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Abstract: This paper presents a new winding with a low higher spatial harmonics content. This
winding enables the elimination of the fifth harmonic, as the most significant, in three-phase winding
and the third harmonic in two-phase symmetrical winding. The suppression of higher spatial
harmonics is particularly evident with the number of slots per pole per phase qs = 2. The winding
factors for the higher spatial harmonics of the order ν = 6 k ± 1 in the case of three-phase winding,
and ν = 4 k± 1 in the case of two-phase winding, for k = 1, 3, 5, . . . , will be equal to zero. A two-phase
measurement winding, with the number of slots per pole per phase qs = 1, was used to evaluate the
higher spatial harmonics content in the magnetic field in the air gap of the machine. Experimental
verification of the designed winding was carried out.

Keywords: rotating machines; electrical machines design; three-phase and two-phase distributed
windings; two-phase measurement winding; winding factor; spatial harmonics; harmonic reduction

1. Introduction

The arrangement of winding in the slots of an electric machine causes a non-sinusoidal
magnetomotive force distribution along the circumference of the machine. The magnetic
field generated by mmf, in addition to the fundamental, also contains odd higher spatial
harmonics. The higher spatial harmonics of the magnetic field induce currents of higher
time harmonics in the rotor of the induction motor. As a result of the interaction of
the higher harmonics of the magnetic field with the higher harmonic currents of the
rotor, parasitic electromagnetic torques are generated [1,2]. In addition, the higher spatial
harmonics of the stator mmf are a source of additional losses in the rotor of the squirrel-cage
induction motor [3–5], with a consequent efficiency decrease in these machines.

In the case of synchronous machines, the non-sinusoidal distribution of the magnetic
field of the excitation winding causes voltages of higher time harmonics to be induced in the
phase windings of the armature, which cause distortions of the waveform of the fundamen-
tal of the phase voltage. Higher voltage harmonics cause the phase currents to be distorted
as well. This has a negative impact, both on the operation of the synchronous machine
itself, as well as on the operation of other electrical devices and the power supply network.

For these reasons, the armature phase winding of induction or synchronous machines
should be characterised by a low higher spatial harmonics content, particularly of the low
orders. To achieve this, the winding factors for higher harmonics should have small values.
In practice, single-layer windings—typically in low-power motors—and double-layer
windings are used [6–9]. In single-layer windings, the suppression of higher harmonics
of the magnetic field is carried out by increasing the number of slots per pole per phase.
This leads to an increase in the number of stator slots and, thus, a decrease in the tooth
cross-section. This will cause an increase in the magnetic flux density in the stator teeth [8],
resulting in an increase in the magnetising current and a decrease in the power factor. In
double-layer windings, the suppression of higher harmonics of the lowest orders is possible
by reducing the coil span relative to the diameter span [7,9]. In order to achieve complete
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elimination of a given harmonic, the absolute coil span measured in the slots must be an
integer number, which is not always possible for design reasons.

The problem of eliminating higher spatial harmonics is considered in many publica-
tions. These works are mainly focused on fractional-slot concentrated windings [10–13],
which are used in permanent magnet machines. The reduction of higher harmonics in
an electrical machine with distributed windings is carried out by modifying the winding
design [14–16], using varied slot pitches and different numbers of turns. This paper [17]
presents the use of semi-magnetic wedges to close stator slots for the reduction of higher
spatial harmonics in the magnetic field in the air gap of an induction motor.

A winding with a triangular distribution of linear turns density [18] over the span of
the electrical angle 2π/m, where m is the number of stator or rotor phases, and hereafter
referred to as a triangle winding, is also known in the literature. This winding is charac-
terised by a low higher spatial harmonics content in the magnetomotive force distribution
curve. However, the triangle winding does not allow for the complete elimination of higher
harmonics of low orders, e.g., the fifth harmonic in the case of three-phase windings or the
third harmonic in the case of two-phase windings. The modification of the triangle winding,
the design of which has been patented [19], allows the elimination of any harmonic and a
significant reduction of other higher harmonics.

This paper reviews the windings used in induction and synchronous machines with
an integer number of slots per pole per phase. A method of analytically calculating the
total winding factor for higher harmonics is presented. Particular focus has been placed on
the modified triangle winding. For this winding, a method of selecting the winding design
parameters to eliminate higher spatial harmonics is given. This winding has particularly
good properties for the number of slots per pole per phase qs = 2. The winding parameters
can then be chosen so that the winding factors for the spatial harmonics of the order
ν = 6 k ± 1 in the case of three-phase winding, and ν = 4 k ± 1 in the case of two-phase
winding, for k = 1, 3, 5, . . . , will be equal to zero. Experimental tests of the designed
modified triangle winding were carried out. In order to investigate the contribution of
higher spatial harmonics to the magnetic field in the air gap of a permanent magnet
synchronous machine, a two-phase measurement winding was used, located in the stator
slots, with the number of slots per pole per phase qs = 1.

2. Three-Phase Single-Layer Winding

Single-layer winding is a distributed winding placed in the slots of the stator core.
The sides of the individual coils occupy the entire surface of the slot and are arranged in a
single layer (Figure 1). The average span of the sides of one coil of a single-layer winding is
equal to the pole pitch.
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Figure 1. Three-phase single-layer winding: (a) winding diagram; (b) linear current density distri-

bution of a group of coils with qs = 3 coils. 
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tion of a group of coils with qs = 3 coils.



Energies 2023, 16, 5430 3 of 18

The individual coils are shifted relative to each other by an electrical angle αQs,
corresponding to the slot pitch of the stator τs.

αQs = p
2π
Qs

(1)

where p is the number of pole pairs, and Qs is the number of stator slots.
An analysis of the electromagnetic properties of the winding can be carried out on the

basis of the linear current density distribution (Figure 1) of the winding.
The distribution of the linear current density of a single coil, depending on the cir-

cumferential coordinate ϕs, is a periodic function and can be represented as a Fourier
series [18,20].

Jc(ϕs) = −
4
π

Jc
αs

2 ∑
ν=1,3,5,···

sin ν
π

2
kbsν sin νϕse (2)

where Jc is the linear current density over the slot width, αs is the electrical angle corresponding
to the slot width bs, and kbsν is the slot opening factor for the ν-th harmonic [6,18,20], with

Jc =
Ncic

bs
=

Ncis

bsag
(3)

kbsν =
sin ν αs

2
ν αs

2
(4)

αs = p
bs

rs
(5)

where Nc is the number of turns in the slot; bs is the slot width; ic and is are the coil current
and stator phase current; and ag is the number of parallel branches.

The resultant distribution of the linear current density generated by the qs coils of the
group of one phase of the winding is equal to the sum of the distributions of the individual
coils described by the function (2) and shifted with respect to each other by the electrical
angle αQs. By writing down the resultant distribution of the linear current density in the
axis of symmetry of the group of qs coils, the relationship for the distribution of the linear
current density of one phase of the winding is obtained [18,20]

Jc(ϕs) = − ∑
ν=1,3,5,···

2Nskwsν

πrs
isa sin νϕse (6)

where Ns is the number of series windings of one phase of the stator winding, rs is the inner
radius of the stator core, and kwsν is the total single-layer winding factor, with

kwsν = kbsνkdsν sin ν
π

2
(7)

where kdsν is the coil group distribution factor for the ν-th harmonic [6,7], with

kdsν =
sin νqs

αQs
2

qs sin ν
αQs

2

=
sin νqs

π
2ms

qs sin ν π
2msqs

(8)

where ms is the number of phases, and qs is the number of slots per pole per phase.
Knowing the linear current density distribution (6), the winding magnetomotive force

of one phase is calculated from the relationships [20,21]:

Θsa(ϕse) =
1
p

ϕse∫
0

Jsa(ϕse)rsdϕse = ∑
ν=1,3,5,···

2Nskwsν

πpν
isa cos νϕse (9)
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The magnetic axes of the windings of phases b and c are shifted relative to phase a
along the circumference by an electrical angle of 2/3π and 4/3π, respectively. Therefore,
the resultant magnetomotive force distribution of the three-phase winding will be equal to
the sum of the magnetomotive force distributions of the individual phases shifted relative
to each other in space by an angle of 2/3π [21].

Θs(ϕs) = ∑
ν=1,3,5,···

2Nskwsν

πpν

[
isa cos νϕse + isb cos ν(ϕse −

2
3
π) + isc cos ν(ϕse −

4
3
π)

]
(10)

In an electric machine with a uniform air gap along the circumference of the machine,
neglecting the magnetic voltages in the core, the flux density distribution at no-load is
proportional to the magnetomotive force distribution.

Bδ(ϕse) =
µ0

δ
Θs(ϕse) (11)

Taking into account relationships (10) and (11), the magnetic flux density distribution
along the circumference of the machine will be described by the relationship:

Bδ(ϕs) =
µ0

δ ∑
ν=1,3,5,···

2Nskwsν

πpν

[
isa cos νϕse + isb cos ν(ϕse −

2
3
π) + isc cos ν(ϕse −

4
3
π)

]
(12)

The magnetic flux density distribution should be a sinusoidal distribution. There-
fore, the winding factor (7) for the higher harmonics in relationship (12) should have
small values.

3. Three-Phase Double-Layer Winding

Double-layer winding (Figure 2) is characterised by the fact that the stator slots contain
two sides of different coils placed in two layers, bottom and top. Double-layer winding
with a shortened pitch can be treated as two single-layer windings with a diameter span
and the number of turns in the coil Nc/2, shifted relative to each other by (msqs − Ys)
slots or by the electrical angle βQs = (1 − ys)π radians, where Ys is the absolute coil span
determined by the slot pitch number. Whereas ys is the relative coil span and is

ys =
Ys

τp
=

Ys

msqs
(13)

where τp = Qs/(2p) is the pole pitch (the number of stator slots per pole).
The resultant distribution of the linear current density of double-layer winding will be

the sum of the distributions of two single-layer windings shifted relative to each other by
the electrical angle αQs and will be determined by relationship (6), with the total winding
factor ν-th harmonic defined by the following formula:

kwsν = kbsνkdsνkpsν (14)

where kbsν is the slot opening factor for the ν-th harmonic, kdsν is the distribution factor,
and kpsν is the pitch factor [6,7] for the v-th harmonic, with

kpsν = sin νys
π

2
(15)

where ys is the relative coil span of the winding.
The value of the relative coil span of the winding ys is chosen to eliminate the specific

spatial harmonic, i.e., the pitch factor (15) for this harmonic should be equal to zero. Odd
harmonics of the lowest orders are eliminated, i.e., the fifth and seventh in three-phase
windings and the third harmonic in two-phase windings. In order to better use the winding,
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the relative coil span of the winding ys should be close to unity [7,9]. For the odd ν relative
coil span of the winding, ys is given by the formula (16).

ys =
ν∓ 1

ν
(16)
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Figure 2. Double layer winding: (a) winding diagram; (b) resultant linear current density distribution;
(c,d) linear current density distributions of single-layer windings.

4. Three-Phase Triangle Winding

A diagram of the three-phase triangle winding and the arrangement of the coil sides
in the individual slots is shown in Figure 3a. This winding is characterised by a triangular
distribution of turns, forming an isosceles triangle whose base contains 2qs − 1 slots.
However, the height of this triangle, i.e., the highest number of turns on the side of the coil,
is Nc. On the first side of the coil, the number of turns is Nc/qs (slot 3 in Figure 3a). The
number of turns in the subsequent sides of the coil increases kNc/qs times, with k = 2, 3,..., qs,
reaching a maximum value of Nc on side qs (slot 5).

The linear current density distribution of one phase of a triangle winding (Figure 3b)
can be determined as a superposition of the linear current density qs of single-layer wind-
ings with the number of slots per pole per phase qs and the number of Nc/qs turns in
the coil (Figure 3c–e), shifted relative to each other by the electrical angle αQs. By using a
common coordinate system located in the symmetry axis of the winding of a given phase,
the resultant distribution of the linear current density will be determined by relationship (6),
with the winding factor for the v-th harmonic determined from the relationship [18].

kwsν = kbsνk2
dsν sin ν

π

2
(17)
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The total winding factor is also influenced by the skew of the slots relative to the
machine axis, which is taken into account by introducing a skewing factor [6,7,9] for the
v-th harmonic.

ksqν =
sin ν

αsq
2

ν
αsq
2

=
sin ν

αQs
2

bsq
ts

ν
αQs

2
bsq
ts

(18)

where αsq is the electrical angle corresponding to the skew of the bsq slots relative to the
machine axis, and αQs is the electrical angle corresponding to the stator slot pitch τs.

5. Modified Triangle Winding
5.1. Three-Phase Winding

The advantage of double-layer winding over triangle winding is that it allows the
reduction of ν-th spatial harmonics in the magnetic field generated by the stator winding. By
selecting from Equation (16) the appropriate relative coil span ys in two-layer winding, any
spatial harmonic of the resultant stator magnetomotive force can be eliminated (the most
significant harmonics of the lowest orders, typically the fifth or seventh, are eliminated). In
order to achieve the complete elimination of a given spatial harmonic, the absolute span
Ys, measured in the slots, must be an integer number, which is not always possible for
design reasons. Eliminating spatial harmonics is also possible in a triangle winding suitably
modified (Figure 3) by reducing the number of turns in the coil with the maximum number
of turns (slots 5 and 14 in Figure 3). Then, the number of turns in the individual 2qs−1 coil
sides of a given phase group, on the span of the electrical angle 2π/ms, is determined from
the following relationship:

Ng = [1 2 · · · qs − 1 hqsqs − 1 · · · 2 1 ]
Nc

qs
(19)
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where h is the number of turns reduction factor, with 0 < h < 1.
The modified triangle winding must meet the following conditions:

• The number of turns in the slot must be an integer divisible by qs;
• The number of turns in the coil in which the reduction of turns has been made

Nh = hNc must be an integer.

Considering the expression for the sum of the series [22]

1 + 2 + · · ·+ (qs − 1) =
1
2
(qs − 1)qs (20)

Then, the number of turns in a group comprising 2qs − 1 coils is

Ng = (qs − 1 + h)Nc (21)

For a triangle winding, the reduction factor h = 1 and the number of turns in the group
is qsNc, which is the same as in a single-layer winding. For the modified triangle winding,
as for some other windings (e.g., fractional-slot windings [23]), general formulae for the
total winding factor cannot be derived. In such cases, the total winding factor is calculated
by summing up the induced voltages (emf ) in the coil sides of a suitably selected part of
the winding. For this purpose, it is assumed that the emf of the ν-th spatial harmonic in
the coil side is proportional to the number of turns in the coil. If the winding consists of
identical coil groups but not necessarily with an equal number of turns in the individual
coils of the group, the calculation of the winding factor can be limited to one group. If the
coil groups are different, the winding factor calculation should be carried out for repeated
winding cycles [9].

The total winding factor for the ν-th harmonic can be calculated from the star of the
slot voltages phasors of the ν-th harmonic induced in the sides of the coils placed in the
stator slots. For this purpose, the following parameters should be calculated [6,7,24]:

• The phase angle, i.e., the electrical angle between the emf of the ν-th harmonic of the
sides in adjacent slots:

αQsν = νp
2π
Qs

(22)

• The greatest common divisor (g.c.d) of the numbers QS and νp:

t = g.c.d(Qs, νp) (23)

• The number of star radii:

S =
Qs

t
(24)

• The angle between the radii of the star of slot voltages phasors:

α′Qsν = t
2π
Qs

(25)

The determination of the winding factor will be shown in the example of the three-
phase modified triangle winding shown in Figure 4, with Qs = 18, p = 1, ms = 3, and qs = 3.
Calculated from the above relationships, the phase angles and number of star radii are:

• For the first harmonic:

αQs1 = 2π/18= 20◦, t = 1, S = 18, α’Qs1 =20◦
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Figure 4. Modified triangle three-phase winding: (a) winding diagram; (b) linear current density
distribution of one phase of the winding: Qs = 18, p =1, and qs = 3.

• For the third harmonic:

αQs3 = 60◦, t = 3, S = 6, α’Qs =60◦.
By taking the coordinate system in the axis of symmetry of the linear current density,

i.e., in the axis of symmetry of the winding phase (Figure 5), the star of the slot voltage pha-
sors (Figure 5a) and the voltage polygon for the first harmonic (Figure 5c) are constructed.
In a similar manner, a star of the slot voltage phasors (Figure 5b) and a voltage polygon for
the third harmonic (Figure 5d) are obtained.
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Figure 5. The star of the slot voltages phasors: (a) for the first harmonic; (b) for the third harmonic;
and the voltage polygon: (c) for the first harmonic; (d) for the third harmonic, for a modified triangle
winding, with Qs = 18, p = 1, ms = 3, qs = 3, and τp = 9.
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The phase angles β1, β2, . . . , β5 in Figures 4 and 5 denote the electrical angles of the
voltages of the sides of the coils placed in the slots with respect to the axis of symmetry of
the phase winding. These angles for the considered phase winding a for the first harmonic
are β1 = 50◦, β2 = 70◦, β3 = 90◦, β4 = 110◦, and β5 = 110◦.

The winding factor of the ν-th harmonic is equal to the ratio of the sum of the voltage
phasors Eνk of the coil sides to the algebraic sum of these voltages for the smallest part of
the winding, whose winding factor characterises the whole winding [6,7,9,24].

kwsν =
∑nb

k=1 Esνk

∑nb
k=1|Esνk|

(26)

where nb is the number of the sides of the coils of the winding part under consideration.
The amplitudes of the slot voltages induced in the individual coil sides are proportional

to the number of coils Nk and are shifted in phase relative to each other by the angle αQν

and relative to the winding symmetry axis by the phase angle βνk. From the voltage
polygon (Figure 5), it follows that, for the assumed coordinate system, the relationship (26)
can take the following form:

kwsν =
∑nb

k=1 Nk sin νβk

∑nb
k=1 Nk

=
∑nb

k=1 Nk sin νβk

Nb
(27)

where Nk is the number of turns in the k-th coil side, βk is the electrical phase-shift angle of
the k-th coil side relative to the axis of symmetry of the winding, and Nb is the number of
turns of the part of the winding under consideration.

The position angles of the coil sides in the stator slots βk, k= 1,2, . . . , nb, relative to
the axis of symmetry of the winding, can be expressed by coil spans Yk, k = 1,2, . . . , nb
(Figure 4).

βk =
Yk
τp

π

2
= yk

π

2
(28)

where Yk is the absolute coil span, yk is the relative coil span, and τp is the stator pole pitch.
Taking into account relationships (28) and (15), expression (27) for the total winding

factor of the k-th harmonic will be a function of the span factor kpsν of the individual coils
treated as concentric coils of different spans:

kwsν =
∑nb

k=1 Nk sin νyk
π
2

Nb
=

nb

∑
k=1

Nk
Nb

kpsνk (29)

where kpsνk is the span factor of the k-th coil for the ν-th harmonic.
Windings with coils of identical spans can be treated as equivalent to windings with

concentric coils since the directions of the currents in the coil sides in the same slots for
both solutions do not change. The distribution of the linear current density for both cases
will be the same. For the considered triangle winding shown in Figure 4, the total winding
factor will be determined by the following relationship:

kwsν =
N1 sin νβ1 + N2 sin νβ2 + N3 sin νβ3 + N4 sin νβ4 + N5 sin νβ5

N1 + N2 + N3 + N4 + N5
(30)

The numbers of turns on the individual coil sides are N1 = Nc/3, N2 = 2Nc/3, N3 = hNc,
N4 = N2, and N5 = N1. Moreover, considering that for the odd harmonics that the trigonometric
relationships apply, such as sinνβ5 = sinν(π− β1) = sinνβ1, sinνβ4 = sinν(π − β4) = sinνβ2, and
β3= π/2, the expression for the winding factor of the ν-th harmonic will take the form of:

kwsν =
2 sin νβ1 + 4 sin νβ2 + 3h sin νπ

2
6 + 3h

(31)
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In order to calculate the reduction factor h, which ensures the elimination of the k-th
harmonic, the numerator of expression (31) should be equated to zero. Hence,

h = −
2 sin νy1

π
2 + 4 sin νy2

π
2

3h sinνπ
2

(32)

By eliminating the fifth harmonic as the most significant one, after substituting
the values ν = 5, y1= 5/9, and y2 = 7/9 into formula (32), the value of the reduction
factor h = 0.85799265 is obtained. By substituting this value into relationship (31), the value
of the total winding factor for the first and higher harmonics is obtained. Assuming that
the value of reduction factor h = 1 in formula (31), the values of the total winding factor for
triangle winding can be calculated. The values of the total winding factor are presented
in Table 1.

Table 1. Winding factors for the first and higher harmonics of a three-phase winding with an integer
number of slots per pole per phase.

ν

Double-Layer Winding Triangle Winding Triangle Modified

ys = 5/6 ys = 7/9 h = 1 h = 1 h = 0.866 h = 0.858

qs

2 3 2 3 2 3

1 0.933013 0.901912 0.933013 0.921207 0.928203 0.917292

3 −0.500000 −0.333333 −0.500000 −0.444444 −0.464102 −0.416840

5 0.066987 −0.037780 0.066987 0.047336 0 0

7 −0.066987 −0.135868 −0.066987 −0.031458 0 0.016667

9 −0.500000 0.333333 −0.500000 0.111111 0.464102 0.066944

11 −0.933013 −0.135868 −0.933013 −0.031458 −0.928203 0.016667

13 0.933013 −0.037780 0.933013 0.047336 0.928203 0

17 0.066987 0.901912 0.066987 0.921207 0 0.917292

19 −0.066987 −0.901912 −0.066987 −0.921207 0 −0.917292

Figure 6 shows a diagram of a modified triangle winding with Qs = 12, p =1, qs = 2,
and ms = 3.
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The total winding factor is calculated from formula (27) for nb = 3

kwsν =
N1 sin νβ1 + N2sinνβ2 + N3sinνβ3

N1 + N2 + N3
(33)

Taking into account that the number of turns in the individual coil sides of the windings
considered are N1 = Nc/2, N2 = hNc, and N3 =N1, and considering that for the odd
harmonics that the following relationships apply: sinνβ3 = sinν(π − β1) = sinνβ1, β2 = π/2;
the expression (33) will take the form of:

kwsν =
sinνβ1 + h sinνπ

2
1 + h

=
sinνy1

π
2 + h sinνπ

2
1 + h

(34)

Equating the numerator of expression (34) to zero, the value of the reduction factor h
for the ν-th odd harmonic is

h = − sinνβ1

sinνπ
2
= −

sinνy1
π
2

sinνπ
2

(35)

Taking into account that the electrical angle β1 for the relative span of the first coil
y1 = Y1/τp = 4/6 is equal to β1 = y1π/2 = π/3, the reduction factor h for higher odd
harmonics, except for the harmonics divisible by 3 and the slot harmonics of the order
νQ = 6qsk ± 1 (k = 1, 2, . . . ,), will have the value h =

√
3/2 = 0.866. Substituting this value

for the reduction factor h into formula (34), the winding factor value for the fundamental is

kws1 =
2
√

3
2 +
√

3
= 0.9282

The winding factor kwsν for the remaining harmonics, with the exception of the har-
monics divisible by 3 and slot harmonics of the order νQ = 2msqsk ± 1 equals zero, which is
a valuable advantage of the modified triangle winding, in the case of the number of slots
per pole per phase qs = 2. The values of the total winding factor for the triangle winding
modified for qs = 2 are presented in Table 1.

The winding factors, calculated on the basis of the star of slot voltage phasors according
to relationship (27), should be multiplied by the slot opening factor (4).

Figure 7a presents the distribution of the linear current density of one phase of
three-phase triangle winding, modified for qs, calculated from relationship (6) in Mat-
lab. The calculated linear current density distribution accurately approximates the actual
discrete distribution, for which the amplitudes of the linear current density along the slot
width of the individual coil sides are Jc1 = 15 kA/m, Jc2 = 30 kA/m, and Jc3 = 38.6 kA/m for
a reduction factor of h = 0.858. This proves the correctness of the calculated winding factors
for the higher harmonics, both with regard to amplitude and the fact that their values are
positive or negative. Figure 7b presents the magnetic flux density distribution generated
by the three-phase magnetomotive force of the induction motor stator winding at no-load.
This distribution contains only the first harmonic and the slot harmonics, whose amplitudes
are approximately 5% of the amplitude of the fundamental. By applying a reduction factor
of h = 0.858, the fifth harmonic is eliminated, and the amplitude of the seventh harmonic is
approximately 0.1% of the first harmonic. The magnetic field generated by the three-phase
stator winding does not contain a third harmonic. The use of the skew of the slots will result
in the magnetic flux density distribution in the air gap being a sinusoidal distribution.

5.2. Two-Phase Winding

In two-phase windings, the two phases of the winding shift in space relative to each
other by an electrical angle of 90◦. These windings are used in electric micromachines,
automation devices, and common-use single-phase induction motors. Single-layer wind-
ings are usually used in these motors. The magnetic field produced by the two-phase
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winding contains, in addition to the fundamental, higher spatial harmonics. The lowest-
order harmonics are of the greatest importance, with the third harmonic being particularly
important. It is possible to suppress the higher harmonics by using double-layer windings
using shortened span coils. In order to eliminate, for example, the third harmonic, as the
most significant one, the coil span should be equal to 2/3 of the pole pitch, i.e., Y = 2/3τp.
Then, the pitch factor will be equal.
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Figure 7. Linear current density distribution of one phase of the winding (a) and magnetic flux
density distribution (b) produced a three-phase modified triangle winding with Qs = 18, p = 1, qs =3,
and h = 0.858.

kps3 = sin νy
π

2
= sin

(
3

2
3
π

2

)
= 0

However, then the harmonics ν = 6k ± 1 (k = 1, 2, 3, . . . ,) = 5, 7, 11, . . . , will not be
weakened because the pitch factor for these harmonics is equal.

kpsν = sin νy
π

2
= sin(6k± 1)

2
3
π

2
= sin

(
2πk± π

3

)
= kps1

For instance, the pitch factor for the harmonics ν = 5, 7, 11, . . . , is the same as for
the fundamental.

Therefore, a coil span other than 2/3τp is chosen for the two-phase double-layer
windings. Thus, for the two-phase double-layer windings, a coil span of Y = 3/4τp is used
for qs = 2, and Y = 5/6τp is used for qs = 3. A reduction of higher spatial harmonics in
two-phase windings is also possible through the use of modified triangle windings.

Figure 8 presents a diagram of a two-phase modified triangle winding with Qs = 12,
p = 1, qs = 3, ms = 2, and τp = 6. The electrical angle for the fundamental between the
adjacent slots for this winding is αQ = p·360/Qs = 30

◦
, while the position angles of the coil

sides (Figure 8), with respect to the axis of symmetry of the winding of a given phase, are
β1 = 30

◦
, β2 = 60

◦
, β3 = 90

◦
, β4 = 120

◦
, and β5 = 150

◦
.

By substituting the above values into equation (32), the value of the reduction factor
h = 2/3 = 0.6666 is obtained for the elimination of the third harmonic, ν = 3. The values of
the winding factor kwν of two-phase winding for the higher harmonics, calculated from
Equation (31), for reduction factor h = 2/3 and qs = 3, are presented in Table 2. Figure 9
shows a diagram of a two-phase modified triangle winding with Qs = 16, p = 2, qs = 2,
ms = 2, and τp = 4.

Taking into account that the electrical angle β1 for the coil span Y1 = 2 and pole pitch
τp = 4 (Figure 9 is equal to β1 = π/4, the reduction factor for the ν-th harmonics (except
for slot harmonics) for qs = 2), according to formula (35), is equal to h =

√
2/2 = 0.7071. By

substituting this value into Equation (34), the relationship for the total winding factor is
obtained, for a two-phase winding, for the fundamental ν = 1 and qs = 2.

kws1 =
2
√

2
2 +
√

2
= 0.828427124
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However, then the harmonics  = 6k  1 (k = 1, 2, 3,,) = 5, 7, 11, , will not be weak-

ened because the pitch factor for these harmonics is equal. 
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For instance, the pitch factor for the harmonics  = 5, 7, 11, , is the same as for the fun-

damental. 

Therefore, a coil span other than 2/3p is chosen for the two-phase double-layer wind-
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Figure 8. Modified triangle two-phase winding: (a) winding diagram; (b) linear current density dis-

tribution of one phase of the winding with Qs = 12, p = 1, qs = 3, and p = 6. 
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the winding factor kwν of two-phase winding for the higher harmonics, calculated from 
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Figure 8. Modified triangle two-phase winding: (a) winding diagram; (b) linear current density
distribution of one phase of the winding with Qs = 12, p = 1, qs = 3, and τp = 6.

Table 2. Winding factors for the first and higher harmonics of a symmetrical two-phase winding with
an integer number of slots per pole per phase.

ν

Double-Layer Winding Modified Triangle Winding

ys = 3/4 ys = 5/6 h =
√

3/2 h = 2/3

qs

2 3 2 3

1 0.853553 0.879653 0.828427 0.808013

3 −0.146447 −0.235702 0 0

5 0.146447 −0.063156 0 −0.058013

7 −0.853553 −0.063156 −0.879653 0.058013

9 0.853553 −0.235702 0.879653 0

11 −0.146447 0.879653 0 −0.808013

13 0.146447 −0.879653 0 0.808013
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The winding factor for the third and higher harmonics, with the exception of the slot
harmonics of order νQ = 4qsk ± 1 (k = 1, 2, 3, . . . ,) = 7, 9, 15, . . . , is zero, which is the
advantage of this winding for qs = 2. The values of the winding factors are presented in
Table 2.

6. Experimental Section

This research subject is a permanent magnet synchronous generator, the structural
diagram of which is presented in Figure 10.
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Figure 10. Structural diagram of a permanent magnet synchronous generator.

Cylindrical permanent grade NH38 neodymium magnets, with a thickness of 3 mm
and an angular span of 64, were glued to the surface of the solid steel rotor. The magnetisa-
tion direction of the permanent magnets is diametric. In order to reduce the higher slot
harmonics in the stator phase voltage, the skew of the stator slots was used. Three-phase
modified triangle windings, U1-U2, V1-V2, and W1-W2, and two-phase measurement
windings, X1-X2 and Z1-Z2, were placed in the slots of the stator. The diagram of the
three-phase modified triangle winding is presented in Figure 11. The number of turns
in the slots of the stator, where the coil sides of different phases are placed (e.g., slots
1 and 3), is Nc = 194. The number of turns in the slots where the sides of the same phase
coils are located (e.g., slots 2, 8) is Nc = 168. For these values of the number of turns, the
reduction factor is h = 0.866, which ensures the elimination of higher harmonics of the
order ν = 3qsk ± 1, where k = 1, 3, 5 . . . , with the exception of the slot harmonics and
harmonics divisible by 3.
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Figure 11. Diagram of a three-phase modified triangle winding with split groups with Qs = 24, p = 2,
qs = 2, and Ys = 4, 6.

Figure 12 shows a diagram of a two-phase measurement winding. The two phases of
this winding are shifted relative to each other by an electrical angle of 90◦.
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where kwsν and kws1 are the winding factors for the ν-th and first harmonic, respectively, ksqν 

and ksq1 are the skewing factors for the ν-th and first harmonic, respectively, and Bδν and 
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Figure 12. Diagram of a two-phase measurement winding with Qs = 24, p = 2, ms =2, and qs = 1.

The number of slots per pole per phase of this winding is qs = 1. The winding factor for
qs = 1 for all higher spatial harmonics is 1. This allows the contribution of higher harmonics
to the magnetic field in the air gap to be assessed. Since this winding is placed in skewed
slots, this voltage is damped by the skewing factor.

The magnetic field in the air gap, generated by permanent magnets, is a non-sinusoidal
field and, in addition to the fundamental component of the magnetic flux density, also
contains higher harmonics. Magnetic field distribution calculations were carried out in
FEMM 4.2 [25]. Figure 13a shows the distribution of the normal component of the magnetic
flux density in the air gap along the circumference of the machine when the synchronous
generator is at no-load, and Figure 13b shows the amplitude spectrum of the magnetic flux
density. In the magnetic flux density amplitude spectrum, in addition to the fundamental,
the harmonics of orders of ν = 3, 5, 7, and 19 and the slot harmonics of the orders νQ = 11,
23, 25, 35, and 37 are dominant.
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Figure 13. Distribution of the normal component of the magnetic flux density in the air gap of a
permanent magnet synchronous generator (a); amplitude spectrum of the magnetic flux density (b).

During the rotation of the rotor, the non-sinusoidal magnetic field, created by the
permanent magnets, will induce the voltage of the fundamental and higher harmonics in
the phase windings of the stator and in the measurement windings. The content of higher
harmonic voltages induced in the stator windings Esν in relationship to the voltages of the
fundamental Es1 is determined by the relationship [26].

Esν

Es1
=

kwsν

kws1

ksqν

ksq1

Bδν

Bδ1
(36)

where kwsν and kws1 are the winding factors for the ν-th and first harmonic, respectively,
ksqν and ksq1 are the skewing factors for the ν-th and first harmonic, respectively, and Bδν

and Bδ1 are the magnetic flux densities for the ν-th and first harmonic, respectively.
Figure 14 shows the recorded waveforms of the voltages ea and eb, induced in the

measurement windings placed in skewed stator slots and shifted by a 90◦ electrical angle
with respect to each other. Since the number of slots per pole per phase qs of this winding
equals 1, the winding factors for the higher harmonics kwsν are equal to the winding factor
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for the first harmonic kws1 and are kwsν = kws1 = 1. Therefore, according to Equation (36),
the voltages of the higher harmonics in the measurement windings will be suppressed
only by applying the skew of the stator slots αsq = π/6. The values of the skewing factor
ksqν for the individual harmonics are ksq1 = 0.9886, ksq3 = 0.9003, ksq5 = 0.7379, ksq7 = 0.5271,
ksq9 = 0.3001, ksq11 = 0.0899, ksq13 = −0.07605, and ksq15 = −0.18006.
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Figure 14. Registered waveforms of voltages induced in the measurement windings: (a) waveforms
of two-phase voltages, ea, eb; (b) voltage trajectory ea = f(eb); (c) waveforms of the higher harmonic
components of the voltages; (d) spectral distribution of the voltage amplitude in measurement winding.

Figure 14c,d show that the waveforms of the voltages induced in the measurement
windings are dominated by higher harmonics of the orders ν = 3, 5, 7, and 9. These
harmonics are poorly suppressed as a result of the skew of the stator slots. This causes the
voltage trajectory ea = f(eb) (Figure 14b) to deviate from the circular shape.

Figure 15a shows the waveforms of the phase voltages ua and ub induced in the three-
phase stator winding, and Figure 15b shows the amplitude spectrum of these voltages.
These voltages mainly contain the third harmonic, whose winding factor and skewing factor
are kws3 = 0.4641 and ksq3 = 0.9000, respectively; in order to eliminate the third harmonic, a
different permanent magnet span must be chosen. As a result of using modified triangle
winding and stator slot skewness (skewness by one slot pitch, αsq = π/6), the contribution
of the other harmonics to the phase voltage waveforms (relationship 36) is negligible. The
winding factors for the harmonics of order ν = 6k ± 1 (k = 1, 3, 5, . . . ,) for qs = 2 (Table 1) are
equal to zero. The skewing factors for the slot harmonics of order νQ = 11, 13, 23, 25, 35, 37,
. . . are ksq11 = 0.08987, ksq13 = −0.07605, ksq23 = −0.04298, ksq25 = −0.03954, ksq35 = 0.02825,
and ksq37 = −0.02672.

The waveforms of the line-to-line voltages uab and ubc and the amplitude spectrum
of these voltages are presented in Figure 16. These voltages are sinusoidal and do not
contain higher harmonics, as the third harmonic voltages are in phase and disappear in the
line-to-line voltages.
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Figure 15. Phase voltage waveforms induced in the three-phase stator windings of a permanent
magnet synchronous generator (a); voltage amplitude spectral distribution (b).
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Figure 16. The line-to-line voltage waveforms induced in the three-phase stator windings of a
permanent magnet synchronous generator (a); the spectral distribution of voltage amplitudes (b).

7. Conclusions

The modified triangle winding described in this paper enables the higher spatial
harmonics to be significantly reduced. It allows the elimination of the most significant
harmonics, the fifth harmonic in three-phase winding and the third harmonic in two-phase
winding. This phenomenon is beneficial, as the higher spatial harmonics of the magnetic
field are the cause of parasitic torques and noise in the machine. They are a source of
additional losses in squirrel-cage induction motors, with a consequent reduction in machine
efficiency. The presented modified triangle winding can be used in the production of
squirrel-cage induction motors with increased efficiency. The use of modified triangle
windings in synchronous machines also results in the elimination of higher harmonic
voltages induced in the phase windings. Modified triangle winding has particularly good
electromagnetic properties for the number of slots per pole per phase qs = 2. It is then
possible to select the winding parameters so that the winding factors for higher spatial
harmonics, in addition to the slot harmonics and harmonics divisible by 3 in three-phase
windings, are zero. By placing the two-phase measurement winding in the machine’s slots,
with the number of slots per pole per phase qs = 1, the content of higher harmonics in the
magnetic field in the air gap can be evaluated. The advantage of this winding design is its
ease of fabrication, without the need to modify the magnetic core of the machine. The use
of the proposed winding will not result in a significant increase in the cost of the motor
compared to conventional winding (single-layer winding). For example, in the case of
a 4 kW/1450 rpm induction motor, the cost of the motor will increase by approximately
0.5% due to the lower winding factor for the fundamental harmonic.
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