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Abstract: DC–DC buck converters have become prominent components for energy optimization in
power systems, and how to improve control performances is a challenging issue to be addressed.
In this paper, we aim to investigate the harmonic problem of sliding mode (SM) controlled buck
converters imposed by the often-ignored unmodeled dynamics of the Hall sensor. The unified
mathematical model of the whole system is established by combining the SM controller, the buck
converter, and the Hall sensor, where the signal loss in the transmission process of the whole closed-
loop control system is considered. Based on the Lyapunov stability theorem, the SM controller
is designed to guarantee system stability, as well as to deduce the stable working areas and the
tuned controller parameters. Furthermore, we introduce the descriptive function (DF) approach to
investigate the influence of the unmodeled dynamics of the Hall sensor on the system harmonics
in the frequency domain, which can deduce the relationship between the amplitude-frequency
characteristics of the output signal and the Hall sensor. Simulations and experiments validate this
paper.

Keywords: sliding mode control; DC–DC converter; harmonic analysis; unmodeled dynamics;
descriptive function approach; frequency analysis

1. Introduction

With the rapid development of new energy, distributed power systems, and the
wide use of uninterrupted power systems (UPS), DC–DC buck converters have played
an important role in energy optimization. How to improve its conversion efficiency and
performance is an important but challenging issue to be considered [1,2]. It is a well-
known fact that DC–DC buck converters are a typical class of nonlinear systems due to the
contained nonlinear circuit components such as the capacitors, inductors, switches, and
the external disturbances imposed by the possible measurement sensors, the signal loss in
the transmission process and some unmodeled dynamics [3,4], which are often ignored in
modeling and controlling. However, it is worth noticing that all these factors can reduce
the performance of the buck converters, or even lead to instability.

An appropriate control approach has a significant function to realize better perfor-
mances. Compared with the traditional control approaches such as PI and linear feedback
control, sliding mode (SM) control is characterized by nonlinear and robust control due to
its contained switching function sgn(.). Much research found in the literature has proved
that SM control is more suitable for the switching control of buck converters; a review of
recent SM applications in power converters can be found in [5]. On the one side, SM is
inherently nonlinear and differs from the approximate nonlinearity of the substitutes as
fuzzy control [6,7], neural network [8,9], and other intelligent control approaches [10–12].
Therefore, the control performances under SM control are better; furthermore, the amount
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and time of the calculation can also be saved. On the other side, thanks to its natural switch-
ing control property, the SM controller can replace the traditional pulse-width modulation
(PWM) and realize the direct ON/OFF switching control of the converters by triggering the
gate of the controllable power switches. As a result, it is simple and no extra modulation
circuits are needed [13,14]. At present, various types of SM have been applied for the
control of buck converters, including linear sliding mode (LSM), terminal sliding mode
(TSM), and non-singular terminal sliding mode (NTSMC). For example, in [15], an LSM
controller was proposed to realize the asymptotic convergence of the output voltage; in [16],
a TSM controller was designed to improve the steady accuracy and response speed due to
its finite-time convergence; in [17], an NTSMC controller was proposed to realize the wide-
range voltage regulation of the buck converters due to its global finite-time convergence.
Attention should be paid to the fact that the design of SM controllers is commonly focused
on the stability in the time domain, and it is difficult to investigate the control performances
in the frequency domain [18–21], especially for the harmonics, which is a key performance
index in the practical applications of buck converters.

In this paper, the harmonic analysis of SM-controlled buck converters is carried out
in frequency. Compared with the time-domain analysis based on the Lyapunov stability
theorem, frequency-domain analysis is based on the Fourier transform and can make it
easier to obtain the detailed information of the concerned signals [22–25], including the
visual representation and the corresponding values of the amplitude and frequency. At
present, the Poincaré map and descriptive function are the two main approaches adopted
in frequency-domain analysis. For example, in [22], the Poincaré map and linear matrix
were combined to investigate the stability and the periodic solutions for a class of relay
systems, and then in [23], the Poincaré map was applied in an SM control system to analyze
its inherent chattering phenomenon, proving the fact that the control nonlinearity of SM
can induce harmonics in practical systems. In [24], the descriptive function (DF) was
adopted to analyze the frequency characteristics of DC–DC converters. Compared with
the Poincaré map, DF is easier to implement and more suitable for practical systems. The
idea of DF is to utilize the characteristic curves of the amplitude, phase, and frequency to
visually observe the performance of the system, following the improvement by adjusting
the controller parameters. In [25], a boost converter was taken as an example to solve the
problem of switch linearization by utilizing DF; in [26], the two problems of the stability and
limit cycle were investigated for a class of LSM-controlled uncertain system, and further
deduced the relationship between parameter uncertainties, the position, and distribution
characteristics of zeros and poles. All of these show the effectiveness of DF approaches
applied in SM-controlled systems.

Unmodeled dynamics commonly exist in practical systems, which usually originate
from sensors, actuators, and higher-order state terms. They are generally unmeasurable
and characterized by small time constants, so that they are often ignored in modelling
and controlling. Some of the literature concerning the overcoming and observation of
unmodeled dynamics can be found in [27]. In this paper, the influence of the often-ignored
unmodeled dynamics of the Hall sensor on SM-controlled buck converter systems is
another challenging issue to be addressed. In practical circuits, various Hall sensors, such
as ACS712 (https://www.alldatasheet.com/datasheet-pdf/pdf/168326/ALLEGRO/ACS7
12.h-tml, accessed on 18 August 2023), ACS706 (https://www.alldatasheet.com/datasheet-
pdf/pdf/174113/ALLEGRO/ACS-706ELC-05C.html, accessed on 18 August 2023) and
ACS758 (https://www.alldatasheet.com/datasheet-pdf/pdf/53346-8/ALLEGRO/ACS7
58.html, accessed on 18 August 2023) are generally used to measure currents, which can be
further adopted for the design of controllers. The idea of Hall sensors is based on the Hall
effect, which can realize contactless current measurement [28]. Furthermore, it can prioritize
the safety of both individuals and equipment, and maintains the structural integrity of the
original circuit, whereby the measurement accuracy can be improved. At present, if the
Hall sensor is used in an open-loop control system, its measurement error can be less than
1%, while if it is used in a closed-loop control system, the measurement error can be less
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than 0.2% [29]. Due to the high accuracy of Hall sensors, the signal loss in the transmission
process is often ignored. However, the model of the Hall sensor can be categorized as
the unmodeled dynamics in the sense of control, which are characterized by rapidity
and/or small scale and are generally described as a first-order or second-order transfer
function [30]. In practice, the unmodeled dynamics are caused by system complexity,
model inaccuracy, and measurement errors. Furthermore, in [31], it has been proved that
the influence of unmodeled dynamics can not be avoided, especially in SM control systems.
Since the system order is increased artificially by introducing the unmodeled dynamics,
the chattering problem (called the harmonic problem in real systems) occurs due to the
contained switching function sgn(.), which can reduce the dynamic and static performances
or even destroy the system stability [11,32].

In order to overcome the influence of unmodeled dynamics, much of the literature is
mainly concentrated on observation and compensation, seen for example in [33–35]. In [33],
an adaptive neural network control approach is adopted for the information recognition
of the unmodeled dynamics of the actuator. In [34], the unmodeled dynamics caused by
the nonideal constant power loads were considered and their information was achieved
by designing an SM observer. In [35], a second-order SM controller was designed to
compensate for the influence of unmodeled dynamics and external disturbances, where
the upper boundary was only needed. However, how the unmodeled dynamics affect the
performance index, especially in the frequency domain, is seldom studied.

In this paper, the harmonic problem of SM-controlled buck converters imposed by the
often-ignored unmodeled dynamics of the Hall sensor is investigated. The unified mathe-
matical model of the SM controller, the buck converter, and the Hall sensor is established.
The stability in the time domain and frequency domain is investigated and compared based
on the Lyapunov stability theorem and Nyquist stability criterion, respectively. Further-
more, by utilizing the DF approach, the relationship between the amplitude and frequency
of the output signal can be deduced for the SM-controlled buck converter system. To be
specific, the main contributions of this paper can be summarized as follows:

• The unified mathematical model of the whole system is established by combining the
SM controller, the buck converter, and the Hall sensor, and the signal loss caused by
the non-ideal Hall sensor is considered;

• Investigations of the stability and the tuning range of the SM controller are carried out
in the time domain and frequency domain for comparison;

• By utilizing the DF approach, the harmonics induced by the sensor unmodeled
dynamics can be proved;

• The relationship between the amplitude frequency characteristics of the output signal
and the Hall sensor is determined.

This paper is organized as follows. In Section 2, the SM-controlled buck converter is
described, including the description of the buck converter and the Hall sensor, and the
design of the SM controller based on Lyapunov stability in the time domain. In Section 3, the
stability analysis in the frequency domain is carried out by utilizing the DF approach and
Nyquist stability criterion. In Section 4, the influence of the sensor’s unmodeled dynamics
on the harmonics is investigated quantitatively. Finally, the simulations, experiments, and
concluding remarks are given in Sections 5 and 6, respectively.

2. System Description and Modelling

In Figure 1, the system diagram of an SM-controlled buck converter is given [15–21],
which is composed of three parts, i.e., the buck converter, SM controller, and Hall sensor.
Where E is the input DC voltage source, Sw is a controllable power switch (N-MOSFET is
often adopted), and its ON/OFF is controlled by the output signal u of the SM controller;
VD is a continuity diode, and the types of fast recovery diode or Schottky diode are often
selected; L and C are the filter inductor and capacitor, respectively, and vL is the voltage of
inductor L; iL, and iC are the currents flowing through L and C; R is the load resistor, and
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vC is the output voltage and can be achieved by using voltage divider resistor R1 and R2
with ration β = R1/(R1 + R2).
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In practice, it is known that the current iC is usually measured by the Hall sensor, but
is often ignored. However, its influence on the control system should be ignored, as seen
in the literature [27–32]. Therefore, this paper innovatively considers it in modelling and
controlling. In the following, the description of the buck converter, the Hall sensor, and the
design of the SM controller is given.

2.1. Buck Converter

In this paper, the buck converter is assumed to work in continuous conduction mode
(CCM), i.e., iL > 0. Based on the structural characteristics of the converter, the differential
equation describing its ON/OFF operation can be given as [15]{

diL
dt = − 1

L vC + E
L u

dvC
dt = 1

C iL − 1
ROC vC

(1)

where {0, 1} is the output pulse of the controller, RO = R(R1 + R2)/(R + R1 + R2).
If we take the second derivative of the variable vc, and substitute the term of diL/dt in

(1) into it, the dynamics of the output voltage can be rewritten as a second-order differential
equation as

..
vC +

1
ROC

.
vC +

1
LC

vC =
uE
LC

(2)

Furthermore, we define Vref as the DC reference value of the output voltage vc; x1 and
x2 are the output voltage error and its derivative, i.e.,{

x1 = βvc −Vre f
x2 =

.
x1 = β

.
vc

(3)

By combining (2), (3) can be changed into the state space form as

.
x = Ax + bu + f (4)

where the state vector x = [x1, x2]T, the matrix A, b, and f are listed as

A =

[
0 1
− 1

LC − 1
ROC

]
, b =

[
0

βE
LC

]
, f =

[
0

−Vre f
LC

]

2.2. Hall Sensor

In this paper, the signal loss of the Hall sensor located in the converter circuit is
considered, as seen in Figure 1, i.e., iC 6= îC, x2 6= x̂2, where îC and x̂2 are the measured
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values corresponding to the variables iC and x2. Meanwhile, the transmission characteristics
of the Hall sensor are taken into account. Based on the sensor theory, the unmodeled
dynamics of the Hall sensor can be expressed as a standard second-order system as [36]

..
îC + 2ζωn

.
îC + ω2

n îC = Kω2
niC (5)

where iC and îC are the input and output of the Hall sensor, respectively; ωn is the angular
frequency, K is the amplification coefficient, and the damp ratio 0 < ζ < 1.

From (5), the transfer function Gh(s) of the Hall sensor can be accordingly deduced in
terms of the Laplace transformation as

Gh(s) =
Kω2

n
s2 + 2ζωns + ω2

n
(6)

The step response c(t) of the Hall sensor can also be expressed as

c(t) = K− K√
1− ζ2

e−ζωnt sin
(

ωn

√
1− ζ2t + arccosζ

)
(7)

Therefore, the rise time ψ can be obtained from (5) as

ψ =
π− arccosζ

ωn
√

1− ζ2
(8)

By combining Figure 1 and (1) in the frame of Kirchhoff’s circuit law, there is ic = C
.
vC

and x̂2 = îCβ/C. By defining
^
x = [x̂2,

.
x̂2]T as the measured state vector, (5) can be changed

as .
^
x = Cx̂ + Dx2 (9)

where the matrix C and D are denoted as

C =

[
0 1
−ω2

n −2ζωn

]
, D =

[
0

Kω2
n

]
2.3. SM Controller

Much of the literature has proved the effectiveness of SM applied for the control of
converters by replacing the traditional PWM approach [13,14]. At present, various types
of SM approaches have been utilized, as seen in the recent survey in [5]. In this paper, we
take LSM as an example to design an SM controller in Figure 1. In practice, LSM is the
most widely used type due to is easy implementation. Based on the principle of the SM
controller, its design includes an SM surface and a robust switching control law [15].

In this paper, the sliding surface sL can be designed as the linear combination of the
variables x1 and x̂2 as

sL = λx1 + x̂2 (10)

where the design parameter λ > 0 and c = [λ, 1]. From Figure 1, it is worth noticing that
the measured signal x̂2 is adopted directly for the controller design, where x̂2 = îCβ/C.
By combining (3), it can be seen that the crucial role of the Hall sensor is to measure the
capacitor current iC for constructing the SM controller, so that its measurement accuracy
affects the control performance of the system.

For the robust switching control law, it is designed to trigger the gate pole of the
controllable N-MOSFET Sw in Figure 1 as

u = −0.5[sgn(sL)− 1] (11)
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The power switch driven by the control u exhibits two states, i.e., ON (u = 1) and OFF
(u = 0). In other words, (11) can be described as

u =

{
1 = ‘ON′ when sL < 0
0 = ‘OFF′ when sL > 0

(12)

In order to investigate the influence of the unmodeled dynamics of the Hall sensor
on the system stability, we first give the traditional SM controller design based on the
time-domain stability. Meanwhile, we temporarily assume the transmission characteristics
of the Hall sensor are ideal for performance comparison later, i.e., x2 = x̂2. Therefore, based
on the Lyapunov stability theorem, the condition sL

.
sL < 0 should be satisfied [15]. By

combining (1) and (10), there is

sL
.
sL = sL

[(
λ− 1

ROC

)
x2 +

1
LC

(
βEu−Vre f − x1

)]
< 0 (13)

According to the two statuses of the power switch in (12), the stability condition in
(13) can be changed as l1 :

(
λ− 1

ROC

)
x2 +

1
LC

(
βE−Vre f − x1

)
= 0 when sL < 0

l2 :
(

λ− 1
ROC

)
x2 − 1

LC

(
Vre f + x1

)
= 0 when sL > 0

(14)

where the lines l1 and l2 are the boundaries of the stable regions with the same slope
RO/[L(λROC – 1)]. And according to the two cases 0 < λ < 1/ROC and λ > 1/ROC, the
stable working areas can be derived from (14) as the following Figure 2.
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From (14) and Figure 2, we can see that the control performance of the system is
affected by the parameters λ. Generally, the design of the SM controller in the time domain
is merely based on stability. Restricted by the stability condition (14), we can see from
Figure 2 that, as the output voltage vC varies from 0 to the given value E, the system phase
trajectory can only navigate between the two dashed lines l1 and l2, where the intersections
of two lines with sL = 0 are defined as A and B, respectively. In other words, only when
the phase trajectory reaches the sliding surface between points A and B, can the system
stability be guaranteed.

In practice, the controller parameter λ is typically selected as the critical value 1/ROC,
seen in [15]. Meanwhile, the influence of the Hall sensor is often ignored. Therefore, in
the following, we consider the signal loss in the transmission process of the Hall sensor to
investigate its influence on the system performance in the frequency domain.
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3. Design of SM Controller in Frequency Domain

Differing from the traditional design of the SM controller in the time domain, seen in
Figure 2, we give the alternative controller design in the frequency domain for comparison.
In the following, we still temporarily assume the transmission characteristics of the Hall
sensor are ideal as the traditional time-domain SM controller in (13), i.e., x2 = x̂2. For the
switching control law in (11), we introduce a virtual control v as

v = u− 0.5 = −0.5sgn(sL) (15)

By substituting (15) into (4), we can obtain

.
x = Ax + bv + fv (16)

where the matrix f v= [0, (βE − 2Vref)/(2LC)]T. Therefore, if we temporarily ignore the Hall
sensor, the closed-loop block diagram of the SM-controlled buck converter can be obtained
by combining (10), (15), and (16), as in Figure 3, where σ = −sL, the variable y is defined to
represent the SM variable sL, N(A) is the descriptive function of the nonlinear unit (15), and
G(s) represents the transfer function of the linear unit of the buck converter (16) and SM
surface sL.
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In order to realize the controller design in the frequency domain, it is worth noticing
the fact that the SM controller is inherently nonlinear due to the contained switching
control law in (15). Therefore, DF is introduced in the following to realize the approximate
linearization of the switching function sgn(.).

Based on the application of DF [24–26], it is assumed that the input of the nonlinear
unit σ(t) is a sinusoidal signal Asin(ωt), with A and ω as the amplitude and angular
frequency, respectively. By utilizing the Fourier transform for the nonlinear unit v in (15),
we can obtain

v(t) =
a0

2
+ a1 cos(ωt) + b1 sin(ωt) (17)

where a0, a1, and b1 are the corresponding coefficients of the Fourier series. Since the relay
function sgn(.) is odd, there is a0 = a1 = 0 so that (17) can be changed as

v(t) = b1 sin(ωt) (18)

Here we define 
b1 = ω

π

∫ π
ω

− π
ω

v(t) sin ωtdt = − 2
π

B =
√

a2
1 + b2

1 = 2
π

ϕ = arctan a1
b1

= 0

(19)

Therefore, the DF of the switching control law v in (15) can be deduced from [24–26] as

N(A) =
B
A

ejϕ =
2

πA
(20)
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and the transfer function of the linear unit of buck converter (16) can also be deduced from
(16) as

G(s) = c(Is−A)−1b
= βERO

s+λ
RO LCs2+Ls+RO

(21)

In the frequency domain, the stability of the closed-loop control system in Figure 3
should be satisfied by the Nyquist stability criterion. Furthermore, by substituting jω with
s in (21), we can obtain

G(jω) = βERO

[
λRO − λROLCω2 + Lω2

(RO − ROLCω2)
2 + L2ω2

+j
−ω3ROLC + ωRO −ωλL

(RO −ω2ROLC)2 + ω2L2

]
(22)

Based on the Nyquist stability criterion, it is known that the system stability is de-
termined by the relationship of G(jω) and −1/N(A), where the three types can be seen in
Figure 4. In other words, the system is stable when the trajectory of the linear part G(jω)
does not enclose the trajectory of −1/N(A), and conversely, it is unstable. For the third case,
self-excited oscillation will occur when the trajectory of G(jω) intersects with −1/N(A).
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Figure 4. Three typical relationships between G(jω) and −1/N(A): (a) the trajectory of G(jω) does
not enclose −1/N(A); (b) the trajectory of G(jω) encloses −1/N(A); and (c) the trajectory of G(jω)
intersects with −1/N(A).

From (20), it is obvious that −1/N(A) exists on the negative real axis and the system
stability is determined by the intersection point of G(jω). Furthermore, let the imaginary
part of the transfer function G(jω) be equal to zero; we can obtain −ω3ROLC + ω–O − ωλL
= 0. Since the angular frequency satisfies ω > 0, the solution ω0 can be deduced as

ω0 =

√
RO − λL

ROLC
(23)

From the above time-domain SM controller design in Figure 2, we can see that the
controller parameters can be chosen as λ ≥ RO/L and 0 < λ < RO/L simultaneously.
Therefore, by the frequency-domain analysis in Figure 4, the following conclusion can be
obtained:

• For the case of λ ≥ RO/L, (23) has an imaginary root and there is no intersection point
for the trajectory G(jω) and the real axis, which means the system can be kept stable;

• For the case of 0 < λ < RO/L, we substitute (23) into (22) and the intersection point of
the trajectory G(jω) and the real axis can be calculated as (βERO/L, 0), which indicates
that G(jω) does not intersect with the negative real axis and the system can also be
kept stable.

Based on the above analysis, we can conclude that, if we ignore the influence of
unmodeled dynamics of the Hall sensor, the design of the SM controller in the time domain
and frequency domain is the same for the choice of controller parameter λ in (10).
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4. Influence of the Unmodeled Dynamics of Hall Sensor

In the following, we continue to investigate the influence of the unmodeled dynamics
of the Hall sensor. By combining (9) and (16), the unified model of the whole closed-loop
control system in Figure 1 can be obtained as

.
xs = Asxs + bsv + fs (24)

where the state vector xs= [x1, x2,x̂2,
.
x̂2]T, and the matrix As, bs, and f s are listed as

As =


0 1 0 0
−1
LC

−1
ROC 0 0

0 0 0 1
0 Kω2

n −ω2
n −2ζωn

, bs =


0

βE
LC
0
0

, fs =


0

βE
2LC −

Vre f
LC

0
0


By using DF, the corresponding closed-loop block diagram of the SM-controlled buck
converter can be similarly obtained in Figure 3 as the following Figure 5, where cs= [λ, 0, 1,
0], Gs(s) is the transfer function of the system (24).
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By combining (4) with (24) and Figure 3 with Figure 5, we can see that the insertion
of the Hall sensor in (5) increases the converter system order from 2 to 4, which would
inevitably destroy the control performance, or even the system stability. Therefore, it is
necessary to investigate the influence of the unmodeled dynamics of the Hall sensor.

4.1. Stability Analysis

From (24), the transfer function Gs(s) can be deduced as

Gs(s) = cs(Is−As)
−1bs

= βERO
a1s2+a2s+a3

b1s4+b2s3+b3s2+b4s+b5

(25)

where a1 = λ, a2 = (Kωn
2 + 2λζωn), a3 = λωn

2, b1 = ROLC, b4 = (ωn
2L + 2ζωnRO), b2 =

(2ζωnROLC + L), b3 = (ωn
2ROLC + 2ζωnL + RO), and b5 = ωn

2RO.
Furthermore, by substituting s = jω into (25), there is

Gs(jω) = βERO
[
A1ω6 + A2ω4 + A3ω2 + A4

+j(A5ω5 + A6ω3 + A7ω)
]
/
[(

b1ω4 − b3ω2 + b5
)2

+
(
b2ω3 − b4ω

)2
] (26)

where A1 = −a1b1, A2 = a3b1 + a1b3 − a2b2, A3 = a2b4 − a3b3 − a1b5, A6 = a1b4 + a3b2 − a2b3,
A5 = a2b1 − a1b2, A4 = a3b5, and A7 = a2b5 − a3b4.

In the sense of the Nyquist stability criterion, the influence of the Hall sensor on the
system stability in Figure 5 is investigated in the frequency domain. Similar to Figure 3, the
system stability is determined by the relationship of Gs(s) and −1/N(A) in (20). Observed
from (26), since its denominator is always positive, the intersection of Gs(jω) with the real
axis leads to the following equation:

A5ω5 + A6ω3 + A7ω = 0 (27)
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Since the angular frequency ω is typically positive, excluding the scenario with ω = 0,
the solution of (27) can further be deduced from Vieta’s theorem as

ω1 =
√

RO−λL
RO LC

ω2 =

√
ω4

nROC(KRO−λL)
(RO−λL)(Kω2

nROC−λ)

(28)

By comparing (23) and (28), we can see the stability influence imposed by the Hall
sensor is determined by ω2 in (28). According to the application of the Hall sensor, the
linear types of ACS712, ACS706, and ACS758 are generally adopted [37]. Therefore,
considering the signal loss in the Hall sensor, its transmission characteristic property can
be described as îC = KiC. It implies that K is approximately equivalent to the Hall sensor’s
linear amplification factor, where K can be determined by the external auxiliary circuit, seen
for example in [38] for the Hall sensor of ACS712. Meanwhile, since îC ∼= iC in practice, it
means K ∼= 1. Therefore, by substituting K ∼= 1 into ω2 in (28), it approximately yields

ω2 ∼=

√
ω4

nROC
ω2

nROC− λ
(29)

Furthermore, for the rise time ψ in (8), it is equal to the following form as

ωn =
π− arccosζ

ψ
√

1− ζ2
(30)

It should be noted that the reason for the the rise time ψ of the Hall sensor is mainly
because the sensor’s dynamic performance is predominantly influenced by ψ, which is a
crucial parameter. Furthermore, the rise time ψ depends particularly on the adjustment of
the filter capacitance of the auxiliary circuit in typical application systems, seen for example
in [39] for the Hall sensor of ACS712.

From (29) and (30), we can see that ω2 is determined by the parameters of the SM
controller λ and the Hall sensor’s rise time ψ simultaneously. Consequently, the stability of
the system depends on the two parameters, so the following two cases need to be discussed.

• Case 1: If λ > ω2
nROC, ω2 is an imaginary root. Since there is no intersection point for

the trajectory of Gs(s) and the negative real axis, the system still keeps stable even with
the consideration of the Hall sensor.

• Case 2: If 0 < λ < ω2
nROC, ω2 is a real root. By substituting (27) into (24), the intersection

for the trajectory of Gs(s) and the real axis can be deduced as

Gs(jω2) = −βERO
ζωnROC + λROC

2ζ2ROLC(ω2
nROC− λ) + 2ζ2L

(31)

Since 0 < λ < ωn
2ROC, Gs(jω2) yields a negative value. This means that there exists an

intersection between Gs(s) and −1/N(A) and the whole system with the Hall sensor in (24)
is critically stable, or in other words, the harmonics are contained due to the consideration
of the Hall sensor.

4.2. Harmonic Analysis Affected by Hall Sensor

In the following, we continue to investigate the influence of unmodeled dynamics of
the Hall sensor and further determine the relationship between the amplitude-frequency
characteristics of the output signal and the Hall sensor.



Energies 2023, 16, 6124 11 of 20

From (29), since ω2 in (29) is the solution of (31), it corresponds to the angular frequency
of the harmonics, i.e., the harmonic frequency can be denoted as f 2 = ω2/2π. Here we
define a variable χ = (π − arccosζ)/(1 − ζ2)1/2 so that (30) can be changed as

ωn =
χ

ψ
(32)

By substituting (32) into (29), the relationship between the harmonic frequency f 2 and
the rise time ψ of the Hall sensor can be formulated as

f2 =
1

2πψ

(
χ4ROC

χ2ROC− λψ2

)1/2

(33)

In accordance with the Nyquist stability criterion, Gs(jω2) in (31) can be evaluated
by setting Gs(jω) + 1/N(A) = 0. From (20), we can have −1/N(A) = −πA/2 so that the
relationship between the harmonic amplitude A2 and the rising time ψ can be determined
as

A2 =
βER2

OC
(
ζχψ + λψ2)

πζ2R2
OLC2χ2 − πζ2ψ2L(λROC− 1)

(34)

It is worth noticing that the buck converter is assumed to work in CCM, as seen in
(1). In other words, if the induct current iL is assumed to be critical continuous, the current
harmonics ∆IL in a switching period T can be expressed from [39] as

∆IL =

∣∣∣∣ 1
L

∫ DT

0
vLdt

∣∣∣∣ = VC
EL f2min

(E−VC) =
2VC
RO

(35)

where f 2min is the minimum value of the harmonic frequency f 2 in (33), VC is the average
value of the output voltage vc in a switch period T, and D represents the duty cycle with
D = VC/E. Therefore, the critical value of the switching frequency f m is deduced from [39]
as

fm =
(E−VC)RO

2EL
(36)

Since the switching frequency is proportional to the harmonic frequency of the system,
it means the switching frequency f m in (36) corresponds to the minimum value of the
harmonic frequency f 2min. Hence, the constraint f 2 ≥ f m should be guaranteed. Therefore,
by combining (33) and (36), the rising time ψ of the Hall sensor can be deduced as

0 < ψ ≤ EL
π(E−VC)RO

(
χ4ROC

χ2ROC− λψ2

)1/2

(37)

which is helpful for the choice of the Hall sensor.
Based on the above analysis concerning the SM controller parameter λ and the rise

time ψ of the Hall sensor, we conclude the following:

• If the SM controller parameter λ > ωn
2ROC, the whole closed-loop control system of

the SM-controlled buck converter system has no harmonics;
• If the SM controller parameter 0 < λ < ω2

nROC, the constraint of the harmonic frequency
f 2 ≥ f m can be deduced, and the rising time ψ of the Hall sensor can also be obtained,
which gives guidance to the choice of SM parameter λ and the Hall sensor in practical
systems.

5. Simulations and Experiments

In order to validate this paper, the circuit parameters of the buck converter in Figure 1
are listed in Table 1. The Hall sensor of ACS 712 is chosen, where the measurement
characteristics in its chip manual [40] and the corresponding fitting model based on the
collected data can be seen in Figure 6.
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Table 1. Circuit Parameters of the Buck Converter.

Component Symbol Value

Input voltage E 20 V
Inductor L 1 mH
Capacitor C 3.2 mF

Load resistor R 10 Ω
Divider resistor 1 R1 10,000 Ω
Divider resistor 2 R2 50,000 Ω

Reference output voltage Vref/β 10 V
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In Figure 6b, we utilize the GetData software to collect the test date of the chip
ACS712 in the datasheet, and then using MATLAB’s Identification Toolbox, the unmodeled
dynamics of the Hall sensor in (6) can be described as

Gh(s) =
2.235× 1011

s2 + 6.691× 105s + 2.251× 1011 (38)

By comparing (6) and (38), we can deduce the amplification coefficient K = 0.993, not
the ideal 1, which indicates the signal loss of the real sensor ACS712 is included. The
damping ratio ζ = 0.705, and the angular frequency ωn = 4.744 × 105.

5.1. Simulation Results

In the following, we test the influences of the unmodeled dynamics of the Hall sensor
and SM controller parameter λ on the buck converter system simultaneously. In order to
facilitate the expatiation, we abbreviate the model of the buck converter without considera-
tion of the Hall sensor in (4) as the ‘ideal system’, and the model with the Hall sensor in
(24) as the “actual system”.

Firstly, we investigate the influence of the unmodeled dynamics of the Hall sensor
on the system. The rise time of the Hall sensor ACS712 is chosen as ψ = 6.647 µs and
the angular frequency calculated from (30) as ωn = 4.992 × 105. For the SM controller
parameter λ, the traditional time-domain design approach in Section 2.3 differs from the
frequency-domain design approach. For the former, it is based on the model of the ideal
system with the SM controller parameter λ > 1/ROC and 0 < λ < 1/ROC, seen in Figure 2.
While for the actual system with consideration of the Hall sensor, the stability region
without harmonics is deduced as λ > ωn

2ROC, seen from (29). Since there is 1/ROC = 31.25
and ωn

2ROC = 7.973 × 109, we select SM parameters λ1 = 31.25 for the ideal system and
λ2 = 8 × 109 for the actual system for comparison. Simulation results are given in Figures 7
and 8.
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For the SM controller parameter λ1 = 31.25 < ωn
2ROC, Figure 7a shows that the Nyquist

curve G(jω) of the ideal system defined in (22), which neither encloses nor intersects with
the line of −1/N(A) defined in (20). However, for the Nyquist curve Gs(jω) of the actual
system defined in (31), corresponds to the scenario in Figure 4c, which means the existence
of an intersection point for the Nyquist curve Gs(jω) with the line of−1/N(A). Since the line
of −1/N(A) passes from an enclosed region of Gs(jω) to an unenclosed region, stable self-
oscillation occurs, which is just the reason for the occurrence of the harmonic problem. On
the other hand, if the SM controller parameter is chosen λ2 = 8 × 109 > ωn

2ROC, similarly
Figure 7b gives the comparison of the Nyquist curves for the ideal system and the actual
system. We can see that neither G(jω) for the ideal system nor Gs(jω) for the actual system
encloses the line of −1/N(A), which is in accordance with the scenario in Figure 4a.

Figure 8 shows the time-domain response curve of the SM surface sL defined in (10).
For the case with λ1 = 31.25 in Figure 8a, we can see the ideal system and the actual
system can both keep stable, but there exists an overshoot for the latter, which is caused
by the insertion of the unmodeled dynamics of the Hall sensor in (38), which makes the
system order increase from 2 to 4. This is in accordance with the explanation in (31).
Figure 8b shows the comparison in the case with λ2 = 8 × 109. As mentioned in Figure 6b,
it corresponds to the situation without consideration of the Hall sensor, so that the response
curves of the ideal and actual system are almost the same and no harmonics occur.

In the following, we continue to investigate the influence of the SM controller param-
eter λ on the actual system by choosing λ1 = 31.25, λ2 = 103, λ3 = 105, λ4 = 8 × 109, and
λ5 = 9 × 109 for performance comparison. The simulations concerning the inductor current
iL and the output voltage vc are given in Figure 8.
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From Figure 9a,b, we can see harmonics occur in both the inductor current iL and the
output voltage vc in cases of λ1 = 31.25, λ2 = 103, and λ3 = 105, while for the other cases
of λ4 = 8 × 109 and λ5 = 9 × 109, there are no harmonics. This is in accordance with the
theoretical analysis in (30). The values of the amplitude and frequency for the cases with
λ1 = 31.25, λ2 = 103, and λ3 = 105 are listed as 1.6 × 10−5 V and 78.74 kHz, 1.6 × 10−5 V
and 78.77 kHz, and 1.6 × 10−5 V and 78.77 kHz. In the premise of system stability, we can
see that the different values of the SM controller parameter λ have less influence on the
amplitude-frequency characteristics of the buck converter system with the Hall sensor.
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voltage vc.

Thirdly, we investigate the influence of the rising time ψ of the Hall sensor on the
system performances. According to the datasheet of ACS712 [40], we choose five values of
ψ = 6.647 µs, 32.09 µs, 88.18 µs, 211.3 µs, and 291.26 µs for comparison. The simulations are
given in Figure 10 and Table 2.
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Table 2. Comparison of the Output Voltage with Varying ψ.

Rise Time ψ
(µs)

Theoretical
Value of

Harmonic
Amplitude

A2 (mV)

Simulation
Value of

Harmonic
Amplitude

A2 (mV)

Theoretical
Value of

Harmonic
Frequency f 2

(kHz)

Simulation
Value of

Harmonic
Frequency f 2

(kHz)

Steady Error
of Output
Voltage vC

(mV)

6.647 0.94 0.96 79.45 78.74 0.032
32.09 4.55 4.62 16.46 16.18 0.741
88.18 12.51 12.67 5.99 5.88 5.59
211.3 30.03 29.99 2.50 2.50 31.3

291.26 41.44 32.99 1.81 1.99 48.6

From Figure 10, we can see that the influence of the unmodeled dynamics of the Hall
sensor cannot be ignored, despite the small value of the rising time ψ in the grade of µs. As
observed from Table 2, as the increase of the rise time ψ, the frequency of the harmonics will
decrease, while the amplitude and the steady error will increase. It is worth noticing that, if
ψ = 211.3 µs, it corresponds to the maximum value to keep the buck converter working in
CCM based on the data sheet of ACS 712 in [40] and (36), (37). Therefore, if ψ = 291.26 µs,
the inductor current iL is discontinuous, which can degrade the control performance and
increase the steady error, as seen in Table 2.

5.2. Experimental Results

In the following, we further test the influence of the unmodeled dynamics of the Hall
sensor by experiment. In Figure 11, the experiment platform based on DSpace 1106 is given,
where the sampling time is 0.5 ms and the PWM frequency is 10 k0 Hz. In Figure 12a, the
hardware of the buck converter is given, and in Figure 12b, the circuit of the contained Hall
sensor ACS712 is given, where the five chosen values 6.647 µs, 32.09 µs, 88.18 µs, 211.3 µs,
and 291.26 µs of the rise times ψ in Figure 10 and Table 2 can be obtained by adjusting the
capacitor CF on the basis of its chip manual [40].
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Hall sensor ACS712.

Based on the chip manual of the Hall sensor ACS712 in [40], we focus on investigating
the main issue of this paper, i.e., the influence of the unmodeled dynamics of the Hall
sensor on the control performance of the SM-controlled buck converter system in Figure 1.
Here we let the SM controller parameter be λ = 31.25 and vary the rise time ψ as 6.647 µs,
32.09 µs, 88.18 µs, 211.3 µs, and 291.26 µs, where the corresponding values of the capacitor
CF can be seen in Table 3. The experimental results are given in Figure 13 and Table 3. We
can see that, as the rise time ψ increases from 6.647 µs to 291.26 µs, the steady-state error of
the output voltage vC increases from 12.3 mV to 103.7 mV, and the harmonic amplitudes
vary from 428 mV to 812 mV. Therefore, it proves the influence of the Hall sensor cannot be
ignored.

Table 3. Comparisons of the Output Voltage with Varying ψ.

Rise Time ψ
(µs)

Adjusted Capacitor
CF

(nF)

Harmonic
Amplitude A2 (mV)

Steady Error of
Output Voltage vC

(mV)

6.647 0 428 12.3
32.09 10 528 26.1
88.18 47 568 50.1
211.3 70 688 83.4

291.26 100 812 103.7
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Figure 13. Experimental results affected by the unmodeled dynamics of Hall sensor ACS712:
(a) ψ = 6.647 µs, CF = 0 nF; (b) ψ = 32.09 µs, CF = 10 nF; (c) ψ = 88.18 µs, CF = 47 nF; and
(d) ψ = 211.3 µs, CF = 70 nF; (e) ψ = 291.26 µs, CF = 100 nF.

6. Conclusions

In this paper, we investigate the harmonic problem of SM-controlled buck converters
imposed by the often-ignored unmodeled dynamics of the Hall sensor. The advantages of
this paper lies on the following three points:

• The unmodelled dynamics of the Hall sensor are included into the modelling of the
SM-controlled converter system, and the experimental modeling approach in Figure 6
and (38) guarantees the modelling precision and accuracy;

• For the design of SM controller, this paper replaces the traditional time-domain ap-
proach based on the Lyapunov stability theorem with a frequency-domain approach
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by using DF and Nyquist stability criterion, which innovatively proves the inevitable
existence of harmonics caused by the unmodeled dynamics of Hall sensor;

• The quantitative relationship between the amplitude frequency characteristics of the
output signal and the Hall sensor is determined, seen in (33) and (34), which gives
guidance for the choice of SM parameter λ and the Hall sensor in practical systems.

At the same time, some issues concerning the limitations and potential areas for the
further research should also be considered. For example:

• In this paper, the sensor unmodelled dynamics are only considered; what about other
or multiple unmodelled dynamics affect the stability and control performance of the
system?

• In this paper, the commonly used linear sliding mode control approach is adopted;
what about other complex SM types are used for the control of buck converters?

• What is significant and valuable for the theoretical and applied research of SM-
controlled buck converter systems.
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