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Abstract: Greater variation in electrical load should be expected in the future due to the increasing
penetration of electric vehicles, photovoltaics, storage, and other technologies. The adoption of
these technologies will vary by area and time, and if not identified early and managed by electric
utilities, these new customer needs could result in power quality, reliability, and protection issues.
Furthermore, comprehensively studying the uncertainty and variation in the load on circuit elements
over periods of several months has the potential to increase the efficient use of traditional resources,
non-wires alternatives, and microgrids to better serve customers. To increase the understanding of
electrical load, the authors propose a multistep, attention-focused, and efficient machine learning
process to provide probabilistic forecasts of distribution transformer load for several months into the
future. The method uses the solar irradiance, temperature, dew point, time of day, and other features
to achieve up to an 86% coefficient of determination (R2).

Keywords: clustering methods; load forecasting; microgrid; neural networks; smart meters

1. Introduction

The intensifying need to reduce carbon emissions, the increased penetration of elec-
tric vehicles (EVs) and indoor agriculture, the growing deployment of customer-owned
distributed energy resources (DERs), the maturing of non-wires alternatives (NWAs) and
microgrid technology, and the promise of adaptive networked microgrids (ANMs) present
great opportunities to evolve the traditional electrical system for greater customer benefits.
However, for these opportunities to be made into practical solutions, the complexities
introduced must also be recognized, researched, and addressed. The two-way power flow
on distribution systems must be understood, new control and protection methods must
be developed for NWA and microgrid technologies, and even the risks of lightly loaded
energized equipment must be acknowledged and considered [1,2]. Greater spatial and
temporal resolution is needed to avoid power quality and reliability concerns, increase
capital efficiency, prevent equipment damage, and turn new opportunities into customer
benefits. This knowledge of load also must go beyond the traditional deterministic ap-
proaches currently leveraged by utilities. The likelihood of outcomes must be considered
with the dramatic changes expected as the needs of end users evolve.

Utilities’ past practices have been focused on determining the annual peak load on
substations, distribution circuits, or larger areas. A review of the research on the topic
shows a focus on either day-ahead forecasts at the customer and equipment level or longer-
term forecasts for larger areas, like distribution circuits, substations, or larger areas. Hourly
forecasts are needed on circuit elements months into the future to give electric utilities
the visibility and time needed to address issues before they cause equipment damage,
power quality concerns, or reliability issues for customers. These forecasts are also needed
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for the visibility to deploy NWAs and microgrids to serve smaller pockets of load. A
further improvement and needed paradigm shift for electric utilities is to move toward a
probabilistic view of electrical distribution system planning. This can lead to more efficient
use of capital and allow for consideration of outcomes that have not yet been experienced,
which is more critical with the evolution of the electrical distribution system.

Considering these current and practical opportunities and challenges facing utilities,
this manuscript presents a method to provide the insight into the electrical load that is
needed. The method does so while considering the scalability of the solution by minimizing
the training time, and it has been developed and validated with real-world data. Specifically,
the contributions of the method presented in this manuscript are as follows:

(1) The method provides automated meter infrastructure (AMI) data-driven hourly
forecasts at the distribution transformer level with much greater spatial and temporal
resolution compared to past practices and available research.

(2) It delivers the data required to develop and deploy NWA solutions and microgrids to
serve smaller pockets of load.

(3) It creates the visibility needed to avoid reliability, power quality, and protection issues
due to changing customer needs.

(4) It establishes the fundamental basis for an integrated framework to determine the
likelihood of occurrences using stochastic methods.

2. State of the Art
2.1. Overview

The predominant practice among electric utilities studying load for distribution plan-
ning purposes is focused on an annual and labor-intensive process of finding the peak
load on major electrical infrastructure, such as substation transformers. This determinis-
tically identified peak load is used to design the electrical system. The premise behind
this approach is that if the system can withstand the peak load, lighter loads can also be
accommodated. While this has led to a highly reliable and effective electrical system, it
leaves room for improvements. Researchers have recognized this opportunity and con-
sidered forecasting horizons up to 1 h (Very-Short-Term Forecasts or VSTFs), up to 1 or
2 weeks (Short-Term Forecasts or STFs), up to 1 or 3 years (Medium-Term Forecasts or
MTFs), and up to 30 years (Long-Term Forecasts or LTFs) [3]. There has been a great
deal of excellent research into forecasting electrical loads, with three areas receiving the
most attention: VSTFs and STFs (typically day-ahead or a few days-ahead) for small areas,
such as an individual customer; MTFs and LTFs for large areas, such as a substation, city,
or country; and classification to develop representative load shapes. While this research
promises improvements over traditional approaches, the evolving electrical system will
demand more. Considering the growing interest in and promise of NWA and microgrid
deployments, especially those that are networked with dynamic and adaptive boundaries,
longer-term forecasts for smaller areas are necessary. Furthermore, customer deployments
of DERs, such as rooftop solar and behind-the-meter storage, present great opportunities
but must be balanced with preventative measures that address the risks of power quality
concerns and equipment damage. This also requires understanding load with much greater
spatial and temporal resolution than previously studied.

2.2. Short-Term Forecasts

This section summarizes the research that has been completed to provide short-term
forecasts, typically day-ahead and up to a few weeks in the future. These forecasts are
typically created for smaller areas, such as homes or individual loads. The countermeasures
to address electrical system issues typically require material to be ordered, easements
and permits to be obtained, crews to be mobilized, construction to be completed, new
installations to be commissioned and tested, and other activities to be completed. The
load-related issues will increase with the evolution of the electrical system, and identifying
them earlier will be critical. Furthermore, the deployment of NWAs and microgrids will be
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designed to serve customers for years into the future. This will require a longer-term view
of the electrical load.

Smart meter data are used in [4] to test different dimensionality reduction methods
with linear regression and neural networks to produce day-ahead forecasts. A layered
architecture with various data types is presented in [5] to forecast 24 h into the future. The
authors achieved correlation coefficients between 88% and 86% for 3 to 24 h into the future.
Several machine learning methods are used to predict hourly electricity consumption for
370 houses a week in advance in [6]. Two datasets are used in [7]. In one case, the authors
predict the average hourly load by day for 30 days in advance. In the second case, they
predict the hourly load for the next day. A parallel neural network architecture (PLCNet)
with two datasets is used by [8] to forecast the hourly day-ahead load for Germany and a
city in Malaysia. Three one-dimensional convolutional (conv1d) layers are presented in [9]
to provide one day-ahead predictions of hourly loads. The authors of [10] weigh the use of
several models, including time series autoregressive, linear regression, gray, and quadratic,
to determine an overall forecast for three days. Long short-term memory (LSTM), dense
and then conv1d are considered in [11] to forecast for three days in the future. Two linear,
short-term load-forecasting models are described in [12] for the customer baseline load on
aggregate and on average distribution transformer data. A thermal model of a transformer
is developed in [13], and it uses different models to predict the load data for the next 24 h.
The authors of [14] use time-series data spanning over 2 million minutes in 1 min intervals
from a single household in France to predict the load for that house five minutes into the
future and achieve an R2 of 83%. A stacked autoencoder neural network (SAE) is used
in [15] to create a 50 h load forecast. The load of an area in China served by a 2500 kVA
transformer is forecast in [16]. The authors use 999 days of data to predict the load on day
1000 for an R2 of 99%. The authors of [17] forecast one day-ahead and one week-ahead for
a 400 kV substation area. Ref. [18] predicts 25 to 250 h into the future. The authors of [19]
experiment with LSTM, Recurrent Neural Networks (RNN) and Gated Recurrent Unit
(GRU) networks to produce day-ahead forecasts. The authors of [20] use outlier correction
and Q-learning to forecast approximately 2 days into the future for 25 households in the
Austin area of the United States. Several machine learning approaches are compared by the
authors of [21] to forecast the load in Ontario, Canada two days into the future. Finally, the
authors of [22] provide an overview of the methods for performing short-term forecasts.

2.3. Large Area Forecasts

Research has been completed to provide longer-term forecasts for larger areas, such
as the area served by a substation. The evolution of the electrical system will come with
two-way power flow on infrastructure that has been designed for one-way power flow.
The future electrical system likely will see concentrations of load that must be addressed.
Furthermore, NWAs and microgrids will be designed to serve smaller load areas. For these
reasons, forecasting methods must focus on smaller areas to identify issues quickly or
proactively to prevent issues that could impact proper service.

The area focuses of [8,16,17,21] have already been described. The authors of [23]
forecast the load for the entire PJM area for over a year in advance to achieve an R2 between
75% and 80%. Ref. [24] tests several distance measures, including Dynamic Time Warping
(DTW) and Euclidean Distance (ED) with K-Means clustering as a precursor to forecasting
the load for a substation bus. Similarly, Ref. [25] uses the data from one substation in
Thailand to cluster the load on feeders as a precursor to load forecasting. The authors
of [26] predict the load for the city of Philadelphia. Hourly load data for Pakistan from
the Islamabad Electric Supply Company (IESCO) between 2015 to 2019 are used by [27]
to forecast weekly and monthly hourly forecasts to achieve an R2 of 98%. The authors
of [28] use training data from 2004 to 2010 with an LSTM–RNN method to forecast the
load from 2011 to 2015 for the six-state area covered by the New England ISO. Ref. [29] is
focused on stochastic forecasting at the feeder level and uses load profiles with a roulette
wheel approach. The authors of [30] produce national, regional, area, and substation load
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forecasts for distribution planning in Korea. Forecasting the load to charge EVs in an area
expected to have a peak of approximately 4000 MW for EV charging is the focus of [31]. The
authors of [32] forecast the load of a six-bus transmission system. Forecasting the annual
electricity consumption in China and a region of China from 2016 to 2019 is developed
in [33] by combining models and using forecasts for the independent variables, such as
the Gross National Product (GNP) and per capita disposable income. Refs. [34,35] develop
user classes and apply them to determine the area load expansion capability. The authors
of [36] study several methods of forecasting the load of the Greek power system.

2.4. Representative Load Shapes

The authors of the present work found some beneficial work on load classification
and representative load shapes. For example, Refs. [37–42] all compare methods for
determining the representative load shapes for groups of customers. Ambient temperature
and categorical data are used by [43] to create clusters of transformers with similar load
shapes and then that data are used to determine the impact on the insulation life. New
tariff structures are developed by [44] based on a clustering algorithm and measures the
authors developed.

There is some interesting research that allows users to set key parameters, such as EV
penetration, to determine system impacts. For example, Ref. [45] clusters feeders and then
allows for variation in the EV penetration. Similarly, Ref. [46] forecasts the load based on
clustering and adjusts that forecast based on a questionnaire. Ref. [47] considers increases
in PV penetration in Brazil. It allows users to set a PV level then places them with a Monte
Carlo approach for evaluating transformer overcurrent probability.

2.5. State of the Art Summary

In summary, existing solutions are primarily focused on: (i) shorter-term solutions,
such as day-ahead forecasts, for individual customer or circuit elements; (ii) longer-term
forecasts for larger areas, such as countries, cities, substations, or circuits; or (iii) load
classification to provide representative load shapes for study or use. For the evolving
electrical system with expanded DERs and sophisticated microgrids, the aim of the state
of the art must shift to provide longer time horizon forecasts for distribution circuit el-
ements, and those forecasts must consider greater variation than traditionally applied
deterministic approaches. The work that is presented in this document is focused on the
evolving electrical distribution system, specifically the deployment of NWAs, networked
microgrids with adaptive boundaries, and customer-owned DERs and EVs. Deploying
these technologies has the promise of increasing capital efficiency, improving reliability,
and supporting carbon emissions goals, but these benefits must be balanced with potential
risks that could result from mismatches in supply and demand in the distribution system.
To avoid these concerns, new methods are needed that expand past day-ahead or area
forecasts that have been the focus of so much great research. Utilities have also typically
been focused on deterministic views of load that focus on the peak load on assets based
on annual assessments. Load forecasts that are several months to over a year in the future
and on portions of distribution circuits are needed. In addition, to efficiently use these new
technologies, traditional deterministic approaches must shift to stochastic methods. This is
the focus of this work.

2.6. Influence on Current Work

The method described in this manuscript has been influenced by past research. The
clustering precursor to load forecasting presented in [24,25] was helpful in shaping the
overall process described in this paper. The PLCNet and three conv1d layer concepts
presented in [8,9], respectively, were found to improve the results of the neural network
element to be discussed. Load clusters and day stages used with Markov modeling to create
state transition rules are described by [48]. The concept described in [48] is contemplated
for future study and shaped some of the direction of the present work.
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3. Method Overview and Development
3.1. Method Overview

Considering the challenges of the evolving electrical system, the authors set objectives
for developing a new method that focuses on developing (i) forecasts on circuit elements;
(ii) forecasts months into the future; (iii) a scalable solution that is time efficient; and
(iv) a stochastic method that provides a range of potential situations to be managed.
Various forms of neural networks were originally contemplated by the authors, but it
was realized that evaluation would be needed before training. First, analysis of the data
is needed to establish the framework to step through the Monte Carlo simulations in a
time-efficient and effective manner. Second, to meet the need for longer time horizon
forecasts for circuit elements, the authors recognized the need for additional support for
the neural network. Third, all these early processing steps would have to be performed
with a time-efficient method to provide a scalable solution. For the second and third points,
the authors recognized the need to leverage Graphics Processing Unit (GPU) computing for
the training process and were inspired by attention methods [49] to improve the accuracy
and processing time. The resulting overall multistep method is illustrated in Figure 1. The
following sections and the rest of this manuscript will elaborate on this process.
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3.1.1. Weather Clustering

The Weather Clustering element determines the day types based on weather condi-
tions, specifically the temperature, solar irradiance, and dew point. These day types have
two purposes. First, they provide a logical framework to sequence through the Monte Carlo
simulations with variations of the parameters within the day type. Next, they provide
common weather conditions to consider the load on transformers.

3.1.2. Load Clustering

The Load Clustering element first groups transformers together with similar load
patterns on each day type. Next, it develops an initial forecast for each transformer for each
day type. These initial forecasts provide the basis for the attention methods to be used in
the following steps.
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3.1.3. Community Detection

The frequency with which transformers have similar load patterns on different day
types can be used in Community Detection algorithms. Transfer learning within the
detected communities can reduce the overall training time.

3.1.4. Neural Network Refinement

All the earlier steps are combined in attention-focused neural networks in the Neural
Network Refinement element. It uses the initial forecast from the Load Clustering element
as a starting point and then uses the determined attention with transfer learning within the
identified communities to produce the results.

3.1.5. Monte Carlo Simulations

The previous steps of this method have been developed to support Monte Carlo
simulations in future work. The Monte Carlo simulations will consider the proper use of
computer hardware, such as the Central Processing Unit (CPU), memory, and GPU, for time-
efficiency and scalability considerations. The results of the Monte Carlo simulations will be
used for the engineering analysis, including a focus on identifying potential transformer
failures, reliability concerns, power quality issues, and protection problems. The Monte
Carlo simulations will also be used for designing NWA solutions, microgrids, and ANMs.
Integrating the engineering analysis and Monte Carlo simulations will again be critical for
time efficiency and scalability.

3.2. Development Approach and Datasets

These methods have been carefully and thoroughly developed and tested with multi-
ple techniques and extensive datasets to identify the best balance of accuracy and training
time. The datasets consist of the load from over 1000 distribution transformers. There are a
variety of transformers in the dataset, including single-phase and three-phase transformers,
overhead and underground transformers, primary voltages of 4.8 kV ungrounded delta
and 13.2 kV grounded wye, and capacities less than 1500 kVA. The data were collected over
approximately two and a half years in two areas approximately 130 miles apart in DTE
Electric’s service territory (Figure 2). Area 1 is a suburban area, and Area 2 is a rural area.
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The load is normalized by the transformer capacity, as illustrated in Figure 3.
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4. Weather and Load Clustering
4.1. Purpose

The purpose of these steps is to group transformers by characteristics for further anal-
ysis, transfer learning, forecasting, and change identification. It provides initial forecasts
and identifies problematic areas for attention in future steps. The weather clustering steps
also provide the framework to be used in the Monte Carlo simulations.

4.2. Influence of Weather

Weather, among other factors, heavily influences electrical load. For that reason, the
authors first take steps to determine days with similar weather. This work was originally
based on hourly temperature and solar irradiance data only. After the initial work, dew
point was found to be a good addition to improve accuracy.

Piecewise Aggregate Approximation (PAA) was used with the hourly temperature,
solar irradiance, and dew point data for dimensionality reduction prior to K-Means clus-
tering. The number of clusters was planned as an independent variable for the following
steps. Figure 4 provides an example of the results of the day clustering with only solar
irradiance and temperature considered (dew point was added after the initial work).
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Figure 4. An example of the day-type determination using PAA and K-Means clustering with nine
clusters considering the solar irradiance and temperature.

Considering the z-scores for the solar irradiance (S), ambient temperature (T), and dew
point (D) for each day (d) in the period under investigation, that day has a combination
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of solar irradiance, temperature, and dew point represented by d(S, T, D). Each 24 h data
point is converted into a PAA equivalent with m segments using the following for S. The
same method is applied for T and D.

S ≡ {s1, s2, s3, . . . sn}
si ∈ R, i = 1, 2, . . . , n

n = 24 in the present application
S′ ≡ {s′1, s′i, . . . , s′m}

s′j ∈ R, j = 1, 2, . . . , m with m ≤ n
m = 6 in the present application

(1)

These data are used to determine a unique day-type index (dt) via K-Means clustering
with a specific number of clusters ( nd ≡ number_o f _day_types). These day types will be
used for further analysis.

∀[d(S′, T′, D′)]∃! dt[dt = kmeans(d(S′, T′, D′))]
dt ∈ Z, 0 ≤ dt < nd

(2)

where kmeans(d(S′, T′, D′)) is the cluster index that results for a point represented by (S′,
T′, D′) after clustering all the days in the period under investigation.

Contemplating a method that would be used for stochastic forecasts, Markov chains
were developed to be used for transitions that will be used in Monte Carlo simulations
in the future. Figure 5 shows an example of the results for January. In Figure 5, a set of
day types present in January is included as the nodes (represented by indices 0, 2, 6 in this
example), and the probability of transitioning between these day types is represented by
the percentages on the edges.
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Figure 5. An example Markov chain for day cluster transitions with nine day-type clusters in the
month of January. The temperature and solar irradiance for these day types are shown in Figure 4
with day-type 0 having the lowest temperature range and day-type 2 having the highest temperature
range. The temperature range for day-type 6 is between day-type 0 and day-type 2, and the solar
irradiance for all cases is a similar distribution.

4.3. Error and Outlier Detection and Correction

The Local Outlier Factor (LOF) method, as described in [50], was used to highlight data
issues for additional investigation and correction. This resulted in correcting several errors
in system databases, as illustrated in Figure 6. “Incorrectly Categorized” are transformers
that have the wrong number of phases and/or overhead/underground categorization.
“High Percentage of Errors” refers to clearly incorrect data, such as transformers with the
real power being higher than the apparent power reading. “High Percentage of Outliers”
refers to the designation of the transformer determined from the LOF analysis. “Wrong
Voltage” refers to transformers in an area served by a different primary voltage, for example,
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a 13.2 kV transformer served from a 4.8 kV area. Additionally, the impact of moving meters
between locations had to be considered to provide accurate load data.
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4.4. Clustering Methods for Load

The authors intended to identify a method suitable for the purpose by testing several
with the number of day clusters and the number of load clusters as key inputs. The
factors for evaluation were focused on the accuracy of fit using the R2 and processing time,
considering a scalable method is desired.

Several methods have found success in the literature, including k-shape clustering
in [51,52]; DTW in [24,38,48]; Agglomerative Clustering in [4]; Principal Component Anal-
ysis in [4,33,48]; and PAA and Slopewise Aggregate Approximation in [38,39]. Figure 7
provides an example of the output for one method tested.
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In the end, K-Means clustering with PAA was selected as the most promising method
and used for further analysis (details of the experiments are provided in Section 6—Results
and Comprehensive Model in this document) [53–56].

4.5. Process Details

Considering the 24 h load data for a transformer for each day in the period under
investigation, the load data are normalized by the rating of the transformer serving that
load (L), as shown in Figure 3. Each 24 h data point for each transformer is converted into
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a PAA equivalent with p segments with o overlap using the following (p = 12 and o = 0
are found to be the preferred values in the current application):

l′j = 1
UT+1−LT

UT
∑

i=LT
li

UT == min(n− 1, (( n
p )(j + 1)− 1) + o)

LT == max
(

0,
(

n
p

)
j− o

)
L ≡ {l0, l1, l2, . . . ln−1}

li ∈ R, li ≥ 0, i = 0, 1, . . . , n− 1
L′ ≡

{
l′0, l′1, l′2, . . . l′p−1

}
l′j ∈ R, l′j ≥ 0, j = 0, 1, . . . , p− 1
n = 24 in the present application

(3)

These data are used to determine a unique load-type index (lt) for each transformer day
combination through K-Means clustering with a specific number of clusters
(k ≡ number_o f _load_types). The datasets used are separated from the overall dataset
by day type (dt ), transformer type (tt), and season (se). These load types will be used for
further analysis, including community detection.

∀L(L′, tt, se, dt)∃! lt[lt = kmeans(L′)]
dt ∈ Z, 0 ≤ dt < nd
tt ∈ Z, 0 ≤ tt ≤ 7
lt ∈ Z, 0 ≤ lt < k

se ∈ [2019S1, 2019S2, 2019S3, 2019S4,
2020S1, 2020S2, 2020S3, 2020S4,
2021S1, 2021S2, 2021S3, 2021S4]

(4)

In Equation (4), kmeans(L′) is the cluster index that results for a point represented by
(L′) after clustering all the transformer and day combinations within the dataset (segmented
by day type, transformer type, and season).

The final unique load-type index (lt) for each transformer on a day type and within a
season (se) is chosen based on the most frequent occurrence of the load-type index for that
transformer on a specific day type within that season.

∀T(se, dt)∃!lt [lt = maximum_count(lt)] (5)

Furthermore, load forecasts (F) for each transformer on a day type and within a season
(T) are developed using:

F(T(se, dt)) = centroid(L(T(se, dt)) (6)

Figures 8 and 9 provide the detailed steps to train and test using the method described
in this section.
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4.6. Attention

One benefit of developing an initial forecast using the more time-efficient clustering
method described earlier is that it identifies problematic areas for attention to be applied.
Only the training data were used in the clustering steps to develop two attention mecha-
nisms to support the neural network step that will be described in Section 5—Community
Detection and Neural Network Refinement. First, any transformer and day combination in
the training data that had a low R2 was more highly weighted using the Keras/Tensorflows
sample weight feature. This will be referred to as “sample weight training attention” in the
remainder of the paper, and it is intended to increase the neural network training focus
on areas where accuracy is likely to be a challenge. The second method will be used with
multihead attention in the following steps. The multihead attention is calculated for each
transformer, on each day type, and in each period.

ai = | fi − li|/
n−1
∑

j=0

∣∣ f j − lj
∣∣

A ≡ Attention
A ≡ {a0, a1, a2, . . . , an−1}

ai ∈ R, ai ≥ 0, i = 0, 1, . . . , n− 1
F ≡ Clustering Step Forecast

F ≡ { f0, f1, f2, . . . , fn−1}
fi ∈ R, fi ≥ 0, i = 0, 1, . . . , n− 1
n = 24 in the present application

(7)

4.7. Conclusions

Figure 10 illustrates the Transformer Load Matrix (TLM) result of the clustering steps
of the method proposed. It was developed by first determining the days with similar
weather in the Weather Clustering step. The results of that Weather Clustering step were
used to determine the Load Clusters for each day type. This provided initial forecasts for
each transformer on each day type, transformers with similar load patterns, and attention
methods to be used in downstream steps.
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5. Community Detection and Neural Network Refinement
5.1. Purpose

The problem being solved requires forecasts several months into the future. This is a
long window for standard neural networks and other forecasting methods. Supporting
their use with the standard load profiles from the TLM shown in Figure 10 will provide
better accuracy, as illustrated in Figure 11.
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5.2. Neural Network Areas of Focus

There were three areas of focus for the development of the neural network element:
(1) Training Data Segmentation, including by transformer, community detection (Louvain,
Walk Trap, Spectral Agglomerative, Leading Eigenvector), TLM element, error/outlier
detection and correction, data augmentation and others; (2) Training Methods, including
sample weighting, optimizers, regularization, dropout, stopping criteria, and others; and
(3) Neural Network Architecture, including dense, attention, multihead attention, scaled
dot product, residual connections, embeddings, convolutional, autoregressive, LSTM,
parallel paths, and others [53,56].

5.3. Community Detection

Community Detection was an interesting method in which experimentation was
completed in the Training Data Segmentation area of focus, and it is illustrated in Figure 12.
The intent was to identify transformers with similar load patterns across multiple day
types to use with transfer learning. The work in [57,58] provided methods to identify
communities. The authors found that the Louvain method provided the best results. The
steps for the Community Detection process were: 1. Create a TLM-based Graph; 2. Create
Adjacency and Laplacian Matrices; 3. Apply Community Detection Algorithms; and 4. Use
Transfer Learning to Train Transformers in the Same Community [59].
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Figure 12. Community detection illustration used in the data segmentation area of focus.

Well over 400 experiments were completed with numerous data segmentation ap-
proaches, training methods, and architectures. The most successful architectures are
illustrated in Figure 13. These architectures were influenced by [8,9,49]. The parallel archi-
tectures proposed in [8] produced better results, which are included in both architectures.
Both architectures also include multihead attention inspired by the Transformer model
described in [49]. Architecture A also includes three different sized one-dimensional convo-
lutional filters in one of the paths, like what is described in [9] with the Averaging layer
replaced by a Maximum layer [60].
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6. Results and Comprehensive Model
6.1. Clustering Results

Table 1 provides a summary of the training time and accuracy of all the methods
considered in the clustering steps. From this analysis, K-Means clustering with PAA was
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selected as the most promising option considering a balance of the accuracy of the results
and the time to train.

Table 1. Clustering summary of results.

Clustering Method * R2 ** Training Time (s) ***

K-Shape 69.3% 1716

K-Means with Dynamic Time Warping (DTW) 78.5% 7175

Agglomerative with Average Linkage 78.1% 69.92

Agglomerative with Ward Linkage and PCA 78.5% 66.18

Agglomerative with Ward Linkage and
Piecewise Aggregate 79% 69.13

Agglomerative with Ward Linkage and
Slopewise Aggregate Approximation 78.3% 69.96

Agglomerative with Ward Linkage, Piecewise Aggregate
Approximation and Slopewise Aggregate Approximation 79% 72.27

K-Means with Piecewise Aggregate Approximation and Slopewise
Aggregate Approximation—Using a GPU 79% 66.84

K-Means with Piecewise Aggregate
Approximation—Using a GPU 79% 56.83

* DBSCAN was another method attempted, which showed poor results; ** With 20 Day Clusters and 20 Load
Clusters using solar irradiance and temperature data; *** System Specifications: CPU: AMD Ryzen 7 5800X with
3801 MHz Default Clock Speed, GPU: NVIDIA GeForce RTX 3060 It, RAM: 2 X Kingston HP37D4U1S8ME-8XR-
DD4 for 16 GB, Motherboard: HP 8876.

The impacts on the R2 and cluster consistency (how consistently a transformer was
placed into a load cluster) of slight variations in the number of load clusters, day clusters,
PAA segments and PAA segment offsets were considered. This led to 25 day clusters,
7 load clusters, and 12 PAA segments, with 0 overlap being selected as the best option. The
method was applied to a new dataset that was not used in the development of the method.
This dataset was from the same area but for approximately seven months following the
training period. The R2 dropped from 78% to 67% with the test dataset.

Further analysis showed that including weekends was not as impactful as other
features, clustering by location did not provide a significant change in the accuracy, and
including a division by year and season did improve the results. In the end, the R2 on the
training dataset was 81%, and it was 68% on the test dataset. The entire method was then
applied to a new area (Area 2) that was 130 miles north of the original area (Area 1). The
R2 on the training dataset was 66% and it was 54% on the test dataset. Using the weather
information from the first area did not significantly change the results for the second area.

6.2. Community Detection Results

As shown in Figure 14, transfer learning within the communities detected between
transformers based on the TLM is the most consistent method for reducing the neural
network training time while achieving accuracy.
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Figure 14. (a) Area 1 neural network test accuracy compared to the training time with and without
transfer learning; and (b) Area 2 neural network test accuracy compared to the training time with
and without transfer learning.

6.3. Neural Network Results

Figure 15 provides a summary of the training time and accuracy results of the Neural
Network Refinement element. The first number in the Epoch column is the maximum
number of epochs, and the second is the maximum number of epochs without an improve-
ment in the validation accuracy. The first number in the Year Focus Factor column is the
sample weight factor applied to the most recent year training data (2021), and the second
is the sample weight factor applied in the next most recent year (2020). The first number
in the r2 Attention Factor column is the sample weight factor applied for transformer day
combinations with an R2 less than 0%, and the second is the factor applied to transformer
day combinations less than 50% but greater than 0%.
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Area 1 includes approximately 500 transformers with training from July 2019 to
early June 2021, the validation is 10% of the points from the July 2019 to early June
2021, and the testing is from early July 2021 to November 2021. LOF = 1.5 showed
approximately 11% outliers, and LOF = 2 showed approximately 3% outliers. Area
2 has approximately 550 transformers with training from July 2019 to June 2021, the
validation is 10% of the points from July 2019 to June 2021, and the testing is from July
2021 to December 2021. LOF = 1.5 shows approximately 35% outliers, and LOF = 2
shows approximately 14% outliers.

The authors found Architecture A, transfer learning within the communities, 9 maxi-
mum epochs, 4 epochs without improvement, sample weight training attention, and an
LOF threshold of 1.5 to be the preferred option, although a reader may find benefit from
others depending on the specific problem that the reader is trying to solve. The training
and accuracy of the results columns were color-coded with the best value green, the worst
value red, and the median value yellow. The color coding for the remaining values was
determined based on how close each value was to those thresholds.

6.4. Overall Results

The overall results for the authors’ preferred form are presented in Table 2.

Table 2. Overall process results.

Step Time (min) Area 1 R2 Area 2 R2

Weather and Load
Clustering

6 Train: 90% Train: 87%
Forecast: 78% Forecast: 63%

Community
Detection 2 N/A N/A

Neural Network
Refinement

40 Train: 90% Train: 83%
Forecast: 85%/83% Forecast: 75%/69%

Table 2 illustrates that an area including approximately 500 distribution transformers
of different primary voltages (13.2 kV grounded wye and 4.8 kV ungrounded delta),
construction types (overhead and underground), and primary feeds (three phase and single
phase) can be trained in approximately 48 min and result in an hourly forecasting accuracy
up to the mid-80% range for 5 to 7 months in the future.

7. Research Findings and Future Work
7.1. Research Findings

The evolving electrical distribution system will require utilities to have greater visibil-
ity into the electrical load to avoid issues like power quality concerns, protection inadequacy,
and ferroresonance. Such greater understanding of load is also critical to take advantage
of new opportunities, like deploying NWAs and ANMs. The insight into the electrical
load will have to expand beyond short-term forecasts for specific customers or small areas.
Forecasts will need to be at least months into the future, they must be on circuit elements,
and they must consider a range of cases.

To address this need, the authors have proposed a multistage process after complet-
ing hundreds of experiments with an extensive dataset. Based on that work, clustering
approaches are a good precursor to improving accuracy and processing time. Specifically,
weather clustering provides the foundation for future Monte Carlo simulations and the
basis for identifying circuit elements with similar load patterns (see Section 4.2). Load
clustering identifies portions of the data to focus the attention of neural network steps
and provides the data to complete community detection to identify circuit elements with
similar load characteristics across days with different weather (see Sections 4.4 and 6.1).
The resulting communities reduced the overall training time for the neural network step
(see Sections 5.3 and 6.2). Considering neural networks, parallel path architectures that
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use attention methods can provide accurate forecasts for circuit elements (distribution
transformers in this study) months in the future (see Sections 5.2 and 6.3). Finally, GPU
computing reduces the training time (see Sections 6.1 and 6.3), and data correction steps
are critical and time consuming (see Sections 4.3 and 6.3).

The result is a method suitable for Monte Carlo simulations that can be trained to
hourly load forecasts with an accuracy up to 86% in approximately 48 min for an area
including approximately 500 transformers (see Section 6.4).

7.2. Future Work

The work presented in this manuscript will be used in Monte Carlo simulations to
create a range of electrical load scenarios for circuit elements. The results will be used to
identify potential concerns with high and low equipment loading, protection risks, and
power quality issues. The results will also be used to consider the deployment of NWAs
and in the design of ANMs. During this work, the overall process will be refined to produce
more accurate results with lower training times.
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