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Abstract: Virtual power plants (VPPs) are a critical technology for distribution systems that can
integrate various renewable energy resourcescontrollable loads and energy storage systems into
one specific power plant through a distributed energy management system. This paper proposes a
coordinated dispatch optimization model between the main grid and VPPs aiming to minimize both
the power generation cost and total system active loss. When the time of the equivalent dispatching
model is not divisible due to the existence of a time coupling constraint inside the VPPs, this model
can obtain the global optimal solution through iteration between the main grid and the VPPs. By
employing multi-parametric quadratic programming to obtain accurate critical domains and optimal
cost functions, the convergence speed and stability are significantly improved. Additionally, a reactive
power and voltage optimization technique leveraging the generalized Benders decomposition is
presented for the coordination of the main grid and the VPPs. Moreover, the impact of distributed
energy resource (DER) clusters on the main grid was studied, from which we proved that the proposed
approach can expeditiously abate energy production expenditure and system active dissipation whilst
enhancing the system equilibrium.

Keywords: virtual power plants; coordinated dispatch; multi-parametric quadratic programming;
generalized Benders’ decomposition

1. Introduction

Distributed energy resources (DERs) have many advantages such as low pollution,
high energy utilization efficiency, and low investment and construction costs [1–3]. The
rapid expansion of distributed generators has caused DER technologies to become preva-
lent, which play an important part in energy markets [4]. However, there are many
problems in their actual operation and application processes, such as the high cost of a
single distributed power supply and coordination and control difficulties. To address
these problems, the concept of virtual power plants (VPPs) has been introduced into grid
control [5], which can coordinate and control DERs effectively, thus enabling their seamless
integration into the main grid. They can exist as cloud power plants, which aggregate het-
erogeneous DERs to form a single operating unit to facilitate the management of individual
DERs, enabling system operators to develop dispatch optimization strategies [6].

Moreover, the decarbonization of the energy system has driven many studies about
DER aggregators with network operators. António Coelho et al. [7] proposed a market
participation of aggregators of multi-energy systems. The alternating direction method of
multipliers (ADMM) was utilized in their paper, in which the aggregator worked together
with the operators of electricity, gas and heat networks to calculate network-secure bids to
ensure the network’s reliability and stability. Jose Iria et al. [8] presented a new bidding
optimization strategy for an aggregator of prosumers to make decisions in real-time markets.
The bidding strategy employed the ADMM within a rolling horizon framework to facilitate
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the negotiation of MV-LV network-secure bids between the aggregator and DSO while
maintaining the data privacy of both parties. Nuno Soares Fonseca et al. [9] presented
a novel decentralized framework for distribution system operators (DSOs) to assess the
network feasibility of aggregator bids and compensate them for providing network support
services. These studies have played a crucial role in facilitating the integration of DERs into
the grid.

However, with the increasing penetration of DERs, VPPs using centralized energy
management and dispatching operations face many problems such as high communication
costs, low optimization efficiency, and variable operating conditions of distributed power
sources, and it is difficult to coordinate the randomness and volatility of a large number of
uncontrollable power sources [10,11]. This forces the main grid to act as a power backup
for DERs and VPPs, which impacts the main grid, thereby increasing the difficulty of its
operational control. In order to improve the observability and controllability of VPPs and
make the most of the coordination capabilities of VPPs to control DERs, it is urgent to
study the coordinated and optimal control technology of DER clusters to realize the full
consumption and optimal control of DERs in distribution systems [12–14].

There are some methodologies about optimal scheduling for VPPs. Wang et al. [15]
proposed an economic operation optimization model based on a modified genetic algo-
rithm with the voltage control requirements of VPP scheduling considered. Vale et al. [16]
presented a multi-level consultation mechanism that leverages the advantages of VPP man-
agement to achieve optimal operation and negotiation in power markets with smart grids.
Bertram et al. [17] used a reactive power supply control model to analyze the small-signal
stability of voltage regulation in medium-voltage distribution networks. Ruthe et al. [18]
introduced a new distributed coordination algorithm as well as the concept of direct control
to allow small loads or generator sets to provide a secondary control reserve. Bao et al. [19]
analyzed the functions of different resources to ensure the maximum security of a dis-
tribution network. Vasirani et al. [20] described electric vehicles as a storage medium
connected to wind turbines. They suggested an agent-oriented methodology to refine its
grid-energy-provisioning strategies and leverage energy storage to maximize profits in
response to uncertainties associated with wind power forecasts. Zhu et al. [21] considered
the uncertainty of DERs and load and proposed a mapping method and a two-layer op-
timization method to solve the dynamic dispatch problem of VPPs. Giuntoli et al. [22]
proposed a novel model to solve the day-ahead thermoelectric and electrical optimization
of VPPs problem, which also considered the precise geospatial coordinates of each DER
within the main grid and its unique characteristics. They demonstrated how the promise
of clusters of DERs at virtual public coupling points affects optimal VPP operations in
microgrids and active distribution networks.

However, there has been a lack of research on coordinated scheduling between VPPs
and the main grid. The transition from centralized to distributed energy resources brings
the diversity of variables in smart grids [23]. The intermittent generation of heterogeneous
DERs can destabilize the system and result in significant fluctuations. Time-varying
market prices and flexible load demands cause uncontrollable confusion in the deployment
system [24–26]. These tasks necessitate the development of a flexible operation control
strategy to consider the optimal dispatching process of VPPs and the main grid, to alleviate
conflicts and to facilitate energy trading.

In this paper, we comprehensively study the dynamic scheduling method of the co-
ordination between the main grid and VPPs, considering the cost of energy production
and system active loss. A multi-parameter planning projection algorithm for the hierar-
chical coordination control of VPPs and the power grid is proposed, which improves the
convergence by more than one order of magnitude, realizes the combination of centralized
online coordination optimization and local fast control of the power supply and solves the
difficult problem of the centralized control of a large-scale distributed power supply. The
operational framework is shown in Figure 1. The contribution of our work contains the
following features:
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Figure 1. The control framework of coordination between VPPs and the main grid.

First, a dynamic economic scheduling model for the coordination of the main grid and
VPPs is presented. We adopted an iterative strategy to address the time inseparability of the
equivalent scheduling model caused by time coupling constraints. Our method can obtain
the global optimal solution even when there are time coupling constraints inside the VPPs.
We employed multi-parametric quadratic programming to generate the precise critical
domain and the optimal cost function, which significantly improved the convergence speed
and stability.

Then, for reactive power and voltage optimization between the main grid and VPPs,
we leveraged the generalized Benders decomposition with an expeditious practicable
cut generation algorithm to reduce the system active loss. We utilized the second-order
cone programming relaxation method for reactive VPP optimization as an ancillary task.
After relaxation, the subproblem becomes convex, ensuring convergence. Moreover, the
proposed method can prevent the overvoltage caused by massive access to DERs in VPPs.

Finally, we analyzed the impact of DER cluster operations on the power grid. If there
is no coordination between the main grid and VPPs, power flow reversal and voltage
limit violations may occur when a large number of DERs are injected into the power grid.
To address this issue, we presented a robust optimal power flow model that considers
the uncertainty of the DER and provides strategies with better comprehensive economic
benefits for different scenarios.

This paper is structured as follows: Section 2 elucidates the main grid–VPPs decompo-
sition coordinated dispatch model, which considers the power generation cost and system
loss. Section 3 provides the problem analysis and solutions. In Section 4, we show our
case study. In Section 5, we present an assessment of the implications of the DER cluster
operation on the smart grid. Finally, Section 6 offers a summation of our approach.

2. Materials and Methods

In this section, we present our economic optimization and reactive power and voltage
control model for the coordination between the main grid and VPPs. The coordination
between the main grid and VPPs is showcased in Figure 2. The circled part is the VPP, and
the DERs are seen as a resource cluster of it. The red line density is the main grid. This
paper mainly focuses on the coordination and interaction between the main grid and VPPs.
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2.1. Coordinated Dispatch Model between Main Grid and VPPs

To achieve dynamic scheduling coordination, our goal was to minimize the aggregate
generation costs and losses. The former focuses on the economic dispatch between the
VPPs and the main grid in order to minimize power generation costs. The latter considers
reactive voltage control to minimize the total network losses. The equations are illustrated
by the following formulas:

min(Cost + Loss) (1a)

Cost = ∑
t∈T

∑
i∈Gtrans

Ctrans
i

(
pgtrans

i,t
)
+ ∑

t∈T
∑

k∈DIST
∑

i∈Gdist,k

Cdist,k
i

(
pgdist,k

i,t

)
(1b)

Loss = ∑
i∈Itrans

(
Ptrans

Gi − Ptrans
Di

)
+ ∑

k∈DIST
∑

i∈Idist,k

(
Pdist,k

Gi − Pdist,k
Di

)
(1c)

The cost function is as follows:

Ci(pgi,t) = a0,i + a1,i pgi,t + a2,i pg2
i,t (2)

where T is the set of dispatching moments, G is the set of nodes where generator sets
are located, I is the set of a node index, and DIST is the set of VPPs. The superscript
(·)trans denotes the variable/function/set of the main network, while superscript (·)dist,k

denotes the variable/function/set of the kth VPP. The function Ci(·) represents the power
generation cost function of the generator set of node i, and pgi,t represents the output of
the generator set of node i at time t. PGi and PDi are the active injection and load of the
generator i. a0,i, a1,i and a2,i are the power generation cost constant, primary term and
secondary term, respectively, of the generator set at node i.

2.1.1. Main Grid Model

In the main grid, the generation set needs to satisfy the following constraints:
Power balance constraints:

∑
i∈Gtrans

pgtrans
i,t = ∑

i∈Btrans

pbtrans
i,t + ∑

i∈Dtrans

PDtrans
i,t , ∀t ∈ T (3)

where B is the set of boundary nodes between the main network and the VPP, and D is the
set of load nodes. The variable pbtrans

i,t represents the power transmitted from node i to the
VPP at time t, and PDi,t represents the load forecast value of node i at time t.

Power flow constraints:

Ptrans
ij =

(
Vtrans

i
)2Gtrans

ij −Vtrans
i Vtrans

j

(
Gtrans

ij cos θtrans
ij + Btrans

ij sin θtrans
ij

)
(4)
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Qtrans
ij =

(
Vtrans

i
)2Btrans

ij −Vtrans
i Vtrans

j

(
Gtrans

ij sin θtrans
ij − Btrans

ij cos θtrans
ij

)
(5)

∑
j∈π(i)

Ptrans
ij = Ptrans

Gi − Ptrans
Di (6)

∑
j∈π(i)

Qtrans
ij = Qtrans

Gi −Qtrans
Di (7)

Constraints (4) and (5) (Pij and Qij) are the active and reactive power flow formulas of
branch ij, where Gij and Bij are the conductance and susceptance of the branch connecting
nodes i and j, respectively. Vi and Vj represent the voltage amplitude of nodes i and j, and
θij represents the phase angle of branch ij. Constraints (6) and (7) are for the active and
reactive power balances, where QGi and QDi represent the reactive injection and load of
node i, and π(i) represents the set of nodes directly connected to node i.

Line transmission capacity constraints:

−PLtrans
j ≤ ∑

i∈Gtrans
SFtrans

j−i pgtrans
i,t − ∑

i∈Btrans
SFtrans

j−i pbtrans
i,t

− ∑
i∈Dtrans

SFtrans
j−i PDtrans

i,t ≤ PLtrans
j , ∀j ∈ Ltrans, ∀t ∈ T

(8)

where PLj is the transmission capacity of branch j, SFj−i is the transfer distribution factor
from node i to branch j, and L is the line set.

Spinning reserve constraint:

0 ≤ rutrans
i,t ≤ RUtrans

i ∆t, rutrans
i,t ≤ PGtrans

i − pgtrans
i,t , ∀i ∈ Gtrans, ∀t ∈ T (9)

0 ≤ rdtrans
i,t ≤ RDtrans

i ∆t, rdtrans
i,t ≤ pgtrans

i,t − PGtrans
i , ∀i ∈ Gtrans, ∀t ∈ T (10)

∑
i∈Gtrans

rutrans
i,t ≥ SRUtrans

t , ∑
i∈Gtrans

rdtrans
i,t ≥ SRDtrans

t , ∀t ∈ T (11)

where rui,t and rdi,t represent the upward and downward rotation of the spare capacity of
node i at time t, respectively. RUi and RDi are the upward and downward ramp rates of
node i, respectively. ∆t is the scheduling interval. PGi and PGi are the upper and lower
limits of the generator set output of node i. SRUt and SRDt represent the upward and
downward rotation reserve capacity requirements of the system at time t, respectively.

Unit ramping constraint:

−RDtrans
i ∆t ≤ pgtrans

i,t+1 − pgtrans
i.t ≤ RUtrans

i ∆t, ∀i ∈ Gtrans, ∀t ∈ T (12)

Unit output constraints:

PGtrans
i ≤ pgtrans

i,t ≤ PGtrans
i , ∀i ∈ Gtrans, ∀t ∈ T (13)

Security constraints:
Ptrans

Gi,min ≤ Ptrans
Gi ≤ Ptrans

Gi,max (14)

Qtrans
Gi,min ≤ Qtrans

Gi ≤ Qtrans
Gi,max (15)

Vtrans
i,min ≤ Vtrans

i ≤ Vtrans
i,max (16)

(
Ptrans

ij

)2
+
(

Qtrans
ij

)2
≤
(

Strans
ij,max

)2
(17)
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Constraints (14) and (15) are the active power and reactive power output constraints,
where PGi,min and PGi,max are the minimum and maximum magnitudes of the generator
active output of node i, and QGi,min and QGi,max are the minimum and maximum mag-
nitudes of the generator reactive output of node i. Constraint formula (16) specifies the
main grid voltage amplitude limit, where Vi,min and Vi,max are the minimum and maximum
voltage magnitudes of node i. Constraint formula (17) identifies the transmission capacity
constraint for each line, where Sij,max is the maximum transmission capacity of branch ij.

2.1.2. VPP Model

The modeling of the VPPs is similar to that of the main grid.
Power balance constraints:

pbdist,k
t + ∑

i∈Gdist,k

pgdist,k
i,t = ∑

i∈Ddist,k

PDdist,k
i,t , ∀t ∈ T (18)

Line transmission capacity constraints:

−PLdist,k
j ≤ ∑

i∈Gdist,k
SFdist,k

j−i pgdist,k
i,t + ∑

i∈Bdist,k
SFdist,k

j−i pbdist,k
i,t

− ∑
i∈Ddist,k

SFdist,k
j−i PDdist,k

i,t ≤ PLdist,k
j , ∀j ∈ Ldist,k, ∀t ∈ T

(19)

Spinning reserve constraint:

0 ≤ rudist,k
i,t ≤ RUdist,k

i ∆t, rudist,k
i,t ≤ PGdist,k

i − pgdist,k
i,t , ∀i ∈ Gdist,k, ∀t ∈ T (20)

0 ≤ rddist,k
i,t ≤ RDdist,k

i ∆t, rddist,k
i,t ≤ pgdist,k

i,t − PGdist,k
i , ∀i ∈ Gdist,k, ∀t ∈ T (21)

∑
i∈Gdist,k

rudist,k
i,t ≥ SRUdist,k

t , ∑
i∈Gdist,k

rddist,k
i,t ≥ SRDdist,k

t , ∀t ∈ T (22)

Unit ramping constraint:

−RDdist,k
i ∆t ≤ pgdist,k

i,t+1 − pgdist,k
i.t ≤ RUdist,k

i ∆t, ∀i ∈ Gdist,k, ∀t ∈ T (23)

Unit output constraints:

PGdist,k
i ≤ pgdist,k

i,t ≤ PGdist,k
i , ∀i ∈ Gdist,k, ∀t ∈ T (24)

Power flow constraints:
Let Ldist

ij =
(

Idist
ij

)2
and Udist

i =
(

Vdist
i

)2
, which represent the squared amplitudes of

the current and voltage, respectively. The power flow constraints of a VPP are as follows:(
Pdist

ij

)2
+
(

Qdist
ij

)2
≤ Ldist

ij Udist
i (25)

∑
i∈u(j)

(
Pdist

ij − Ldist
ij rdist

ij

)
+ Pdist

Gj = ∑
k∈v(j)

(
Pdist

jk

)
+ Pdist

Dj (26)

∑
i∈u(j)

(
Qdist

ij − Ldist
ij xdist

ij

)
+ Qdist

Gj = ∑
k∈v(j)

(
Qdist

jk

)
+ Qdist

Dj (27)

Udist
j = Udist

i − 2
(

rdist
ij Pdist

ij + xdist
ij Qdist

ij

)
+

((
rdist

ij

)2
+
(

xdist
ij

)2
)

Ldist
ij (28)
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where rij and xij are the resistance and impedance of branch ij, and u(i) and v(i) are the
ancestor and subordinate nodes of node i.

Security constraints:
Pdist

Gi,min ≤ Pdist
Gi ≤ Pdist

Gi,max (29)

Qdist
Gi,min ≤ Qdist

Gi ≤ Qdist
Gi,max (30)(

Vdist
i,min

)2
≤ Udist

i ≤
(

Vdist
i,max

)2
(31)

Idist
ij ≤ Idist

ij,max (32)

Constraints (29) and (30) are the active power and reactive output constraints of the
generator i. Constraint formula (31) specifies the voltage amplitude limit. Constraint (32) is
the transmission capacity constraint for each line, where Iij,max is the maximum current
amplitude of branch ij.

2.1.3. Boundary Conditions

The electricity transmission capacity between the main grid and the VPPs should be
balanced as follows:

pbtrans
I(k),t = pbdist,k

t (33)

where I(k) is the set of main network nodes that are connected to the kth VPP.
The DisFlow model must account for certain boundary conditions as follows:

Vtrans
T(k) = Vdist,k

root (34)

Ptrans
T(k) = Pdist,k

root (35)

Qtrans
T(k) = Qdist,k

root (36)

where Vtrans
T(k) , Ptrans

T(k) and Qtrans
T(k) are the voltage amplitude, equivalent active power and

equivalent reactive power of nodes in the main grid that connect to the kth VPP, which are
equal to Vd,k

root, Pdist,k
root and Qdist,k

root , which are the voltage amplitude, active power injection
and reactive power injection of the root node in the kth VPP, respectively.

2.1.4. Equivalence of Tie Lines in VPPs

There may be additional connection lines among VPPs, as shown in Figure 2.
The arrow in Figure 3 is the directionality of the active power flow. Recording pt as the

power transmitted between VPP 1 and VPP 2, the precedent model (a) can be corresponded
to model (b), wherein the main grid receives power, pbt1, from VPP1 and transmits power,
pbt2, to VPP2 [27]. Then, we have:

pbt1 = pbt2 = pt (37)
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where G
ip  and ( )G G

i iC p  are the power generation output and cost function of conven-

tional generator set i  , R
iP   is the power generation output of RE unit i  , D

iP   is the 
power demand of load i , lossp  is the total network loss of the system, G

iL  and R
iL  are 

the linear coefficients of conventional generator i  and RE unit i , LBP  is a constant term 
and G

iK  is the adjustment factor for each conventional generator set. GI , RI , DI  and 
LI   are the set of conventional generator sets, RE units, loads and lines in the system. 
minG

iP  and maxG
iP  are the lower and upper bounds of the power generation output of 

conventional generator set i , respectively. G
j iS − , R

j iS −  and D
j iS −  are the transfer distribu-

tion factors of conventional generator set, RE units and loads from i  to line j . 
Considering G

ipΔ  and R
jPΔ  have a negative correlation, the optimization objective 

can be rendered more succinctly as: 

( ) minmin 1
1G

G Ri

G
G G R Ri
i i j jGp i I j Ii

KC p L P
L∈ ∈

  
− − Δ   −   

   (39)

Figure 3. Equivalence of tie lines between VPPs.
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2.2. Robust Optimal Power Flow Considering Impact of DERs on System Operation

The access of many DER clusters requires effective coordination within VPPs. Consid-
ering the uncertainty of DERs, a robust optimal power flow model is established.

The robust optimal power flow model reduces the aggregate expenditure in the worst
scenario while the requirements are still fulfilled. The uncertainty of DERs is described by
the upper and lower limits, which can be addressed as follows:

min
pG

i

{
max

∆PR
i ∈[∆PRmin

i ,∆PRmax
i ]

∑
i∈IG

[
CG

i
(

pG
i + ∆pG

i
)]}

s.t. ∑
i∈IG

pG
i + ∑

i∈IR
PR

i = ∑
i∈ID

PD
i + ploss

ploss = ∑
i∈IG

LG
i pG

i + ∑
i∈IR

LR
i PR

i + PLB

∆pG
i = − KG

i
1−LG

i
∑

j∈IR

(
1− LR

j

)
∆PR

j , ∀i ∈ IG∣∣∣∣∣ ∑
i∈IG

SG
j−i
(

pG
i + ∆pG

i
)
+ ∑

i∈IR
SR

j−i
(

PR
i + ∆PR

i
)
− ∑

i∈ID
SD

j−iP
D
i

∣∣∣∣∣
≤ PL

j , ∀j ∈ IL

PGmin
i ≤ pG

i + ∆pG
i ≤ PGmax

i , ∀i ∈ IG

(38)

where pG
i and CG

i
(

pG
i
)

are the power generation output and cost function of conventional
generator set i, PR

i is the power generation output of RE unit i, PD
i is the power demand of

load i, ploss is the total network loss of the system, LG
i and LR

i are the linear coefficients of
conventional generator i and RE unit i, PLB is a constant term and KG

i is the adjustment
factor for each conventional generator set. IG, IR, ID and IL are the set of conventional
generator sets, RE units, loads and lines in the system. PGmin

i and PGmax
i are the lower and

upper bounds of the power generation output of conventional generator set i, respectively.
SG

j−i, SR
j−i and SD

j−i are the transfer distribution factors of conventional generator set, RE
units and loads from i to line j.

Considering ∆pG
i and ∆PR

j have a negative correlation, the optimization objective can
be rendered more succinctly as:

min
pG

i

∑
i∈IG

CG
i

pG
i −

KG
i

1− LG
i

∑
j∈IR

(
1− LR

j

)
∆PRmin

j

 (39)

Further, variable x is used to represent the optimization variable ∆pG
i , and ζ is used to

represent the uncertain parameter ∆PR
j .

3. Problem Analysis and Solution

In this section, we divide the coordinated dispatch problem into two parts and solve
them, respectively. The first part is regarded as a cooperative economic dispatch problem
between the main grid and VPPs. The objective function is as follows:

min∑
t∈T

∑
i∈Gt

Ctrans
i

(
pgtrans

i,t
)
+ ∑

t∈T
∑

k∈DIST
∑

i∈Gdist,k

Cdist,k
i

(
pgdist,k

i,t

)
(40)

The variables in the model are divided into main grid variables and VPP variables,
recorded as xt and xd, respectively. The subproblem can be expressed as follows:

minCtrans(xtrans)+ ∑
k∈DIST

Cdist,k
(

xdist,k
)

s.t.Akxtrans + Bkxdist,k ≤ ck

xtrans ∈ Xtrans

xdist,k ∈ Xdist,k, ∀k ∈ DIST

(41)
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The first constraint represents the boundary constraint, Xtrans represents the feasible
region of the main grid variables (constraints (3), (8)–(13)) and Xdist,k represents the feasible
region of the kth VPP variable (constraints (18)–(24)).

Furthermore, a decomposition–coordination method is employed. The algorithmic
procedures are as follows:

Step 1: Optimize the main problem of economic scheduling on the main grid by
initializing the number of iterations, m = 0, and making the set of feasible cut constraints,
FC, a complete set. In the main problem, the boundary variable is not considered, and its
form is as follows. The optimal solution is xtrans

(m)
.

minCtrans(xtrans)
s.t. xtrans ∈ Xtrans

xtrans ∈ FC
(42)

Step 2: According to the optimal solution of the main problem, xtrans
(m)

, solve the
economic scheduling subproblem of each VPP with boundary conditions. The subproblem
of the first k VPPs is as follows:

minCdist,k
(

xdist,k
)

s.t. Akxtrans
(m)

+ Bkxdist,k ≤ ck

xdist,k ∈ Xdist,k

(43)

Step 3: If the subproblem is feasible, the critical domain of the main grid variables
and the optimal objective function of the subproblem within the critical domain can be
generated; if the subproblem is infeasible, FC will update the feasible cut set.

Step 4: Solve the root problem:

minCtrans(xtrans)+ ∑
k∈DIST(m)

Ck
(m)

(
xtrans)

s.t. xtrans ∈ Xtrans

xtrans ∈ FC
xtrans ∈ CRk

(m)
, ∀k ∈ DIST(m)

(44)

Here, DIST(m) represents the number of feasible subproblems of m VPPs in the first
iteration. CRk

(m)
is the set of subproblems. Increase the number of iterations m = m + 1 and

denote the optimum resolution of the root issue as xtrans
(m)

.
Step 5: If the change in the optimum resolution of the main issue is less than the

threshold during the iteration, the iteration converges and the iteration is terminated.
Otherwise, return to the second step to solve the subproblems. Then, the solution of the
next part is regarded as a reactive optimization problem in terms of minimizing the system
active loss:

min

((
∑
i∈It

(
Pt

Gi − Pt
Di
))

+ ∑
k∈DIST

(
∑

i∈Id,k

(
Pd,k

Gi − Pd,k
Di

)))
(45)

Considering that some of the constraints in Section 2 are non-convex, the second-order
cone–convex relaxation is employed to ensure the convergence of the generalized Benders
decomposition algorithm [28]. The following outlines the solution process:

Step 1: Initialize the main grid variables, including boundary variables, and record the

initialization values as
^
y; additionally, define the upper and lower bounds of the objective

function (UBD and LBD, respectively) as well as the number of optimal and feasible cuts
(p and q) [28]. Set UBD to positive infinity, LBD to negative infinity, and p and q to 0 [28].
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Step 2: Solve the subproblem. The subproblem is the optimization problem of the
VPPs formulated as a mathematical programming problem:

min
x

f
(

x,
^
y
)

s.t. H
(

x,
^
y
)
= 0

x ∈ X

(46)

f is an optimization objective with boundary constraints, H, expressed in a square
form as constraints (34)–(36). X represents the feasible region of the VPPs, which is the
relaxed convex feasible region. If the objective function of the subproblem is greater than
or equal to UBD, the iteration is terminated; otherwise, UBD, the objective function of the

subproblem, is updated. Let
^
u be the Lagrange multipliers of the subproblem, and generate

the optimal cut as follows [28]:

L∗
(

y,
^
u
)
= inf

x∈X

{
f (x, y) +

^
u

T
H(x, y)

}
, y ∈ Y (47)

Let p be equal to 1, and up =
^
u. If the subproblem is found to be infeasible, we can

identify a feasible cut in the following form:

L∗

(
y,

^
λ

)
= inf

x∈X

{
^
λ

T

H(x, y)

}
, y ∈ Y (48)

Moreover, the feasible cut generated must comply with L∗

(
^
y,

^
λ

)
= inf

x∈X

{
^
λ

T

H
(

x,
^
y
)}

> 0.

Step 3: Solve the primary issue. The primary issue facing the main grid is outlined as
follows [28]:

min
y∈Y

LBD

s.t. LBD ≥ L∗
(
y, uj), j = 1, 2, . . . , p

L∗
(

y,λj
)
≤ 0, j = 1, 2, . . . , q

(49)

The iteration can be concluded when the distance between two boundaries is less than
the pre-specified threshold [28]. Otherwise, update

^
y and return to step 2.

4. Case Study

In this section, numerical examples are utilized to affirm the effectiveness of the
proposed approach in terms of reducing the power generation cost and power loss.

4.1. Simulation of Coordinated Economic Dispatching

To validate the proposed approach, four algorithms were compared in the calculation
examples: an improved multi-parametric quadratic programming algorithm (R-MPQP), a
conventional multi-parametric programming algorithm (C-MPQP), a modified generalized
Benders decomposition algorithm (M-GBD) and a centralized algorithm (CEN).

All calculations were conducted by MATLAB, and Gurobi solver was employed to
solve the resulting equations. Two example systems were used for the testing. System 1
was a twenty-four-node system with three thirty-three-node VPPs connected to nodes 3, 9
and 19 of the main grid, with node 1 of the VPPs connected to the main grid. System 2 was
a 118-node system and had the same configuration. Figure 4 shows the structure.
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4.1.1. Comparison of Numerical Results

To illustrate the economic necessity of main grid–VPPs scheduling, we tested two
methods: main grid–VPPs dispatching and independent dispatching. The results are shown
in Table 1.

Table 1. Comparison of coordinated dispatching and independent dispatching.

Power Generation Cost

Independent Scheduling Coordinated Scheduling

System 1

Main grid 1,153,438 1,199,478
VPP 1 125,713 32,203
VPP 2 125,713 32,203
VPP 3 125,713 32,203

Total cost 1,530,577 1,296,087

System 2

Main grid 1,305,719 1,353,715
VPP 1 125,713 32,649
VPP 2 125,713 32,790
VPP 3 125,713 32,300

Total cost 1,682,858 1,451,454

It is evident from the above table that, in comparison with the independent dispatching
of the main grid–VPPs, the coordinated dispatching method reduced the power generation
cost by 18.34% in System 1 and by 16.78% in System 2.

4.1.2. Computing Performance Test

We compared the performances of the four algorithms using CEN as reference.
From Table 2, we can see that the R-MPQP algorithm could reach the same optimal

solution as that of the centralized algorithm. In addition, the R-MPQP method had fewer
iterations than the traditional C-MPQP method, and the convergence speed was faster.

Table 2. Algorithm calculation performance comparison.

R-MPQP C-MPQP M-GBD

System 1

Total cost 1,296,087 1,296,087 1,296,087
Total cost error 0% 0% 0%

Iterations 2 101 151
Calculating time 0.2133 s 7.5314 s 15.8011 s

System 2

R-MPQP C-MPQP M-GBD

Total cost 1,451,454 1,451,454 1,451,454
Total cost error 0% 0% 0%

Iterations 2 97 150
Calculating time 0.9529 s 117.4592 s 232.2385 s
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4.2. Simulation of Reactive Power and Voltage Control Model

Using a typical power system (shown in Figure 5) as a case study, we conducted a 24 h
active power–reactive power coordination optimization study between the main grid and
VPPs, utilizing the reactive power adjustment capability of the power plant as an adjustable
resource. The system we used has 24 nodes as shown in Figure 5. The aim was to minimize
the grid loss and average voltage deviations. By optimizing the adjustable resources among
the VPPs collaboratively, grid loss and voltage deviations were reduced, and the voltage
distribution was improved. The corresponding grid loss and voltage comparison before
and after the optimization are shown in Figure 6.
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5. Analysis of the Impact of the DER

This section studies the influence of the DER clusters on the grid. First, in the case of
many DER clusters being injected into the grid, if the VPPs and the main grid are lacking in
synergy, there will be a power flow reversal and voltage overload. Then, a robust optimal
power flow model is utilized with the uncertainties of the DERs being considered to give
strategies with better comprehensive economic benefits in different scenarios.

5.1. Impact of DER Clusters on Grid Voltage Security

Based on the generalized Benders decomposition, the proposed grid–VPPs reactive
voltage optimization method (GBD) is compared with the independent algorithm (SEP).
SEP is the current scheduling mode, that is, the voltage and transmission power of the
boundary node are pre-set between the main grid and the VPP, and then each regional
network is optimized, respectively. This method cannot obtain the global optimal solution,
and sometimes there will be overvoltage problems.

Considering the power flow constraints in the VPP model (Constrains (25)–(28)), we
can see that when a large number of DER clusters are connected to a node of a VPP, the node
may appear to reverse the flow. A one-hundred-and-eighteen-node system is used as the
main grid with three sixty-nine-node VPPs connected to nodes 54, 62, and 80, respectively.
The boundary node of each VPP is node 1. DERs are located at nodes 3, 4, 8, 9, 11, 12,
27, 35, 39, 41, 54, 56, 58, and 69 of each VPP, with an adjustable reactive power range of
[−50, 50] MVar.

Figure 7 shows the number of nodes whose voltage is higher thanthat of the third VPP
as the output of the DERs increases. The proposed grid–VPP decomposition coordination
algorithm can effectively eliminate the voltage overlimit problem through the iterative
generation method of feasible cuts, while the traditional grid–VPP independent scheduling
method can cause a serious voltage overshoot.
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Figure 7. Test results of the voltage limit calculation example.

5.2. Influence of DERs Uncertainty on Power Grid Operation

Three scenarios are examined in this part: (a) the actual output of DER is at its lower
bound; (b) the actual output of DER is at its predicted value; and (c) the actual output of
DER is at its upper bound. The comparison results are as follows.

From the Table 3, we can observe that the robust optimal power flow model ef-
fectively diminishes the aggregate generation cost in Scene b and c through an affine
adjustment strategy.
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Table 3. Comparison of total power generation costs under different scenarios.

Scene a Scene b Scene c

System 1
Robust model 95,182 92,299 90,379
Deterministic

Model 94,627 94,627 94,627

System 2
Robust model 274,196 226,836 195,434
Deterministic

model 261,352 261,352 261,352

6. Conclusions

This paper introduced an interactive and coordinated optimization control method
between VPPs and the main grid. The proposed method considered the VPP operation
of multiple time scales, including intra-day and day-ahead. To address intra-day and
day-ahead scheduling, a decomposed, coordinated and interactive method was provided,
which was based on the multi-parametric programming projection decomposition method
and generated the exact critical domain and the optimal cost function of the VPP internal
scheduling model, which could significantly improve the convergence speed and stability
compared with the existing decomposition and coordination algorithms. In terms of the
reactive power and voltage control, the goal was to decrease the total loss of the VPPs and
the main grid. The test results showed that the proposed method could quickly converge
to the global optimal solution. In addition, the reactive power optimization method of
VPPs–grid coordination could significantly reduce the overvoltage problem caused by the
large number of DERs in the VPPs. Overall, this approach can efficaciously reduce the cost
of the power grid and VPPs with fast convergence rates while also minimizing the system
loss and voltage deviation to improve the voltage profile.
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