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Abstract: While the original equipment manufacturers are developing engines that can withstand
higher PCP, the methodology to maximize the thermal efficiency gain with different PCP limits is
still not well-known or documented in the literature. This study aims to provide guidance on how
to co-optimize air system parameters, compression ratio, and intake valve closing (IVC) timing of
heavy-duty turbocharged diesel engines to enhance thermal efficiency with peak cylinder pressure
(PCP) constraints. In this study, a one-dimensional turbocharged engine model is established and
validated by experimental data. The effects of turbocharger efficiency, boost pressure, high-pressure
exhaust gas recirculation (HP EGR) ratio, compression ratio (CR), and IVC timing on diesel engine
efficiency are assessed under PCP constraints through parametric analysis. The results indicate that
for enhancing engine thermal efficiency under limited PCP, an increment in boost pressure and CR,
and late IVC timing compared to baseline is required. By multiple parameter optimization, the best
parameter combination under different PCP constraints is proposed. At a PCP limit of 20 MPa, the
combination of a compression ratio of 18.57, boost pressure of 298 kPa, and IVC timing of −95.2 ◦CA
ATDC yields a 1.56% (absolute value) improvement in ITEn over the baseline condition. Raising the
PCP limits from 20 MPa to 25 MPa requires increasing the compression ratio to 21.92, boost pressure
to 308 kPa, and delaying the intake valve closing timing to −88.7 ◦CA ATDC, which results in an
absolute improvement of 0.86% in ITEn. Baseline engine configuration is updated accordingly to
validate the thermal efficiency improvement strategy at a 25 MPa PCP limitation. Experimental
results demonstrate a 2.2% (absolute value) improvement in brake thermal efficiency and 1.98%
(absolute value) improvement in overall energy efficiency.

Keywords: turbocharged diesel engine; thermal efficiency; peak cylinder pressure constraint;
parameters optimization

1. Introduction

As global climate change has drawn significant public attention, there is a pressing
need to reduce carbon emissions in all sections, including transportation. Heavy-duty
trucks, which are mostly powered by diesel engines, account for more than 40% of road
transport-related CO2 emissions [1]. This percentage will persistently increase with the
long-term growth of road freight transport activities and the electrification of light-duty
vehicles [2]. Fuel cell and battery electric vehicles are the most promising solutions to
decarbonize transportation [3]. However, the internal combustion (IC) engine will remain
the predominant power source of heavy-duty trucks in the coming decades due to the
advantages of IC engines in terms of durability, cost-effectiveness, power density, and
infrastructure availability [4]. Energy efficiency improvement is the key pillar to a neutral
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scenario, which mitigates greenhouse gas emissions in the sectors where it may be chal-
lenging to directly transition to green energy sources [5,6]. Therefore, continuous efficiency
improvement in diesel engines is needed to reduce the CO2 emission from heavy-duty
trucks towards the 2 ◦C temperature rise commitment of COP21 [7]. Moreover, increasingly
stringent fuel consumption standards and greenhouse gas regulations are implemented in
most regions of the world to push original equipment manufacturers (OEMs) to improve
engine efficiency [4].

The conversion efficiency of an IC engine is practically limited by friction, heat transfer,
heat work conversion efficiency, and pumping work. Models that combine several sub-
models for individual processes have been developed to simulate engine operation cycles,
demonstrating that increasing CR is an effective way to increase thermal efficiency. Jerald [8]
discussed the effect of CR on the maximum theoretical thermal efficiency through a zero-
dimensional thermodynamic model. The results indicated when CR increases from 20 to 30,
the maximum theoretical thermal efficiency is increased from 62.5% to 66.9%. Accordingly,
the peak pressure is also increased from 20.9 MPa to 31.3 MPa. Miller et al. [9] conducted
tests on a specialized device to determine the indicated thermal efficiency of compression
ratios ranging from 30 to 100. The results showed that the indicated thermal efficiency
ranged from 52% to 60%. When the compression ratio is less than 40, increasing the
compression ratio can significantly improve the indicated thermal efficiency with PCP over
100 MPa. These studies showed that peak cylinder pressure will inevitably increase with
each increment of thermal efficiency, which challenges the strength of the engine block.

When increasing the CR to improve thermal efficiency, another problem arises.
Liu et al. [10] discussed the influence of CR on indicated thermal efficiency by a one-
dimensional single-cylinder engine model. With the increase in CR, ITE first increased
and then decreased due to the increase in heat transfer loss. Kenji [11] reported a heat
loss percentage increase in a single-cylinder engine when CR increased from 18 to 26 at
a 0.8 MPa IMEP load. Lean combustion is an essential strategy to lower the combustion
temperature to reduce in-cylinder heat transfer losses, which is normally accomplished
by increasing boost pressure. It has been proved by many studies that increasing boost
pressure improves the indicated thermal efficiency [12,13]. Nevertheless, the increased
boost pressure comes at the cost of pumping work [14,15] and higher PCP.

Combustion phasing is another factor that determines thermal efficiency. For the
specified engine and operating conditions, there is an optimum combustion phasing that
provides highest brake thermal efficiency. What is more, the optimum combustion phasing
is the function of engine operating conditions and design variables. As the combustion
phasing gradually advances before reaching the optimal CA50, both thermal efficiency and
PCP increase synchronously [16].

From the above review, increasing CR, increasing combustion overall lean extent, or
advancing combustion phasing is beneficial to ITEn, resulting in higher PCP. Therefore,
these strategies for thermal efficiency improvement are challenged by PCP limitations.
Motivated by these conclusions, OEMs are constantly strengthening the engine to withstand
higher PCP [9]. For example, OEMs, such as Cummins, Volvo, Daimler, Navistar, and
Paccar, raised the PCP limitations of diesel engines, resulting in brake thermal efficiency
above 50% in the super-truck program. Table 1 lists the detailed engine specifications,
which show that both high compression ratio and high peak cylinder pressure concepts are
emphasized in their reports, and Volvo disclosed the PCP of 27 MPa.

Table 1. High-efficiency engine specifications in the super-truck project [17].

OEM Engine CR PCP Engine Only BTE

Cummins ISX15 21.4 ≥23.8 MPa [18] 50.6%
Volvo D11 23 27 MPa 50.4%

Navistar MaxxForce 13 - ≥24 MPa >51%
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Even though thermal efficiency improvement can be achieved by increasing PCP with
the above strategy, high PCP leads to durability issues, an increment in manufacturing
cost, and increased mechanical losses, which are detrimental to enhancing brake thermal
efficiency [19]. Ryan [20] reported that increased CR did not show evident benefits in
BTE, owing to increased friction accompanied by a significant increase in PCP. There-
fore, considerable research has been conducted on improving thermal efficiency within
PCP limits.

The Miller cycle is one of the ways to reduce PCP and extract more work from fuel-
released energy, which features the actual compression ratio being lower than the actual
expansion ratio [21]. The Miller cycle is supposed to improve theoretical cycle efficiency
by reducing compression work consumption in the compression stroke. The Miller cycle
can be achieved by early intake valve closing (IVC) timing or late IVC timing to reduce
the effective compression ratio. On the one hand, reducing the effective compression ratio
with late IVC timing at high loads can lower the PCP at high compression ratios. On the
other hand, late or early IVC timing will cause volumetric efficiency reduction. Garcia [22]
experimentally demonstrated that the volumetric efficiency of late IVC timing declined
under constant boost pressure. Although late IVC timing under constant boost pressure
reduced the PCP, the ITE also declined as the air–fuel ratio was reduced. However, the ITE
improvement and PCP reduction could be achieved at the same time by combining late
IVC timing, high boost pressure, and a higher efficiency turbocharging system. Hence, the
Miller cycle strategy has been integrated with other strategies to improve thermal efficiency.
Xiaoyang Yu et al. [23] conducted experimental research on a two-stage turbocharged diesel
engine at a 2 MPa BMEP operating condition. The experimental results showed that the
improvement in pumping work can be achieved by adjusting the pressure ratio distribution
through a variable cross-section supercharger. The high boost pressure combined with a late
intake valve closing strategy maintained the air density in the cylinder while improving the
engine’s pumping work and combustion process. Kitabatake [24] reported that the BSFC of
the J05 mode is improved by 8.9% when increasing CR from 16.2 to 20 and adjusting intake
and exhaust valve timing by an electro–hydraulic cam-less system on a multi-cylinder
heavy-duty diesel engine. Kongzhao et al. [25] combined 14.5 geometry CR with the
Miller cycle in a natural gas engine, improving thermal efficiency by 4.1% at 19 bar BMEP.
This literature proves that combining high-geometry CR and the Miller cycle can improve
thermal efficiency under PCP constraints.

Another strategy is high-pressure exhaust gas recirculation (HP EGR), which is mainly
used to reduce NOx emissions in modern diesel engines [26,27]. Giorgio’s [28,29] exper-
iment found that increasing the opening of the HP EGR valve in a turbocharged multi-
cylinder engine can reduce the brake-specific fuel consumption (BSFC) and the PCP of
combustion as the result of a decline in pumping work. EGR-diluted low-temperature
combustion also lowers the combustion temperature [30], which is beneficial to reducing
heat losses. However, a reduction in cylinder oxygen concentration by EGR slows down
the combustion rate and prolongs combustion duration, which is unfavorable for thermal
efficiency improvement [31,32]. Moreover, HP EGR results in a portion of the exhaust gas
energy being dissipated as cooling losses in the EGR cooler, which could have otherwise
been utilized for expansion work in the turbine. What is more, the HP EGR ratio affects
the isentropic efficiency of compressors and turbines, the boost pressure ratio, and the air
mass flow rate in multi-cylinder engines [33]. Given the complicated impacts of the HP
EGR ratio, it is unclear what HP EGR ratio should be applied to improve engine thermal
efficiency under PCP limits.

Despite the extensive efforts made by scholars to improve diesel engine efficiency,
they have primarily focused on only a subset of the factors. Consequently, there has been
a lack of guidance on how to co-optimize air system parameters, compression ratio, and
IVC timing to enhance thermal efficiency. In addition, how to utilize the advantage of
higher PCP limitations to further improve thermal efficiency by co-optimizing air system
parameters, compression ratio, and IVC timing is of interest. This study aims to explore
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practical approaches to improve turbocharged diesel engine efficiency while considering
PCP limits, and to provide guidelines for designing highly efficient turbocharged diesel
engines. In this paper, a one-dimensional (1D) engine model, including a turbocharger,
is built to simulate the diesel engine operation cycle and to investigate the effects of
turbocharging system efficiency, CR, boost pressure, HP EGR ratio, and late IVC timing on
thermal efficiency under the PCP limits. The strategy to improve thermal efficiency is then
proposed based on parametric analyses. The optimal boost pressure, compression ratio,
and intake valve closing (IVC) timing for 20 MPa, 22 MPa, and 25 MPa PCP constraints
were determined using multi-parameter optimization. In order to accelerate the multiple-
parameter optimization process, a hybrid method is put forward, which combines the
engine model and a data-driven model. In the final part, the optimized strategy is justified
by experiment.

2. Materials and Methods
2.1. Engine Description

The modeled engine is a six-cylinder diesel engine, which is adopted in a hybrid
powertrain of a heavy-duty vehicle. This diesel engine is a high-pressure common rail,
turbocharged direct injection engine with a compression ratio of 17.5 and a displacement of
7.7 L. The baseline engine specifications are shown in Table 2. The air system consists of a
single turbocharger and HP EGR. In this work, the exhaust gas introduction method is the
cooled HP EGR method, which is common in modern diesel engines.

Table 2. Baseline engine specification.

Engine Type Inline 6-Cylinder Four Stroke

Displacement 7.7 L
Bore 110 mm

Stroke 135 mm
Air system Waste gate turbocharger

Piston material Aluminum
Compression ratio 17.5

IVC timing −140.5 ◦CA ATDC
Injection system Common rail electronic system

EGR style High pressure EGR

As commercial vehicle powertrains shift toward down-speeding and hybridization,
the operation duration of low-speed high-load conditions increases [34]. This emphasizes
the potential for improving fuel economy by increasing thermal efficiency at low-speed
high-load conditions. Therefore, the operating condition selected for this study is the
1200 rpm and 1.96 MPa BMEP condition, which represents the highest thermal efficiency
operating point of the engine and corresponds to the low-speed high-load condition. In
the selected operating condition, the thermal efficiency improvement is challenged by PCP
limits. The details of the operating condition are shown in Table 3.

Table 3. Baseline operating condition.

Parameters Value

Speed 1200 rpm
Load 1.96 MPa BMEP

Injection Pressure 100 MPa
Injection timing −9 ◦CA ATDC
HP EGR ratio 0%

PCP 20 MPa
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2.2. Experimental Setup and Test Procedure

The schematic diagram of the test bench is shown in Figure 1. The sixth cylinder
pressure is recorded at the resolution of 0.5 ◦CA by a piezoelectric pressure sensor (Kistler
6125B) combined with a charge amplifier (Kistler 5018A), using an in-house data acquisition
system. The pressure data of 100 consecutive cycles are averaged for apparent heat release
rate (AHRR) calculation according to the thermodynamic model in the reference [21].
Further, fuel consumption is measured by AVL733. The test fuel is 0# diesel which is
commercially available on the Chinese market. The diesel fuel’s low heat value in this study
is taken as 42.8 MJ/kg. NOx emission is measured by Horiba Mexa-one. In addition, an
environmental conditioner and intake air conditioner are applied to control the laboratory
room temperature, intake air temperature, and humidity, respectively. The coolant-out
temperature is maintained at 88 ◦C. The main specifications of the instruments are shown
in Table 4.
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Figure 1. Schematic diagram of test bench.

Table 4. Specification and measuring accuracy of experimental apparatus.

Measured
Parameters Apparatus Range Accuracy

Speed Siemens CJ 410 0–3000 r/min ≤±1 r/min
Torque Siemens CJ 410 0–2000 Nm ≤±0.1%FS

Fuel consumption AVL 733 0–125 kg/h ±0.1%
Cylinder pressure Kistler 6125B 0–25 MPa ≤±0.3%FSO

Air flow rate Endress + Hauser 65F 0–2000 kg/h ±0.15%FS
Boost pressure JIMO pressure sensor 0–1 MPa ±0.1%FS
Temperature PT100 −50–200 ◦C ±0.5 ◦C

NOx Horiba Mexa-one 0–5000 ppm ±1.0%FS
CO2 (intake) Horiba Mexa-one 0–5% ±1.0%FS

CO2 (exhaust) Horiba Mexa-one 0–20% ±1.0%FS

The experiments were conducted in the following manner: Baseline engine perfor-
mance data were first collected on this test bench, which is applied to validate the model.
After engine parameter optimization was completed by the 1D model, the engine was
upgraded with the corresponding component and tested at the selected operating condition
on the same test bench.
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2.3. One-Dimensional Simulation Model Setup and Validation

Optimizing parameters in advance through simulation can indeed significantly reduce
the cost of the experiment. By using simulation tools, researchers can explore different
scenarios and evaluate the effects of parameter variations without the need for costly
physical experiments. Additionally, the effects of variables such as the turbocharging
overall efficiency, the boost pressure, and the EGR rate can easily investigated by simulation,
which cannot be independently controlled during the experiments. Hence, the 1D engine
model is built to simulate the operation cycle of a turbocharged diesel engine based on the
commercial software, GT-power. The model diagram is shown in Figure 2. The employed
sub-models are shown in Table 5. The peak cylinder pressure range evaluated in this study
spans from 20 MPa to 25 MPa. Notably, the existing literature underscores that within this
peak cylinder pressure variation, friction losses remain minimally impacted [19]. Hence,
the prediction model for mechanical loss is not utilized. Instead, a constant Friction Mean
Effective Pressure (FMEP) of 0.126 MPa is employed to predict BSFC, which was obtained
from experimental results.
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Table 5. Sub-model selection.

Physical Process Template

Combustion User-imposed combustion profile
Turbocharger CompressorSimple and TurbineSimple

NOx formation EngCylNOx
Heat transfer Hohenberg model

For combustion modeling, a user-imposed combustion profile model is used to de-
scribe the combustion process, which assumes that the rate of conversion from reactant to
product is proportion to the imposed burn rate. No kinetic models, intermediate species, or
dissociation products are calculated. The imposed burn rate used in the 1D simulation is
inferred by measurements of cylinder pressure to simulate the combustion behavior. Some
literature [11,35] suggests that the occasion exists that changes in boundary conditions such
as compression ratio or IVC timing result in relatively small variations in the combustion
heat release profile. And piston profile optimization can help to optimize the heat release
rate to overcome the impact, which is out of the scope of this study. Therefore, the user-
imposed combustion profile model is a reasonable choice in terms of the scope of this study
and the computation resources required by cases in this study. What is more, this method
has also been applied in other academic papers [8,10,36]. Based on experimental experience,
within the range of boost pressures examined in this paper, the excess air coefficient exceeds
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1.5. Usually, the combustion completeness of the investigated turbocharged diesel engine
is nearly 100%. So, the combustion completeness is assumed to be 100 percent. It is worth
noting that combustion phasing adjustment is achieved by shifting the combustion profile
in the x-axis direction during the simulation procedure, as shown in Figure 3.
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The boost pressure ratio, air mass flow rate, HP EGR ratio all affect the isentropic
efficiency of compressors and turbines in multi-cylinder engines, which makes it difficult
to investigate the impact of each parameter on engine efficiency by experiment. There are
two kinds of methods to model turbocharger: the performance map-based turbocharger
and the simple turbocharger model. By the performance map-based method, there are
cross-effects among the turbo-shaft speed, pressure ratio, mass flow rate, and isentropic
efficiency, whereas one of the objectives of this study is to understand the effect of each air
system parameter on thermal efficiency, which will enlighten us as to the requirements of
the air system to achieve high thermal efficiency. To decouple these parameters, a simple
turbocharger model is used, which describes the energy balance inside the turbocharger
but neglects the realistic operating characteristics of turbochargers. The boost pressure of
the model is controlled by adjusting the turbine orifice diameter, compressor efficiency, and
turbine efficiency.

The extended Zeldovich mechanism is applied to predict NOx emission. In addition to
the NOx emission data of the studied operating condition, more data are collected by adjust-
ing injection timing, injection pressure, and HP EGR ratio, varying from 500 to 3000 ppm,
and are used to validate the employed NOx model, as shown in Figure 4.
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Figure 5 shows the gross indicated thermal efficiency validation results for the studied
operating point with different combustion phasings. It is observed that the gross indicated
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thermal efficiency trend with different combustion phasing is predicted precisely. This sug-
gests that the heat transfer model and combustion model used in this study can reasonably
predict trends in thermal efficiency at different combustion phasings.
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Figure 5. Experimental and simulated ITEg at different combustion phasings.

The comparison of simulated and experimental cylinder pressure and AHRR of the
studied operating condition is shown in Figure 3. There is a pressure discrepancy when the
crank angle is between −10◦ and 10 ◦CA ATDC. This is because the actual heat release rate
is unknown, and the experimental heat release rate is calculated using zero-dimensional
models and heat transfer models. Using this heat release rate as the input to the model
introduces errors. In addition, the heat transfer model used in the simulation can also lead
to errors. Currently, there is still a lack of models that can accurately predict combustion
heat transfer in engines. From a research perspective, this difference is acceptable because
it is often necessary to use simplified models and assumptions in order to study complex
phenomena. While the resulting errors may impact the accuracy of the results, they can
still provide valuable insights. The comprehensive engine performance validation results
of the studied operating conditions are shown in Table 6. It is seen that the simulation
results are in good agreement with the experimental results, and the model can be used for
further investigation.

Table 6. Model validation results of the baseline operating conditions.

Indicators Experiment Simulation Relative Error

Boost pressure 275 kPa 275 kPa 0%
Air mass flow rate 733 kg/h 739 kg/h 0.82%

PCP 20.2 MPa 20 MPa −0.99%
ITEg 48.40% 48.41% 0.02%
ITEn 47.64% 47.59% −0.1%

PMEP −0.033 MPa −0.034 MPa 3.03%
EGR ratio 0% 0% 0%

NOx 2108 ppm 2158 ppm 1.89%

2.4. Description of Indicators

Diesel diffusion combustion inevitably leads to NOx emissions. In order to reduce
tailpipe NOx emission, a selective catalytic reduction (SCR) technique has been widely used.
It has demonstrated that NOx conversion efficiency can be as high as 100% [37], which
indicates that engine combustion would not be limited by NOx emission regulation. In this
context, the difference between high and low engine raw NOx emissions is the amount of
ammonia consumption. When calculating the conversion efficiency of energy conversion
equipment, it is important to consider the consumption of ammonia in IC engines as a
potential zero-carbon energy source for the future [38]. Assuming NOx consists of NO and
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reacts with NH3 in a standard SCR reaction [28], the overall energy efficiency index that
considers NH3 consumption can be defined as follows:

ηo =
3, 600, 000

LHVd ∗
(

BSFC + BSNOx ∗ 17
30 ∗ LHVa/LHVd

) (1)

where LHVd is the lower heating value of diesel, LHVa is the lower heating value of
ammonia, BSFC is the brake-specific fuel consumption, and BSNOx represents the brake-
specific NOx emission. Here, the lower heating value of ammonia is taken as 18.6 MJ/kg.

Other indexes, including gross indicated thermal efficiency (ITEg), ITEn, and pumping
mean effective pressure (PMEP), are defined as follows:

ITEg =

∫ 180
−180 pdV

Q
(2)

ITEn =

∫ 360
−360 pdV

Q
(3)

PMEP =

∫ 360
−360 pdV

Vs
−
∫ 180
−180 pdV

Vs
(4)

where Q is fuel energy entering the cylinder per cycle, p represents the cylinder pressure,
V is the volume of the cylinder, Vs is the sweep volume of the cylinder.

In this paper, pumping work is mainly represented by PMEP to clarify the effect of
parameters on pumping work. However, it is worth noting that PMEP is not entirely
determined by pumping work. PMEP is equal to the integrated piston work through the
intake and exhaust stroke divided by the cylinder sweep volume, which considers pumping
loss and pumping work [14]. The pumping loss is always negative due to the presence of
friction loss while pumping work can be either positive or negative.

3. Results and Discussion

The first section will carry out a parametric analysis under PCP-limited conditions,
beginning from the baseline condition. When the PCP exceeds the constraint, the com-
bustion phasing is retarded to comply with the PCP constraint. Since ITEn is decided
by many factors, the analysis focuses on the effects of each parameter on air mass flow
rate, combustion phasing, PMEP, heat losses, etc. Based on parametric analysis, a strategy
for thermal efficiency improvement is proposed in the second section. According to the
optimization results, the baseline engine configuration is upgraded to justify the thermal
efficiency improvement strategy in the final section.

3.1. Parametric Analysis
3.1.1. The Effect of Turbocharging Overall Efficiency on Thermal Efficiency

In this paper, turbocharging overall efficiency is defined as the product of compres-
sor isentropic efficiency and turbine isentropic efficiency, which represents the ratio of
the compressed air enthalpy increment relative to reclaimed exhaust gas enthalpy. The
maximum turbocharging overall efficiency is about 0.63, according to the turbocharger
supplier [33], and the value for the studied operating condition at the baseline specification
is 0.51. Figure 6 shows that ITEn significantly increases from 47.59% to 48.86% when
the turbocharging overall efficiency increases from 0.51 to 0.63. In order to explain the
improvement in ITEn, the effects of turbocharging overall efficiency on air mass flow rate,
compressor power, combustion phasing, pre-turbine pressure, and ITEg are shown in
Figure 7. It is seen that the air mass flow rate and compressor power are elevated with the
increase in turbocharging overall efficiency, while the pre-turbine pressure declines. At
the same time, combustion phasing, represented by CA50, is slightly postponed to comply
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with the PCP constraint. As a result, ITEn is improved for the enhanced combustion air
dilution extent and pumping work improvement, changing from a negative value to a
positive value. In product engines, turbocharging overall efficiency varies with operating
conditions as turbine and compressor isentropic efficiencies change with air mass flow rate
and compression ratio. This indicates that the turbocharger should be dedicated to operat-
ing efficiently at the target operating point for maximum thermal efficiency improvement.
On the other hand, PMEP which represents the pressure difference between pre-turbine
and manifold undergoes a transition from negative to positive with turbocharging overall
efficiency raised. Therefore, HP EGR is hard to introduce. The role of HP EGR in such a
high-efficiency air system is examined in Section 3.1.4. What is more, high turbocharging
overall efficiency results in low exhaust temperature, which would cause deterioration
in the after-treatment conversion efficiency. In the following section, the turbocharging
overall efficiency is set at 0.63 for the best-case assessment.
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Figure 6. The effect of turbocharging overall efficiency on ITEn under a 20 MPa PCP limitation.
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Figure 7. The effect of turbocharging overall efficiency on engine performance under a 20 MPa PCP
limitation condition.
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3.1.2. The Effect of CR on Thermal Efficiency

Figure 8 shows the effect of CR on ITEn at different combustion phasings. As the
combustion phasing is advanced, the PCP monotonically increases and ITEn first rises
and then declines. Peak ITEn increases with elevated CR at the cost of increased PCP. As
shown in Figure 9, when PCP is limited to below 20 MPa, the optimum CR is around 17.5.
It is attributed to combustion phasing being retarded when CR is elevated. In this case,
adjusting the compression ratio cannot improve thermal efficiency.
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Figure 8. The effect of CR on ITEn without PCP limitations.
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Figure 9. The effect of CR on ITEn with a PCP constraint of 20 MPa.

3.1.3. The Combining Effect of Boost Pressure and CR on Thermal Efficiency with
PCP Constraint

Figure 10 shows the effects of boost pressure on engine performance when the CR
is 17.5 and 19.5. Boost pressure represents the combustion lean extent as the air mass
flow rate being proportional to the boost pressure. In Figure 10, CA50 is postponed with
the increase in boost pressure in order to comply with PCP constraint. The PMEP value
varies from a positive value to a negative value when boost pressure increases, as more
work is performed to compress ambient air to high-pressure air. In conclusion, ITEn and
ITEg rise and then fall with the increasing air dilution extent when the CR is 17.5 and
19.5. The difference is that peak ITEn of 19.5 CR is achieved with lower boost pressure
and is higher compared to a peak ITEn of 17.5 CR. However, the combustion phasing of
CR 19.5 is retarded, and the combustion lean extent is reduced, which is unfavorable to
improving ITEn. This indicates that a trade-off between CR and boost pressure exists for
the ITEn improvement, and it is possible to achieve higher ITEn by the co-optimization of
CR and boost pressure. As shown in Figure 11, a more comprehensive ITEn comparison is
undertaken with different combinations of boost pressure and CR under a 20 MPa PCP
limitation. The peak ITEn increases from 48.86% to 49.01% by increasing CR. However,
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the CA50 is postponed, and the air dilution extent is reduced compared to the previous
benchmark. To further improve ITEn, the 20.3 CR and 0.245 MPa boost pressure are adopted
as benchmarks in the following discussion.
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Figure 10. The effects of air dilution on engine performance at different CR under a 20 MPa PCP
limitation (a) CR = 17.5, (b) CR = 19.5.
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Figure 11. Co-optimization of CR and Pin for thermal efficiency improvement under 20 MPa
PCP limitation.

3.1.4. The Combining Effect of Boost Pressure and EGR Dilution on Thermal Efficiency
with a PCP Constraint

As mentioned in the Introduction, it has been observed that HP EGR can improve
pumping work and reduce PCP. There is an interaction among HP EGR, boost pressure,
and turbocharging efficiency that makes it difficult to determine the effect of EGR dilution
on engine performance. With the convenience of a single turbocharger model, the effect of
EGR on engine performance is examined at the condition of constant boost pressure and
constant turbocharging overall efficiency. Figure 12 illustrates the impact of EGR dilution
on engine efficiency at varying boost pressures. The point at the upper edge of the contour



Energies 2023, 16, 6478 13 of 23

means that the EGR valve is fully opened. The HP EGR ratio is restricted by the pressure
difference between the pre-turbine and manifold pressure, which is why the top left section
of each figure is blank. From Figure 12, it can be observed that the maximum EGR ratio
increases with the increase in boost pressure. When high-pressure EGR is applied, part of
the exhaust gas is circulated into the manifold after being cooled rather than going through
the turbine for expansion work, which leads to exhaust gas energy loss. The expansion
ratio of the turbine would increase to compensate for this loss and to balance the power
consumed by the compressor. However, the air mass flow rate is reduced when the EGR
ratio increases, as fresh air is replaced by exhaust gas. Therefore, compressor power is
reduced when the boost pressure remains unchanged. Consequently, pumping work is
subtly improved by increasing the EGR ratio at a constant boost pressure. Although heat
losses are expected to decline for EGR diluted combustion as it has a lower combustion
temperature, this effect is shown to be negligible for the variation range of the EGR ratio.
In addition, exhaust gas leads to a lower in-cylinder charge-specific heat capacity ratio,
which reduces conversion efficiency [39]. Hence, ITEg is slightly reduced when the EGR
ratio increases. However, this effect is not obvious in the low- and high-boost pressure
conditions. Overall, the EGR dilution is found to have a negligible effect on ITEn, while
the boost pressure is the critical factor determining ITEn, and peak ITEn is obtained at a
0.245 MPa boost pressure.
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Figure 12. The effects of EGR dilution with different boost pressures on engine performance under a
20 MPa PCP limitation.
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In Figure 12, when the boost pressure is at 0.25 MPa, the maximum achievable EGR
rate is 1.5%. Consequently, the NOx emission decreases from 27.1 g/kWh to 26 g/kWh. At
a higher boost pressure of 0.35 MPa, the maximum EGR rate increases to 6.1%, leading to a
reduction in NOx emissions from 11 g/kWh to 8.9 g/kWh. It is likely that the simplicity of
the one-dimensional combustion model has resulted in an underestimation of the impact
of EGR on NOx emissions. Since both increasing air dilution and EGR dilution extent can
effectively reduce NOx emission, it is of interest to determine the optimum combustion
lean extent and EGR dilution extent for overall energy efficiency that considers ammonia
consumption. Figure 12 also shows the effect of EGR with different boost pressures on
overall energy efficiency. It is obvious that peak overall energy efficiency is achieved by
the EGR valve being fully open and a 0.29 MPa boost pressure, which is higher than the
optimum boost pressure for peak ITEn. Therefore, determining the target boost pressure
entails a trade-off between the lowest fuel consumption and the highest overall energy
efficiency. As the EGR dilution is effective in reducing NOx emission and has a negligible
impact on ITEn, the high-pressure EGR value is set fully open to reduce the overall energy
efficiency in the subsequent discussion.

3.1.5. The Combining Effect of Late IVC Timing and CR, Boost Pressure, Combustion
Phasing on Thermal Efficiency with PCP Constraint

From the previous discussion, it is concluded that CR, boost pressure, and combustion
phasing compete as the PCP are restricted. The competition among them leads to limited
ITEn improvement. As previously mentioned in the introduction, delayed IVC timing can
reduce the effective compression ratio, and could potentially mitigate the constraint of PCP
on CR, boost pressure, and combustion phasing. Like the previous discussion, the PCP
limitation is set as 20 MPa. The benchmark CR, boost pressure, and IVC timing are 20.3,
0.245 MPa, and −140.5 ◦CA ATDC, respectively, which achieved the highest ITEn in the
previous discussion. Here, the IVC timing is changed by stretching the intake valve lift
profile, while the intake valve opening timing remains unchanged. Figure 13 shows the
valve lift profiles for different IVC timing.
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Figures 14–16 summarize the effects of late IVC timing on CA50, CR, and Pin and the
corresponding ITEn trend.

In Figure 14, the CR and the boost pressure are maintained at benchmark values as
IVC timing is delayed. CA50 is optimized to achieve the highest ITEn while meeting the
PCP constraint simultaneously. As IVC timing is delayed, the effective compression ratio
is reduced. As a result, CA50 can be advanced, which contributes to ITEg improvement.
In addition, when boost pressure remains constant, the air mass flow rate declines for the
decreased volumetric efficiency. This brings changes in two aspects. On the one hand, the
reduction in the air mass flow rate leads to advanced combustion phasing and improved
pumping working. On the other hand, the combustion lean extent is reduced, which
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tends to increase heat losses. Consequently, the CA50 moves away from the top death
center when the IVC timing is retarded after −80 ◦CA ATDC. The above phenomenon
leads to the results that ITEn obtains a peak value of 49.27% when IVC timing is around
−90 ◦CA ATDC.
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a 20 MPa PCP limitation.

In Figure 15, the CA50 and the boost pressure are maintained at benchmark values
as IVC timing is delayed. CR is optimized to achieve the highest ITEn while complying
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with the PCP constraint. Figure 15 shows that ITEg only obtains a 0.1% increment while
CR significantly increases. Moreover, ITEg tends to decline after IVC −90 ◦CA ATDC. This
is attributed to an increase in heat loss owing to the reduction in combustion lean extent. In
addition, pumping work is obviously improved for the reduction in volumetric efficiency.
As a result, ITEn monotonically increases as IVC timing is delayed. The peak ITEn value is
49.49%, achieved by retarding IVC timing within the studied range.

Like Figures 14 and 15, the CA50 and the CR are maintained at benchmark values
as IVC timing is delayed in Figure 16. Pin is adjusted to achieve the highest ITEn while
fulfilling the PCP constraint. In Figure 16, ITEg and ITEn are monotonically improved with
delayed IVC timing and elevated boost pressure. Since the CA50 and expansion ratio in
the expansion stroke remain constant, the ITEg increment is attributed to the reduction
in compression work in the compression stroke for the reduced effective compression
ratio. As seen in Figure 10, pumping work deteriorates considerably due to the high boost
pressure, while pumping work is improved with elevated boost pressure in Figure 16. To
illustrate the PMEP trend in Figure 16, the air mass flow rate, expansion ratio of the turbine,
and after-turbine temperature are given in Figure 17. While boost pressure and air mass
flow rate increase simultaneously in the first case, boost pressure increases with a nearly
constant air mass flow rate in the latter case. Seen from the turbine expansion ratio and
after-turbine temperature trends in Figure 17, it could be concluded that more exhaust
enthalpy is recovered to provide the power needed to compress air to a high boost pressure
when the air mass flow rate remains nearly constant. Thereby, pumping work is improved
in Figure 16. In conclusion, combining late IVC timing and high boost pressure is beneficial
to improve ITEn. The peak ITEn value is 49.56%, achieved by retarding IVC timing within
the studied range.
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To sum up, late IVC timing is shown to be able to mitigate the PCP constraint on CR,
boost pressure, and combustion phasing, which leads to higher ITEn. Combining late IVC
timing and high boost pressure shows the greatest potential to improve ITEn under the
constraint of a 20 MPa PCP. When advancing CA50 or increasing CR with late IVC timing,
ITEn improvement is mainly attributed to pumping work improvement, and the air–fuel
ratio is reduced. Indeed, the combustion duration would be prolonged when the air–fuel
ratio declines [40], leading to an ITEg reduction [36], which could not be captured by the
current combustion model. To overcome this disadvantage, the air–fuel ratio is restricted to
above the baseline value in the multi-parameter optimization to acquire meaningful results.

3.2. Multiple Parameter Optimization for Efficiency Improvement

Based on above parametric analysis, CR, boost pressure, and IVC timing should be
co-optimized to achieve the maximum ITEn under a PCP-limited condition, which is a
multi-parameter optimization problem. The normal practice is combining the 1D engine
model and a Genetic Algorithm to find the optimum parameter combinations. However,
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running one case in a full engine model costs eight to ten minutes on one CPU core,
which implies that the solution search procedure will be time-consuming and computation-
demanding. In order to accelerate the optimization procedure, a hybrid method is used by
replacing the full engine model with a mathematical model, as shown in Figure 18.
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First, create a design of experiments involving one hundred cases within the variation
range of variables by the Latin Hypercube method [41]. Table 7 lists the optimization
parameters and corresponding variation ranges. The upper limit of IVC timing is set as
−80 ◦CA ATDC to prevent the occurrence of a cold start issue. Second, run the one hundred
cases in the 1D engine model. Third, train the Gaussian Process Regression (GPR) model
through [42] with the input and results collected from the 1D engine model simulation.
Consider the training set { (X i, Yi); i = 1, . . . , n}, where Xi ∈ R4 and Yi ∈ R3, drawn from
an unknown distribution. Here, X is vector (CR, Pin, IVC timing, CA50), Y is vector (ITEn,
λ, PCP). Given the training data and input Xnew, the Gaussian Process Regression model
addresses the question of predicting the value of a response variable Ynew. The model
description is given below. The training results are shown in Figure 19, which suggests that
the model can make accurate predictions.

f (X) ∼ GP
(
0, k
(
Xi, Xj | θ

))
; (5)

k
(
Xi, Xj | θ

)
= σ2

f exp

[
−1

2∑4
m=1

(
xim − xjm

)2

σ2
m

]
; (6)

P(Yi | f (Xi), Xi) ∼ N
(

Yi | h(Xi)
T β + f (Xi), σ2

)
(7)

Third, find the optimal solution by an optimization algorithm. In order to avoid the
inaccuracy caused by the adopted user-imposed combustion profile model at a low air–fuel
ratio condition, a constraint that the air–fuel ratio should be higher than the baseline value
is added in the multiple parameter optimization procedure as a higher air–fuel ratio is
in favor of shortening combustion duration [12]. By adding this constraint, parameter
optimization would provide a lower-bound approximation of the optimal solution to guide
highly efficient turbocharged diesel engine design. The optimization problem constraints
can be summarized as follows:

• The PCP of operation cycle should be below certain limits to avoid engine damage;
• The air–fuel ratio should be above the initial baseline value to guarantee that combus-

tion duration is not affected significantly.

Despite many different types of optimization algorithms having been developed to
solve the described problem, the problem suits the application of a Genetic Algorithm
(GA) [43] when the variable number is 4. The block diagram of the algorithm procedure
is shown in Figure 18. To guarantee the results fulfill the constraints, the optimization
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problem is transferred to a single-objective optimization problem by including a penalty
factor, and the merit function is written as follows:

f(x) =
{

ITEn, PCP ≤ certain limits ∧ air f uel ratio ≥ baseline value
ITEn− 1, PCP > certain limits ∨ air f uel ratio < baseline value

(8)

Table 7. Parameters variation range.

Parameters Range

CR 16~24
Pin 0.2~0.35 MPa

IVC timing −150~−80 ◦CA ATDC
CA50 −12~0 ◦CA ATDC
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Via the proposed method, parameter optimization in 20 MPa, 22 MPa, and 25 MPa
PCP limit conditions is conducted. Table 8 summarizes the optimized parameters and
corresponding results at different PCP limits. The optimization results indicate that the
ITEn increases by 1.56% (absolute) compared to the baseline at the PCP constraint of
20 MPa. As the PCP limitation increases from 20 MPa to 25 MPa, the ITEn increases from
49.20% to 50.06%. This requires the compression ratio to increase by about 3.35, the IVC
timing to be delayed by about 7 ◦CA, and the boost pressure to only increase by 0.01 MPa.
It indicates that improving thermal efficiency by elevating the peak pressure limitation
needs collaboration with increased compression ratio and delayed IVC timing, while the
boost pressure is slightly increased. The reason why the boost pressure remains nearly
unchanged is that the increment in boost pressure leads to a deterioration in pumping
work. By the way, the NOx emission rises at the same time, which would partly offset the
gain in the ITEn improvement if the ammonia consumption is considered.

Table 8. The optimized parameters and corresponding results at different PCP limits.

PCP
(MPa) CR IVC Timing

(◦CA ATDC)
Boost Pressure

(kPa)
CA50

(◦CA ATDC) ITEn (%) EGR (%) NOx (ppm)

20 (baseline) 17.5 −140.5 275 7.8 47.64 0 2158
20 18.57 −95.2 298 8.9 49.20 1.8 2161
22 19.80 −90.2 307 8.2 49.61 2.0 2328
25 21.92 −88.7 308 7.6 50.06 2.32 2629
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3.3. Thermal Efficiency Improvement Strategy Validation

To validate the thermal efficiency improvement strategy, the original engine config-
urations is upgraded according to the optimization results. Table 9 shows the engine
specification comparison. A two-stage turbocharger (2TC) with an intercooler is applied
to achieve a high boost pressure. In 2TC system, turbocharging overall efficiency is not
appropriate to characterize the air system performance, owing to a part of the air enthalpy
being carried away by the coolant inside intercooler. From the perspective of improving
thermal efficiency, the air mass flow rate and PMEP can be used to describe the air system
performance. Using the 1D engine model, the effect of turbocharging overall efficiency
and the 2TC system on the air mass flow rate and PMEP is compared in Figure 20. In the
2TC system, the compressor and the turbine isentropic efficiency are assumed to remain at
baseline values, and the compressed air temperature after the intercooler is controlled to
40 ◦C. In the single turbocharger air system, PMEP is improved and combustion lean extent
is raised, when the turbocharging overall efficiency rises. Likewise, the air mass flow rate
and PMEP of the 2TC with an intercooler are also improved compared to the baseline single
turbocharger system. So, the application of a 2TC with an intercooler has similar effects
to increasing turbocharging overall efficiency in practice, even if the isentropic efficiency
of turbocharger is not improved. Apart from the air system, the combustion system is
also upgraded. The CR and IVC timing are set as 21.5 and −92 ◦CA ATDC, which do
not strictly follow the optimization results but basically comply with the principle of the
thermal efficiency improvement strategy. In addition, the high-pressure EGR valve is kept
fully open.

Table 9. Engine specification comparison.

Configuration Origin Optimized Tested

Air system 1TC 1TC 2TC with intercooler
IVC timing −140.5 ◦CA ATDC −88.7 ◦CA ATDC −92 ◦CA ATDC

Geometry CR 17.5 21.92 21.5
Effective CR 16.14 - 13.24

PCP limitation 20 MPa 25 MPa 25 MPa
HP EGR valve Close Full open Full open
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The baseline engine and optimized engine performance are compared in Table 10.
The CA50 advances more than the prediction in Table 10 because the updated engine
is equipped with a lower CR piston compared to optimization results. The ITEn of the
optimized engine is 2.57% (absolute value) higher than the ITEn of the baseline engine,
while this value is 2.42% in the results of the simulation. The higher air–fuel ratio compared
to the baseline engine is attributed to the additional ITEn improvement. The mechanical
efficiency declines by 0.42 percent for the PCP increment. While the thermal efficiency is



Energies 2023, 16, 6478 20 of 23

improved, the NOx emissions increase, as predicted. Moreover, the EGR ratio is lower
than expected, which means that the air handling system needs to be further improved
for a 2~3% EGR ratio at the target boost pressure. Further, the overall energy efficiency is
improved due to the considerable increment in ITEn.

Table 10. Summary of the engine performance.

Indicators Baseline Engine
(Experiment)

Optimized Engine
(25 MPa PCP)

Tested Engine
(25 MPa PCP)

Boost pressure 275 kPa 308 kPa 305 kPa
Air mass flow rate 733 kg/h 762 kg/h 796 kg/h

PCP 20.2 MPa 24.9 MPa 24.9 MPa
Combustion efficiency 99.91% 100% 99.94%

CA50 7.8 ◦CA ATDC 7.6 ◦CA ATDC 7.2 ◦CA ATDC
EGR 0% 2.32% 0.4%

PMEP −0.033 MPa 0.006 MPa −0.003 MPa
ITEg 48.40% 49.9% 50.29%
ITEn 47.64% 50.06% 50.21%

Mechanical efficiency 93.95% 93.95% 93.53%
NOx emission 2108 ppm 2629 ppm 2495 ppm

BTE 44.76% 47.03% 46.96%

4. Conclusions

This study investigated the effect of overall turbocharging efficiency, CR, boost pres-
sure, HP EGR, and IVC timing on thermal efficiency under PCP-limited conditions by
using a 1D model. A Genetic Algorithm was utilized to optimize multiple parameters and
determine the best engine specifications, trying to achieve maximum thermal efficiency
with different PCP limits. In addition, the impact of the thermal efficiency improvement
strategy on NOx emission was also analyzed. Based on the optimization results, the en-
gine configuration was updated, and engine tests were performed to verify the thermal
efficiency enhancement strategy. The main conclusion can be summarized as follows:

(1) To improve the thermal efficiency at a specific operating point, priority should be put
on turbocharger design and matching to ensure high turbocharging overall efficiency
at target operating conditions. Alternatively, a 2TC with an intercooler can provide
similar effects to increasing the turbocharging overall efficiency. Both the two air
systems can increase the air dilution extent and improve pumping work;

(2) Although increasing boost pressure could raise the combustion lean extent to improve
ITEg, a high boost pressure also deteriorates PMEP and delays the combustion phas-
ing. There is an optimum value of boost pressure to balance ITEg and PMEP for the
highest ITEn;

(3) High turbocharging overall efficiency makes it hard to introduce HP EGR, while high
boost pressure increases the maximum HP EGR ratio. EGR dilution by the HP EGR
method has a marginal impact on ITEn, but HP EGR with a high boost pressure is
beneficial to improve the overall energy efficiency. From the perspective of achieving
the highest thermal efficiency, the HP EGR system can be eliminated;

(4) When the PCP is limited, CR, boost pressure, and CA50 compete. By delaying
the IVC timing, constraints on CR, boost pressure, and combustion phasing can be
mitigated, leading to a higher ITEn. To achieve the highest ITEn under the PCP limits,
co-optimization of late IVC timing, high CR, and high boost pressure is needed;

(5) Through co-optimization of multiple parameters, the ITEn increases by 1.56% (ab-
solute) compared with the baseline under a 20 MPa PCP constraint. When the PCP
limits increase from 20 MPa to 25 MPa, achieving the highest ITEn requires that the
CR increases by about 3.35, the IVC timing delays by about 7 ◦CA, and the boost
pressure only increases by 0.01 MPa. By adopting the thermal efficiency improvement
strategy, ITEn is expected to be elevated by 2.42%;
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(6) The upgraded engine test results validated the proposed thermal efficiency improve-
ment strategy. Compared with the baseline engine, the brake thermal efficiency and
overall energy efficiency were improved by 2.2% and 1.98%, respectively.
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Abbreviations

ATDC After top death center
BMEP Brake mean effective pressure
CA50 Crank angle when 50% of the total heat has been released
CA Crank angle
CR Compression ratio
EGR Exhaust gas recirculation
FMEP Indicated mean effective pressure
HP High pressure
HRR Heat release rate
ITE Indicated thermal efficiency
IMEP Indicated mean effective pressure
ISFC Indicated specific fuel consumption
ISNOx Indicated specific nitrogen oxide emission
IVC Intake valve close
LP Low pressure
LHV Low heat value
OEM Original equipment manufacturer
PCP Peak cylinder pressure
Subscripts
a ammonia d diesel
g gross n net
o overall in intake
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