 0, 0 . . . ).

Setting zero on negligible set in above definition is arbitrary and made only to have JF
well defined on the whole of Hλ. We note that JF is not linear on Hλ, but JF|AF is linear,
which is crucial.

By µ ∗ ν, we denote the convolution of probability measures µ and ν, i.e., for any
measurable set A

µ ∗ ν(A) =
∫∫

H2
λ

1A(x + y)µ(dx)ν(dy).

Proposition 1. For arbitrary F, G, H ∈ E :

(a) The measure µFG is the push-forward measure of µF under J√G:

µFG(A) = µF
{

x : J√Gx ∈ A
}

, A ∈ B(Hλ);

(b) JFJG
a.s.
= JFG with respect to µH ;

(c) µF ∗ µG = µF+G.
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Proof. Proving (a), it is enough to notice that, by Lemma 1, the law of J√G considered on
probability space (Hλ,B(Hλ), µF) is µFG. Now, we prove (b). By (4) of Lemma 1, both JFG
and JFJG have the law µF2G2 H when considered on (Hλ,B(Hλ), µH) and

µH(x : JFJGx = 0) = µH(x : JFGx = 0)

= µF2G2 H({0}) = 0.

Let us denote by CFG the set of x ∈ Hλ for which JFJGx 6= 0 and JFGx 6= 0. Then,
µH(CFG) = 1 and for z ∈ Z, x ∈ CFG

(JFGx)z = ∑
y∈Z

xy(JFGδz)y =

= ∑
y∈Z

xy ∑
y′∈Z

(JGδy)y′(JFδz)y′ ,

and (JFJGx)z = ∑
y′∈Z

∑
y∈Z

xy(JGδy′)y(JFδz)y′ .

We recall that (JGδy)y′ = (JGδy′)y. By (3) of Lemma 1, the series x 7→ ∑y∈Z xy(JGδy′)y
belongs to L2(Hλ,B(Hλ), µH) for every y′ ∈ Z, and so does the finite linear combination of
such series

x 7→ ∑
y∈Z

xy ∑
i≤y′≤j

(JGδy)y′(JFδz)y′ . (22)

As i → −∞ and j → ∞, (22) converges in L2(Hλ,B(Hλ), µH) to (JFG(·))z. On the
other hand, on x ∈ CFG the value of (22) can be rewritten as

∑
i≤y′≤j

(JGx)y′(JFδz)y′ . (23)

Combining L2(µH)-convergence of (22) to (JFG(·))z, convergence of (23) to (JFJGx)z
for x ∈ CFG, and equality of both on CFG we obtain (b). Regarding (c), it suffices to note
that µ̂Fµ̂G = µ̂F+G.

2.3. Nonstationary OU Processes

Having push-forward mappings constructed, we can now bring back the OU semi-
group and define the quasi-transition probability P(t, x, A) with formulas analogous
to (14) and (15). Let γ(·), σ(·) ∈ E and let et(·), ht(·) ∈ E be given by

et(k) := e−γ(k)t, ht(k) := 1− e−2γ(k)t,

k ∈ T, t ≥ 0.

Lemma 2. Let f : Hλ → R be integrable with respect to µσ. For t ≥ 0 let Pt f be given by

Pt f (x) =
∫

Hλ

f (Jet x + y)µhtσ(dy), x ∈ Hλ. (24)

Then:

(a) If f ∈ Lp(µσ) for some p ≥ 1, then does Pt f and ‖Pt f ‖Lp(µσ) ≤ ‖ f ‖Lp(µσ);
(b) Pt1Hλ

= 1Hλ
;

(c) Given that x ∈ Aes ∩Aet+s , Jes x ∈ Aet and Jet+s x = JetJes x, it holds

PtPs f (x) = Pt+s f (x).

In particular, PtPs f = Pt+s f µF-a.s. for every F ∈ E .
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Proof. Using Jensen inequality, properties listed in Proposition 1 and identity e2
t + ht = 1,

we calculate ∫
Hλ

|Pt f (x)|pµσ(dx) ≤∫∫
H2

λ

| f (Jet x + y)|pµσ(dx)µhtσ(dy) =∫
Hλ

| f (z)|pµe2
t σ ∗ µhtσ(dz) =

∫
Hλ

| f (z)|pµσ(dz).

This proves (a). (b) is obvious. Under assumptions on x in (c), which hold µF-almost
surely, F ∈ E , we have PtPs f (x) =

=
∫∫

f
(
Jet(Jes x + y) + z

)
µhsσ(dy)µhtσ(dz)

=
∫∫

f
(
Jet+s x + y + z

)
µe2

t hsσ(dy)µhtσ(dz)

=
∫

f
(
Jet+s x + w

)
µ(e2

t hs+ht)σ
(dw) = Pt+s f (x).

It follows from Lemma 2 that {Pt : t ≥ 0}, given on integrable functions by (24),
constitutes a Markov semigroup on every Lp(µσ), p ≥ 1. Now, let us define

P(t, x, A) := Pt1A(x) =
∫

Hλ

1A(Jet x + y )µhtσ(dy),

for x ∈ Hλ, t ≥ 0, A ∈ B(Hλ). This is deficient transition probability function, because
it is not properly defined for x /∈ Aet . But the Chapman–Kolmogorov equation, which
can be expressed as PtPs1A(x) = Pt+s1A(x), holds almost surely in x for every µF, F ∈ E .
We can also identify dense subsets of Hλ consisting of x for which assumptions in (c) of
Lemma 2 are satisfied for every t, s ≥ 0. It follows that we can construct nonstationary
Markov processes related to the semigroup {Pt} for a class of initial distributions.

Theorem 1. Let η be a probability measure on B(Hλ) satisfying at least one of the following
two conditions:

(i) η is absolutely continuous with respect to some measure µF, F ∈ E ;
(ii) η(D) = 1 for a set D satisfying D ⊆ Aet for all t > 0, x ∈ D ⇒ Jet x ∈ D for all t > 0,

and x ∈ D⇒ JetJes x = Jet+s x for all t, s > 0.

For arbitrary n ∈ N, 0 = t0 < t1 < · · · < tn and A0, A1, . . . , An ∈ B(Hλ) denote

Pt1,t2,...,tn(A0 × A1 × A2 × · · · × An) :=∫
A0

Ps1 [1A1 Ps2 [. . . Psn−1 [1An−1 Psn1An ] . . . ]](x) η(dx),

where sk = tk − tk−1, k = 1, . . . , n. There exists Markov process ξη = {ξη(t) : t ≥ 0} in Hλ with
finite-dimensional distributions given by

P[ξη(0) ∈ A0, ξη(t1) ∈ A1, . . . , ξη(tn) ∈ An]

= Pt1,...,tn(A0 × A1 × · · · × An).

Proof. Pt1,...,tn defines a probability measure on Hn+1
λ . For k = 2, . . . , n− 1, denote

Rk := 1Ak Psk+1 [1Ak+1 . . . Psn−1 [1An−1 Psn1An ] . . . ],
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and Rn := 1An , so for k ∈ {1, . . . , n− 1}, we can write

Pt1,...,tn [A0 × A1 × · · · × An] =∫
A0

Ps1 [1A1 Ps2 [. . .Psk [1Ak Psk+1 Rk+1] . . . ]](x)η(dx).

If Ak = Hλ for some k ∈ {1, . . . , n− 1} then Psk [1Ak Psk+1 Rk+1](y) = Psk Psk+1 Rk+1(y),
y ∈ Hλ, and by (c) of Lemma 2 it holds

Pt1,...,tn [A0 · · · Ak−1 × Hλ × Ak+1 · · · An] =

=
∫

A0

Ps1 [1A1 Ps2 [. . . Psk+sk+1 [Rk+1] . . . ]](x)η(dx)

= Pt1,...tk−1,tk+1,...,tn [A0 · · · Ak−1 × Ak+1 · · · An].

Also, trivially Pt1,...,tn [A0 × · · · × An−1 × Hλ] equals Pt1,...,tn−1 [A0 × · · · × An−1]. Thus,
the consistency conditions of the Kolmogorov extension theorem (cf. [32]) are satisfied for
the family of measures Pt1,...,tn , and the process ξη exists.

Remark 2. Examples of a set D satisfying assumption (ii) of Theorem 1 are:

� Space l2(Z). If x ∈ l2(Z), then JFx is the inverse Fourier transform of x̂F ∈ Le
2(1).

� If γ(·) is of bounded variation, then also is e−γ(·)t for every t > 0. Now, let N ∈ N and
assume that F(·) ∈ E is of bounded variation. It follows that the series S(N, F, y, w) :=

1
N ∑

z∈Z

∫ N/2

−N/2
e−2πizle2πi(y−w)l/N F(l/N)dl

is convergent ([33], p. 156). If x = {xz : z ∈ Z} is periodic with period N, then

N−1

∑
w=0

xwS(N, F, y, w) =

= ∑
z∈Z

N−1

∑
w=0

xw+Nz

∫
T

e2πik(y−w−Nz)F(k)dk

= ∑
z∈Z

xz

∫
T

e2πik(y−z)F(k)dk,

and this sum, as a function of y ∈ Z, is periodic with period N as well. In particular it belongs
to Hλ, so x ∈ AF. We conclude that if γ(·) is of bounded variation, then the set of all periodic
sequences satisfies assumptions made on D.

� Assume that the inverse Fourier transform of γ(·) belongs to l1(Z). Then, γ belongs to the
Wiener algebra A(T) defined as the linear normed space of complex functions on T with the
norm ‖F‖A(T) := ∑z∈Z |(F̃)z|. A(T) is a Banach algebra ([34], p. 32), so et(·) = e−γ(·)t

belongs to A(T) for every t > 0. If x ∈ Hλ is bounded, then∣∣ ∑
y∈Z

xy(Jet δz)y
∣∣ ≤ max

y∈Z
|xy| · ‖et‖A(T), z ∈ Z,

so x ∈ Aet and Jet x is bounded. Hence, the set of all bounded sequences satisfies assumptions
on D. By theorem of Bernstein ([34], p. 33), a sufficient condition for γ to be in A(T) is

sup
k∈T, h 6=0

|γ(k + h)− γ(k)|
|h|α < ∞

for some α > 1/2.
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If (Jet x, u)(Jet+s x, v), u, v ∈ H∗λ, is η-integrable in x, then E(ξη(t), u)(ξη(t + s), v) =∫∫∫
(y, u)(z, v)P(s, y, dz)P(t, x, dy)η(dx) =∫

Hλ

(Jet x, u)(Jet+s x, v)η(dx)

−
∫
T

e−γ(k)(2t+s)û(k)v̂(−k)σ(k)dk

+
∫
T

e−γ(k)sû(k)v̂(−k)σ(k)dk.

2.4. Equation of Heat Energy Transport on The Microscopic Scale

In the previous section, we constructed a Ornstein–Uhlenbeck stochastic process. The
covariance function of this process is given by:

Eξy(t)ξz(s) =
∫
T

e−2πik(y−z)e−γ(k)|t−s|σ(k)dk.

With this process, we disturb the dynamics in the thermal energy transport model on
a microscopic scale, replacing the Gaussian noise in the model introduced in [12] with the
OU process. Now, the thermal energy transport equations at the microscopic scale have the
following form:

dqy(t)
dt

= py(t)

dpy(t)
dt

= −(α ∗ q(t))y +
√

ε ∑
k=−1,0,1

(Yy+kpy(t)) ξy+k(t), y ∈ Z.
(25)

We will use Boltzmann equations for simulation. The first of them are those obtained
in [13], where the vibrations were disturbed by Gaussian noise. The second one can be
obtained by rescaling Equation (25) to the mesoscopic scale, and its form is the same as
in [17].

3. Numerical Simulations

We present numerical simulations that support our predictions. Consider the Boltz-
mann linear equation at the mesoscopic scale with an initial condition

∂tu(t, x, k) + ω′(k)∂xu(t, x, k) = Lu(t, x, k), (26)

u(0, x, k) = u0(x, k).

We assume that the initial condition is constant on a long interval of the space coordi-
nate x (energy is uniformly distributed on the one-dimensional rod). With this assumption
∂xu(t, x, k) = 0. Thus, we can omit dependence on x and instead of u(t, x, k), we can write
u(t, k), which is the distribution of energy over normal modes at time t. The initial value
problem (26) reduces to

∂tu(t, k) = Lu(t, k), (27)

u(0, k) = u0(k).

We impose the initial condition u0(k) highly unevenly distributed over normal modes
(see the graph for t = 0 on Figure 5), and we solve (27) numerically. For the model with
Gaussian noise, i.e., with collision kernel (10) we obtain the following picture of u(t, k), at
chosen time instants, seen on Figure 5.
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Figure 5. Evolution of energy distribution on normal modes under the regime of linear Boltzmann
equation related to Gaussian noise perturbation at the microscopic scale. The initial distribution does
not depend on space variable x.

Initially, the energy is set concentrated on modes k = . . .−0.03, −0.01, 0.01, 0.03,
0.05. . . After 2400 time steps, we observe that energy is uniformly distributed over all
modes outside a small vicinity of 0; however, the spikes closest to k = 0 are still visible. This
corresponds to the fact that long-wave energy is not susceptible to dissipation, which results
in superdiffusive heat flow. Now, let us consider the scattering rates obtained from linear
dynamics with Ornstein–Uhlenbeck perturbation, i.e., determined by the kernel (12). We
made both models comparable by normalizing both kernels, i.e., by dividing each R(k, k′)
by ∑k ∑k′ R(k, k′). If the scattering rates are given by (12) with γ and σ being a positive
constant functions (and therefore separated from zero), the plots of energy distribution are
as seen on Figure 6.

Figure 6. Evolution of energy distribution on normal modes under the regime of linear Boltzmann
equation related to Ornstein–Uhlenbeck perturbation at the microscopic scale, with γ ≡ 1

4 and σ ≡ 1.
The initial distribution does not depend on space variable x.

The tendency of long waves to conserve energy has strengthened. However, as we
indicated in the introductory chapters, the superdiffusion coefficient α = 3/2 still emerges
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from such dynamics. The way to change the situation is to let γ(k) → 0 when k → 0.
Letting γ(k) = 1

5 | sin(2πk)|1/4, k ∈ [−1/2, 1/2], we observe a radical change in the picture
of the evolution of the energy distribution with respect to normal mode, see Figure 7.

Figure 7. Evolution of energy distribution on normal modes under the regime of linear
Boltzmann equation related to Ornstein–Uhlenbeck perturbation at the microscopic scale, with
γ(k) = 1

5 (sin(2πk))1/4 and σ ≡ 1. The initial distribution does not depend on space variable x.

The tendency of long waves to conserve energy increased significantly, and interest-
ingly, we also see that the modes related to short wavelengths—in neighborhood of 1/2
(−1/2)—became conservative. The picture of energy evolution when we admit indefinitely
long time correlation is so different from the first two simulations for superdiffusion with
the α parameter equal to 3/2 that it may confirm the hypothesis about the assumption
leading to the superdiffusion model with α different from 3/2. The final confirmation
should be made by mathematical considerations discussed in the next section.

4. Discussion and Future Work

The Ornstein–Uhlenbeck random field ξ = (ξx(t)), in contrast to the Gaussian noise,
has non-zero correlations over time and thus appears to be more natural for modeling a
physical process which has some inertia. In [17], this Ornstein–Uhlenbeck process was
defined as stationary Gaussian random field with postulated covariance function (16).
The appropriate theorem guarantees its existence, see Theorem 8.2 in [30]. It has properties
of a Markov process; however, to our knowledge, there is no transition probability function
for it that meets the definition given in [35] p. 156. In the present work, we proceed
a different path of construction of ξ. We construct the function P(t, x, A), which has a
properties of transition probability (let us call it quasi-transition probability function) that
allows constructing Markov processes whose stationary representative is the Ornstein–
Uhlenbeck process introduced in [17]. The construction of the function P was the most
difficult task. The quasi-transition probability function allows for a different approach to
the analysis of equations with such a disturbance. With this approach, we can think of
weakening the assumptions on temporal correlations for such a process, which may be of
great importance for the heat flow model. The collision kernel (12) depends on the time
correlation γ(k) of OU perturbation, and we would like to meet the condition (13). This can
be fulfilled by making the function γ(k) dependent on the scaling parameter ε > 0, which
tends to zero while approaching the macroscopic scale. Namely, we define the function
γ(k) = ε + γ̃(k), where γ̃(k) is assumed to satisfy (13). While the parameter ε tends to zero,
γ(k) → γ̃(k) and we asymptotically approach the situation when time correlations are
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indefinitely long. The presented methodology is a very extensive task that goes beyond the
scope of current project. Therefore, it will be further pursued in our subsequent research.
Consequently, our objective is to derive a superdiffusive heat equation with an α coefficient
that differs from 3/2.
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16. Komorowski, T.; Stępień, Ł. Long Time, Large Scale Limit of the Wigner Transform for a System of Linear Oscillators in One

Dimension. J. Stat. Phys. 2012, 148, 1–37. [CrossRef]
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