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Abstract: More than 3.5 billion people live in rural areas, where water and water energy resources
play an important role in ensuring sustainable and productive rural economies. This article reviews
and critically analyses the recent advances in the field of analogue and reservoir computing that
have been driven by the unique physical properties and energy of water waves. It also demonstrates
that analogue and physical reservoir computing, taken as an independent research field, holds the
potential to bring artificial intelligence closer to people living outside large cities, thus enabling
them to enjoy the benefits of novel technologies that are already in place in large cities but are not
readily available or suitable for regional communities. In particular, although the physical reservoir
computing systems discussed in the main text are universal in terms of processing input data and
making forecasts, they can be used to design and optimise power grid networks and forecast energy
consumption, both at local and global scales. Thus, this review article will be of interest to a broad
readership interested in novel concepts of artificial intelligence and machine learning and their
innovative practical applications in diverse areas of science and technology.

Keywords: analogue computing; artificial intelligence; echo-state networks; liquid-state machines;
neural networks; physical reservoir computing; water waves

1. Introduction

Ever since computers were invented, one of the main questions raised by experts
and the general public has been whether machines might learn to improve themselves
automatically, similarly to a biological brain [1–3]. To put this question into perspective,
let us imagine two children, Alice and Bob, playing at the edge of a pond (Figure 1). Bob
chooses stones randomly and throws them into the water. He believes that Alice cannot
predict the size of the falling stones. However, based on the wave patterns created by the
previous stones, Alice learns to predict the size of the stones that Bob will throw next.

In this imaginary game, the actions of Bob may be regarded as the response of a
dynamical system that exhibits chaotic behaviour [4–6] but Alice’s ability to learn and
predict Bob’s actions in the future may represent the operation of certain machine learning
(ML) algorithms [2,7,8] designed to forecast the time evolution of nonlinear dynamical
systems. Being a mathematical term employed to describe changes in variables over time,
in real-life situations, nonlinear dynamical systems describe a multitude of essential natural
and human-made processes that underpin the operation of stock markets, autonomous
vehicles and power systems, also governing the behaviour of living organisms and the
variation in the Earth’s climate [9–12].

Of course, even a highly skilled human cannot produce detailed long-term forecasts
of global financial markets and climate change. Nevertheless, learning from a biological
brain, we can create ML systems that can mimic some functions of the brain and process
large amounts of certain classes of data more efficiently than a human [6,7]. However, the
complex nonlinear properties of many natural and artificial dynamical systems considerably
complicate the task of computerised prediction and, therefore, force ML algorithms to rely
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on longer observation times, thus demanding substantial computational resources for the
processing of big data sets.

Figure 1. Illustration of the game played by Alice and Bob that can be used to explain the operation
of reservoir computing systems.

While the high-performance computational resources needed to process big data sets
are readily accessible to large companies, governmental organisations and the research
and education sector, the options available to small businesses and individuals are mostly
limited to the use of third-party and open-source artificial intelligence (AI) software run
on a cloud-based infrastructure or personal computers. However, even these limited
opportunities may not be available to people living in developing countries and in rural
and remote communities [13]. Subsequently, there is a need for free and easy-to-use ML
systems that can operate independently of mainstream information technology services.

The game depicted in Figure 1 illustrates one potential solution to the problem of accessible
AI—reservoir computing (RC) [14–17]. Based on the paradigms of the “context” of compressed
reverberated input histories [18], liquid-state machines (LSMs) [19,20] and echo-state networks
(ESNs) [14,21] (Figure 2), and several other relevant artificial neural network architectures [22],
RC is an emergent class of ML algorithms designed to forecast the responses of nonlinear
dynamical systems that exhibit chaotic behaviour [16,21,23–25]. An RC system can perform
such complex tasks due to its special structure (Figure 2), consisting of a fast output layer and
a slow artificial neural network called the reservoir [21] (the notion of abstract liquid is used
instead of the term “reservoir” in the framework of LSM [19]).

Typically, the reservoir is a large network of randomly connected artificial neurons
that communicate with one another and also receive time-dependent input from external
data sources. The role of this network consists of converting a time-varying input into a
spatio-temporal pattern of neural activations (in the framework of LSM, neural activations
are called liquid states). The resulting neural activations are then transformed into practical
forecasts using the readout layer. Hence, returning to the illustration in Figure 1, we can
say that an RC system mimics a stone that is dropped into water and that produces ripples
on the water surface. The falling stone plays the role of an external data input since its
motion is transformed into a spatio-temporal pattern of ripples.

Thus, since a reservoir trained on a particular data set can be used to produce many
useful outputs, RC systems can process data with a higher speed than many competitive ML
techniques while using standard computational resources [26,27]. However, although the
operating principle of an RC system does not necessarily replicate the essential functions of
a biological brain [14,19], an analogy may be drawn between a reservoir and some biological
brains, including the brains of insects, which have only 200,000 neurons, compared with
the billions of neurons in a mammalian brain, but enable them to perform complex tasks
while they navigate and search for food [28]. Demonstrations of single-neuron reservoir
computers [29] strongly speak in favour of this statement. The concept of deep learning
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also applies to RC systems that consist of several interconnected reservoirs and that can
learn from large amounts of data using standard computational resources [30].
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Figure 2. (a) Illustration of Kirby’s concept of the “context” of compressed (reverberated) input
histories processed by a classical associational algorithm (linear readout). (b) Block diagram of
an ESN-based RC algorithm. The reservoir is a network of interconnected artificial neurons that
produces a vector of neural activations xn using a data set of input values un. Only the linear readout
is trained to produce an output yn. (c) Architecture of an LSM. A data set of input values un is used
as the input into the abstract liquid (LM) to create liquid states xn that are then employed by a linear
readout to generate an output yn. Note the conceptual similarity between the three algorithms.

In the focus of this review article is another intriguing property of RC systems—their
ability to operate using a physical reservoir [17,31–33]. This property holds the potential to
make reservoir computers accessible to millions of users for a low cost. While ESN and LSM are,
essentially, computer programs, it has been suggested that their algorithms can be implemented
using certain nonlinear physical systems, such as different types of waves [17,31,32,34]. At
the conceptual model level, this means that the equations that constitute the backbones of the
ESN and LSM algorithms (see Section 2.2) become replaced with the actual response signal
of a nonlinear physical system [34,35]. Similarly to analogue computers that can solve certain
problems more efficiently than digital computers [36–39], physical RC systems may be more
energy- and computationally efficient than an algorithmic RC in practical situations, where
the relationship between the time-dependent physical quantities that needs to be predicted
can be correctly represented by the dynamics of the physical system. In practice, this
condition can be satisfied by many physical systems, including spintronic devices [40–42],
quantum ensembles [43], electronic devices [17,37,44], photonic systems [17,45–50] and
mechanical devices [17,51]. Some of these physical systems can also be used to understand
and predict the behaviour of financial markets [52–54].

In particular, in this article, we discuss the implementations of the concept of LSM
using liquids. Although the creators of LSM employed the analogy between a reservoir and
an abstract liquid [19], it has been demonstrated that physical liquids inherently possess
nonlinear dynamical properties needed for the creation of a reservoir [8,32,35,55–59]. Thus,
we critically review the results presented in these works, also discussing the potential
practical applications of physical LSM-based RC systems.

Before we commence our discussion, we note that a number of previous articles
already review the theoretical foundations and practical applications of physical RC
systems [14,17,31–33,49,60,61]. Although these works are focused mostly on physical
RC systems based on electronic, photonic and magnonic devices, some of them also discuss
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liquid-state systems. Therefore, to reduce the overlap with the previously published sur-
veys, in this current article, we generally review the seminal works of liquid-state physical
RC systems and then discuss the results produced in recent years.

We also note the remarkable versatility of RC systems, independently of their imple-
mentation as a computer program or hardware physical system. In particular, the standard
ESN algorithm and its modifications have been used to predict energy consumption and
power generation [62–69], thereby extending more traditional modelling approaches such
as vector regression models [70]. Thus, the discussion presented below will be of interest to
readers with a background in power engineering and adjacent areas, also giving compre-
hensive information for those seeking to better understand the field of physical reservoir
computing and the opportunities that it can bring.

2. Algorithmic Reservoir Computing
2.1. Context of Reverberated Input Histories

Although the concept of RC was established as a result of a series of pioneering works
published in the 2000s [19,21,71–73], many literature sources overlook an earlier work by
K. G. Kirby [18], where what is currently called the computational reservoir was originally
introduced as a context of compressed (reverberated) input histories (Figure 2a). Kirby
introduced an artificial neural network structure designed for the efficient learning of spatio-
temporal dynamics, where the network architecture was split into two subproblems: the
formation of the context and the classification of the context by an association algorithm. He
suggested that the first subproblem could be resolved by representing the neural network as
a nonlinear dynamical system such as a low-connectivity random network or a continuous
reaction–diffusion model. Furthermore, he demonstrated that the use of the so-created
neural network enables the resolution of the second subproblem using a linear learning
algorithm that can be chosen from a wide range of well-established techniques [2,5,74,75].
ESN, LSM and similar artificial neural network architectures follow virtually the same
approach (Figure 2b,c).

2.2. Echo-State Network

The mathematical nonlinear dynamical system that underpins the operation of the
artificial neural network of ESN is governed by the following update equation [14,21,26]:

xn = (1− α)xn−1 + α tanh(Winun + Wxn−1), (1)

where n is the index denoting entries corresponding to equally spaced discrete time in-
stances tn, un is the vector of Nu input values, xn is a vector of Nx neural activations of the
reservoir, the operator tanh(·) applied element-wise to its arguments is a typical sigmoid
activation function used in the nonlinear model of a neuron [7], Win is the input matrix
consisting of Nx × Nu elements, W is the recurrent weight matrix containing Nx × Nx
elements and α ∈ (0, 1] is the leaking rate that controls the update speed of the reservoir’s
temporal dynamics.

To train the linear readout of ESN, one calculates the output weights Wout by solving
a system of linear equations Ytarget = WoutX, where the state matrix X and the target
matrix Ytarget are constructed using, respectively, xn and the vector of target outputs
ytarget

n as columns for each time instant tn. The solution is often obtained in the form
Wout = YtargetX>(XX> + βI)−1, where I is the identity matrix, β = 10−8 is a regularisation
coefficient and X> is the transpose of X [26]. Then, one uses the trained ESN, solves
Equation (1) for new input data un and computes the output vector yn = Wout[1; un; xn]
using a constant bias and the concatenation [un; xn] [14,26].

2.3. Liquid-State Machine

LSM [19] is another independent foundational concept of RC that was created simul-
taneously with ESN. However, unlike ESN, LSM was developed from a computational
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neuroscience point of view, with the goal of studying the behaviour of neural microcir-
cuits [19,20]. As a result of this difference, LSM employs more biologically realistic models
of neurons and dynamic synaptic connections of the reservoir. In particular, the network of
artificial neurons used in LSM often follows the topology of biological neural networks.

In the field of LSM, the reservoir is called the (abstract) liquid and an analogy is
drawn between the excited neural states and ripples on the surface of a pond (which
motivated the introduction of Figure 1 and the discussion around it). However, at the
other levels of its architecture, LSM closely resembles ESN, including the use of sigmoid
neural activation functions and linear readouts [19]. On the other hand, LSM also often
employs more complex additional mechanisms not present in standard ESN, such as
averaging spike trains [33], which, however, increases the complexity of an LMS computer
program compared with the one that implements the ESN algorithm. Subsequently, LSM
is less widespread than ESN in the areas of applied physics, engineering and finance [17].
Nevertheless, since LSM mimics some operation principles of biological neurons, it can
perform more complicated information processing tasks [76].

2.4. Examples of Operation of ESN

Since the standard ESN has been more often used in practice than LSM, in this section,
we demonstrate a typical scenario regarding the operation of an RC system, where ESN
is trained to forecast a chaotic nonlinear time series. Following a convention adopted in
the literature on ESN and relevant ML algorithms [26], as the first test time series, we
employ a chaotic Mackey–Glass time series (MGTS) [77]. Other chaotic time series of
artificial [16,35,78–81] and natural origin [16,82] have also been employed to test ESN
similarly to what is presented below.

The MGTS is produced by the delay differential equation [77]

ẋMG (t) = βMG

xMG (τMG − t)
1 + xq

MG (τMG − t)
− γMG xMG (t), (2)

where one typically chooses τMG = 17 and sets q = 10, βMG = 0.2 and γMG = 0.1 [26]. We
first generate a sufficiently long MGTS data set and then split it into two parts. The first
part is used to train the RC system but the second part is used as the target data. It is
noteworthy that the RC system is presented with the MGTS data at the training stage only,
but, to make a free-running forecast, it uses its own output as the input, i.e., xn is calculated
using Equation (1) with un = yn−1. However, in this particular example, we use the second
part of the pre-generated MGTS as the target data that are needed to assess the accuracy of
the forecast made by the RC system.

An example of a free-running forecast of MGTS made by the standard ESN is presented
in Figure 3a, where we used the software described in Ref. [26]. As we can see in Figure 3a,
at the beginning of the modelled time interval, ESN produces an accurate forecast, which is
confirmed by Figure 3b, where the modulus of the absolute error of the forecats made by
ESN is plotted. Then, we can see that the accuracy of the forecast deteriorates with time,
although ESN remains able to correctly reproduce the essential dynamics of MGTS.

It is noteworthy that this particular result was obtained using a reservoir that contained
3000 neurons and was trained using a relatively short training time series and a typical
parameter α = 0.3 in Equation (1) [14,27,71]. From the point of view of other standard
ML algorithms, the computational resources used by the so-configured ESN are surpris-
ingly very readily affordable compared with the requirements of many competing ML
techniques. Hence, the ability of ESN to produce a feasible forecast while using affordable
computational resources makes it a best-in-class ML learning algorithm for the prediction
of the behaviour of highly nonlinear and chaotic dynamical systems [16].
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(a)

(b)

Figure 3. (a) Free-running forecast made by standard ESN compared with the target MGTS signal.
(b) Modulus of the absolute error of the forecast made by ESN.

As another example, we consider a tuneable frequency generator task [71], where the
input signal is a slowly varying step pulse signal that encodes a wave frequency, but the
desired output that ESN must produce is a sinusoidal wave of the frequency encoded by
the step pulses. Figure 4a shows the output of ESN (the oscillations denoted by the blue
line) to a typical step pulse signal (denoted by the red line). This result was obtained using
the software that accompanies Ref. [71]. As we can see, the frequency of the sinusoidal
signal generated by ESN follows the amplitude of the step pulses. We will return to the
discussion of this result in the following section.

Figure 4. (a) Output of ESN trained to generate a sinusoidal signal with a frequency encoded as the
input step pulse signal. (b) Response of a bubble in water that harmonically oscillates due to the
changes in the ambient acoustic pressure (see panel (c)) represented by the same step pulses as in
panel (a).

3. Physical Reservoir Computing and Its Connection to Analogue Computers

Soon after the introduction of ESN and LSM, it was suggested that the reservoir (or liquid
in the framework of LSM) does not necessarily need to be an artificial neural network that
exhibits the nonlinear dynamical behaviour given by Equation (1) or its modifications [14,16].
Indeed, it is plausible to assume that many real-life dynamical systems should be able to
accept a certain input un and then produce observable neural activations xn (liquid states in
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the framework of LSM) suitable for the training of an RC system to make a forecast. While
the so-produced activation states may not necessarily fully describe the state of the RC
system from the point of view of the original ESN and LSM concepts, it has been shown
that the replacement of an artificial neural network by a physical system that has similar
nonlinear dynamical properties may help to reproduce, to a significant extent, the essential
functionality of a computational reservoir.

In fact, to date, a number of physical systems, including spintronic devices [40–42],
quantum ensembles [43], electronic devices [17,37,44], photonic systems [17,45–50] and
mechanical devices [17,51], have been used as physical RC systems that can operate simi-
larly to the conventional algorithmic ESN and LSM. However, as noted in [14], in some
works on physical RC systems [55–57], the concepts of “reservoir” and “liquid” are taken
literally using a real reservoir filled with a physical liquid and considering disturbances
on the surface of the liquid as neural activations. While, presumably, these attempts were
motivated mostly by scientific research curiosity, they have resulted in new knowledge
and encouraging results that have motivated follow-up studies on the nonlinear dynamical
properties of fluids in the context of RC systems in particular and of analogue neuromorphic
computing in general.

Of course, the development of any physical RC system faces many fundamental
and technical challenges. Indeed, whereas ESN and LSM are typically implemented as a
computer program and, therefore, have a significant degree of flexibility that enables them
to perform different types of forecasting tasks, the architecture of a physical RC system
depends on the hardware or experimental setup that employs specific nonlinear dynamical
behaviour for computational purposes. Subsequently, since many experimental setups
consist of measurement equipment that is controlled by a computer, physical RC systems
are often integrated and controlled by a digital computer or an auxiliary electronic circuit
module to enable a higher degree of adjustability [42,45,50,83,84].

On the one hand, such an approach restricts the ability of the physical RC system to
resolve different classes of problems, since a particular physical system may not be able to
accept certain types of input data. On the other hand, physical RC systems can be more
efficient than digital computers in resolving specific but very important practical tasks.
In this sense, physical RC systems functionally resemble analogue computers, which, for
many decades, were more efficient than digital computers in predicting complex weather
phenomena [36,85].

For example, Ishiguro’s analogue computer [86,87] employed a physical analogy
between the electrical current and fluids [85] to model the height and flow of water in
the North Sea. The sea was represented by an electronic grid consisting of several tens
of nodes, where the flow of water depended on the difference in water height and on the
physical properties and civil engineering features of coastline constructions. Apart from
the grid that modelled the sea, the analogue computer consisted of signal generators that
synthesised time-varying inputs and of ancillary equipment such as an oscilloscope and a
digital computer.

Thus, many features of Ishiguro’s analogue computer conceptually resemble the architec-
ture of a physical RC system. However, not surprisingly, nowadays, there has been a resurge in
the interest in analogue computers intended to be used in the field of hybrid computing [37,88],
biomedicine [89], neuromorphic engineering [88,90], quantum and molecular dynamics
simulations [91] and education [92]. The demand for such computers is dictated by the
difficult-to-overcome fundamental limitations of digital computers and specialised mod-
elling software, such as the insufficient capacity of algorithms to be effectively implemented
on a parallel computer architecture [93].

It is noteworthy that Ishiguro’s analogue computer was based on the fundamental
physics of complex nonlinear processes that underpin sea-level changes, including material
solitary waves [94] and tsunami waves [95]. Similar phenomena can also be observed in
lakes, swimming pools, bathtubs and even in a bucket of water. This means that researchers
may create a counterpart of Ishiguro’s analogue computer using liquids contained in
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artificial reservoirs located in laboratory settings. Moreover, the same types of waves can
be controllably produced in microfluidic systems, which have been actively investigated
for their ability to perform certain digital computations [96].

Of course, liquids are much more difficult to control compared with electric signals
propagating in electronic circuits. However, as shown, for example, in [97,98], liquids
have one important advantage over solid-state technologies—they are highly nonlinear.
Indeed, while achieving useful nonlinearity in electronic circuits requires the careful control
of active circuit components, such as transistors, in liquids, the nonlinearity is always
present naturally and it can be manipulated in a manner that is not attainable in solid-state
systems [97,98]. The same advantage of liquids applies when liquid-based technologies are
compared with optical and photonic technologies, where nonlinear optics constitutes an
independent field of research that aims to create novel nonlinear materials and techniques
intended to overcome several fundamental physical limitations associated with nonlinear
optical phenomena [98].

To provide an intuitive example of how a liquid-based system might implement the
standard ESN algorithm, let us consider a mm-sized bubble in a bulk of water (Figure 4c).
When the bubble is irradiated with a sound pressure wave, it harmonically oscillates, i.e., it
periodically inflates and deflates while maintaining a spherical shape [99–102]. The natural
frequency of such oscillations is associated with the Minnaert resonance [103] that occurs
at the frequency given by the well-known formula

fM =

√
3κPa

2πR0
√

ρ
, (3)

where the polytropic exponent of the gas trapped inside the bubble is κ = 4/3, Pa is the
pressure in the bulk of the liquid outside the bubble, R0 is the equilibrium radius of the
bubble and ρ is the density of the liquid. In this formula, the surface tension and the
effect of the viscosity of the liquid are neglected due to their insignificant impacts on the
oscillation frequency of mm-sized bubbles [101,102].

Let us assume that the pressure in the liquid outside the bubble changes slowly in a
stepwise manner and that the time interval between two consecutive step changes is long
enough for the bubble to develop several periods of oscillation. For the sake of illustration,
let us also neglect the decay in the oscillations at the time scale of a single step change in
the pressure. The simulations are conducted for the step changes in the pressure that follow
the pattern of the input signal of ESN in the frequency generator test in Figure 4a.

The result produced by this idealised model is presented in Figure 4b. We can see that
the first step change of the input signal leads to an increase in the hydrostatic pressure
around the bubble, which, in turn, results in a decrease in the equilibrium radius of the
bubble. In response to these changes, the bubble starts to harmonically oscillate around
the new equilibrium radius with the frequency given by Equation (3) [99]. The hydrostatic
pressure will change again due to the following step pressure change in the input signal,
thereby forcing the bubble to oscillate around another equilibrium state with another
frequency and so forth.

As a result of these processes, the frequency of the bubble oscillations in Figure 4b
is changed similarly to the frequency of the ESN-driven tuneable frequency generator in
Figure 4a, which indicates that an oscillating bubble can serve as an analogue version of
the frequency generator implemented by the ESN algorithm (in fact, not only bubbles but
also oscillation systems of other nature can be used for this purpose [51]).

A striking feature of the bubble-based frequency generator is its simplicity compared
with ESN: while a bubble-based device can be made using technically simple and inexpensive
equipment [101], ESN requires a modern digital computer. On the other hand, a single bubble
is suitable mostly for the sole task of generating harmonic waves with a frequency defined
by the input. Nevertheless, as shown below, a cluster of interacting oscillating bubbles can
operate as a network capable of performing more complex prediction operations.



Energies 2023, 16, 5366 9 of 26

4. Physical Reservoir Computing and Physics-Informed Artificial Neural Networks

Recently, a family of advanced artificial neural network algorithms—physics-informed
neural networks—was introduced, where the models of the networks strictly follow the
laws of physics to make physically consistent forecasts [104–107]. From a mathematical
point of view, to implement a physics-informed network, the standard ESN, LSM or a
similar algorithm needs to be combined with a mathematical model of a physical process
that can be described using partial differential equations (PDEs) [104]. The so-designed
RC systems have been shown to produce ML models that remain robust in the presence of
noise or poorly defined data, which is often the case, for example, in biosensing [102].

In a typical artificial neural network, the loss function, such as the mean squared error
(MSE), quantifies the difference between the expected real-life outcome and the forecast
made by the ML model. Using the loss function, one can obtain feedback that can be
used to adjust the parameters of the model. Similarly to this approach, physics-informed
algorithms exploit information that is collected both from measurements and from relevant
mathematical models. In practice, this approach can be realised by embedding known
PDEs into the loss function of an artificial neural network.

To provide a general example, Figure 5 shows a block diagram of a physics-informed
algorithm for the solution of a forward problem [7] using the viscous Burger equation—an
equation that often arises in the fields of nonlinear acoustics and fluid dynamics [98]. In
a one-dimensional space defined by the coordinate x, for a given field u(x, t) and the
kinematic viscosity ν, Burger’s equation reads

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2 . (4)

In the block diagram in Figure 5, the conventional and physics-informed parts of the
artificial neural network are denoted by the left and right dotted boxes, respectively. Both
parts of the network are trained using the weights w, biases b and a nonlinear activation
function σ. A set of discrete time inputs (xi, ti) is first fed into the network, and then
the Jacobian of the neural network’s output is computed using these inputs; finally, the
residual of the PDEs is computed and added as an extra term in the loss function. The
entire network is trained by minimising the loss via a gradient-based optimisation method
with a threshold parameter ε.

Figure 5. Block diagram of a physics-informed neural network that uses a one-dimensional Burger
equation. Reproduced from Ref. [108] under an open-access Creative Commons CC BY license and
with the permission of the authors.
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It is plausible that the physics-informed neural network architecture shown in Figure 5,
as well as the physics-informed ESN algorithm [105], can be implemented using a physical
system. A hybrid approach, where an artificial network is combined with a real-life physical
system (as opposed to PDEs that describe the behaviour of this system), should also be
possible. Apart from being of interest to researchers from the fundamental point of view,
similarly to the analogue computers discussed in the previous sections, such a hybrid
architecture may have certain advantages over digital systems.

5. Liquid-Based Physical Reservoir Computers
5.1. Pioneering Works

We start our discussion with a brief overview of the results presented in the pioneering
works on liquid-based physical RC systems that implement the concept of LSM. According
to some literature sources [14,55], the authors of these works took the idea of LSM literally
and they were also motivated by the fact that waves on a liquid surface can be created
using technically simple approaches [109]. While these results are well known to experts
in the field of neuromorphic computing and they have been discussed in several relevant
literature sources [31–33], in general, their analysis received disproportionately little atten-
tion compared with discussions of solid-state RC systems. Given this, here, we discuss the
main outcomes of these works with a focus on the aspects that, in our opinion, were not
fully covered in the previous review articles.

In the work [55], the paradigm of LSM was implemented using a small, optically
transparent tank filled with water (Figure 6a), and the resulting physical RC system was
trained to undertake several challenging computational tasks, including an XOR test
(Figure 6b). To create waves on the water surface, the tank was vibrated using several
electric motors. The electric motors were connected to each side of the tank so that they
enabled the creation of waves at eight different locations across the tank. The electric signals
used to drive the motors were treated as the inputs of the RC system. A digital camera was
used to register the interference patterns of the surface waves. The resulting interference
patterns were projected and recorded at a resolution of 320 × 240 PX at 5 frames per second
rate (Figure 6b). Each frame was digitally processed to remove noise and to obtain 50 virtual
neurons (see [82,84] for a relevant discussion).

The authors of [55] supported the analysis of their results with a comparison of the
“complexity of water” with neural complexity [110]. It is well established that a biological
brain is high in complexity because of its intricate pattern of neural connectivity. Subse-
quently, the authors suggested that virtual neurons based on the dynamics of water waves
might also exhibit complex connectivity. To demonstrate the plausibility of this idea, they
created a model of connectivity that revealed a staggered increase in connectivity due to an
increase in the number of motors used to create water waves. The increase was interpreted
to be due to different effects of the individual motors on the water, because the motors
located in different places across the tank produced waves of different amplitude. It was
also revealed that the RC system did not become chaotic when all motors were turned on,
which is an important result because a dynamical system suitable for applications in RC
systems should not exhibit chaotic behaviour [14].

A conceptually similar approach was demonstrated in [57], where vertical vibrations of
a reservoir filled with a liquid resulted in the excitation of surface Faraday waves. Although
the original article [57] is difficult to access, the results presented in it have been highlighted
in some review articles (see, e.g., [32]). It is noteworthy that the dynamics of the surface
waves used in [57] are more complex than those of the waves created in [55], and, therefore,
they may potentially be more useful for applications in RC systems.
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Figure 6. (a) The “Liquid Brain” physical implementation of LSM. (b) Photographs of the typical
wave patterns for the XOR task. Top-Left: [0 1] (right motor on), Top-Right: [1 0] (left motor on),
Bottom-Left: [1 1] (both motors on) and Bottom-Right: [0 0] (still water). Reproduced with permission
from Ref. [55], Copyright (2003) by Springer Nature. (c) Photograph of Faraday waves on the surface
of water contained in a Petri dish glued to a vibrating loudspeaker. Although the parts of the
experimental setup shown in the photo were not used in RC-related experiments, the physics of
Faraday waves observed here should be essentially similar to that in Ref. [57]. Reproduced from
Ref. [108] under an open-access Creative Commons CC BY license and with the permission of the
authors.

Indeed, classical nonlinear standing Faraday waves appear on the surface of a hor-
izontally extended fluid in a vertically vibrating container [108,111] when the vibration
amplitude of a harmonic signal with the frequency f exceeds a critical value, which results
in the instability of the flat liquid surface and the formation of subharmonic surface waves
oscillating at the frequency f /2 (Figure 6c). Speaking broadly—for example, when the
liquid forms a large pancake-shaped liquid drop—the formation of Faraday waves can
result in even more complex dynamical behaviour. In particular, the onset of Faraday waves
in this case can be associated with the period-doubling bifurcation [111]. The nonlinearity
of such waves is so strong that one can observe a number of higher-order harmonics at
the frequencies n f , where n = 2, 3, . . . . Clearly, when used judiciously, such complex non-
linearity may be useful for applications in RC systems [71,76], especially when reservoirs
with large memory capacity are required [112–114].

5.2. Bubble-Based Physical Reservoir Computing

Based on the discussion above, it is plausible to assume that a physical RC system
should intrinsically be able to operate similarly to a physics-informed artificial network,
because a reservoir that operates using a real-life physical system is likely to produce
activation states suitable to obtain a physically consistent forecast. This idea has been tested
in [35], where the nonlinear dynamics of a computational reservoir were replaced by those
of a cluster of oscillating bubbles in water. In a previous work by the authors of [35], it was
demonstrated that mm-sized oscillating bubbles with randomly chosen equilibrium radii
and initial spatial positions produce acoustic signals that can be used to unambiguously
measure the bubble dynamics in the cluster [101]. Therefore, it was suggested that a cluster
consisting of Nb bubbles can be used as a reservoir network of Nb×Nb random connections.
In such a reservoir, the acoustic responses of individual oscillating bubbles serve as the
neural activation states of algorithmic ESN [14,21].
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From a theoretical point of view, the implementation of this idea implies that
Equation (1) is replaced with the Rayleigh–Plesset equation, which describes the non-
linear dynamics of spherical bubble oscillations [100,102] in a cluster consisting of Nb
bubbles that do not undergo translational motion (see [102,108] for a relevant discussion of
translation motion):

RpR̈p +
3
2

Ṙ2
p =

1
ρ

[
Pp − P∞(t)

]
− Psp, (5)

where overdots denote differentiation with respect to time, and, for the pth bubble in the
cluster,

Pp =

(
P0 − Pv +

2σ

Rp0

)(
Rp0

Rp

)3κ

− 4µ

Rp
Ṙp −

2σ

Rp
. (6)

The term accounting for the pressure acting on the pth bubble due to the scattering of
the incoming pressure wave by the neighbouring bubbles in a cluster is given by

Psp =
Nb

∑
l=1,l 6=p

1
dnl

(
R2

l R̈l + 2Rl Ṙ2
l

)
, (7)

where dpl is the distance between the bubbles in the cluster, and parameters Rp0 and Rp(t)
are the equilibrium and instantaneous radii of the pth bubble in the cluster, respectively.
The pressure term P∞(t) = P0 − Pv + αsus(t) represents the time-dependent pressure in
the liquid far from the bubble, where αs and us(t) are the amplitude and temporal profile
of the acoustic pressure wave used to drive the oscillations of the bubbles.

Once the Rayleigh–Plesset equation has been solved, the acoustic power scattered by
the pth bubble is calculated as [102]

Pscat(Rp, t) =
ρRp

h

(
RpR̈p + 2Ṙ2

p

)
, (8)

where h is the distance between the centre of the bubble and a spatial point in the acoustic
far-field region [99,100]. The resulting scattering pressure plays an important role in the
integration of the bubble dynamics with the linear readout ESN algorithm. In Ref. [35],
this integration was achieved by sampling Pscat(Rp, t) and us(t) at equidistant time in-
stances and obtaining their discrete analogues, which were treated as the vectors of neural
activations xn and of input values un of standard ESN, respectively.

In the bubble-based ESN, the signal us(t) plays the role of the input signal that is
used to train the network. The amplitude of us(t) is chosen to be small (αs = 0.1–1 kPa,
i.e., αs � P0) so that both the nonlinearity of the bubble oscillations and the Bjerknes force
of interaction between the bubbles remain weak. As a result, the echo state condition,
which implies that the dynamics of the neural activations xn should be uniquely defined by
any given input signal un [21], becomes satisfied. Moreover, with these model parameters,
a cluster of mm-sized oscillating bubbles maintains its structural integrity for a period of
time sufficient to train and exploit the RC system. The stability condition is important
because the internal connections in the reservoir must not change during the training and
exploitation of the network [26].

Typical simulations conducted in [35] considered a cluster consisting of 125 bub-
bles with equilibrium radii randomly chosen in the 0.1 to 1 mm range. The following
physical parameters corresponding to water at 20 ◦C were also used: µ = 10−3 kg m/s,
σ = 7.25× 10−2 N/m, ρ = 103 kg/m3, Pv = 2330 Pa, P0 = 105 Pa and κ = 4/3.

The bubble-based RC system was used to forecast three different chaotic time series—
the Mackey–Glass time series (MGTS) [77], Lorenz attractor [78] and Rössler attractor [79]—
and the results were compared with those produced by the standard algorithmic ESN that
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employed the same number of neurons, i.e., there were 125 neurons in ESN and 125 bubbles
in the bubble-based RC system.

For example, Figure 7 compares the prediction made by the bubble-based RC system
with that of standard ESN. We can see that in the time interval 0–1 ms, the bubble-based
RC system correctly produces a relatively accurate forecast, which is evidenced by the
calculated mean-square error (MSE), which is approximately 5× 10−2 for the bubble-based
RC system and is two orders of magnitude larger than the MSE for ESN. Although ESN
performs better in this time interval, over the full test interval of 0–2 ms, presented in
Figure 7, the MSE of both the bubble-based RC system and ESN becomes approximately
5× 10−3, which indicates that the long-term forecast of the bubble-based RC system may
be closer to the target MGTS than the forecast made by ESN.

Figure 7. Performance of the bubble-based RC system (left column) and standard ESN (right column).
Top row: target MGTS (the solid line) and its forecast made by the bubble-based RC system and
ESN (the dotted line). Middle row: close-up view of selected neural activations. Bottom row: output
weights Wout produced by the bubble-based RC system and ESN. Reproduced with permission
from [35], Copyright 2021 by the American Physical Society.

It is noteworthy that the observed behaviour of ESN is widely regarded as a positive
outcome for chaotic systems such as MGTS. Therefore, despite the somewhat inferior
performance of the bubble-based RC system compared with ESN, the result in Figure 7
clearly demonstrates the ability of a bubble-based physical RC system to predict chaotic
time series.

Figure 7 (middle row) shows the neural activation states produced by the bubble-based
RC system and ESN. The respective optimal weights Wout are shown in the bottom row of
Figure 7. We can see that the behaviour of the activation states produced by ESN resembles
the pattern of MGTS. However, the activation states of the bubble-based RC system are
sinusoidal signals with the frequencies of oscillation of the bubbles in a cluster. This means
that while the dynamics of the ESN are governed by the nonlinear operator tanh(·) (see
Equation (1)), the dynamics of the bubble-based RC system are approximated by sinusoidal
waves. The fact that the response of a nonlinear physical system can be represented as a
superposition of sinusoidal waves is well established [115] and it has been used in the field
of reservoir computing [83].



Energies 2023, 16, 5366 14 of 26

Finally in this section, we note the work [116], where it has been demonstrated that a single
oscillating bubble can operate as a physical RC system that has substantial fading memory. In
the cited paper, it has also been shown that such a single bubble can be used to produce musical
outcomes, thereby serving as an AI system capable of producing creative works.

5.3. Reservoir Computing Based on Vortices in Fluids

As demonstrated previously in this article, different types of physical perturbations of
the liquid surface can be employed to build a physical counterpart of the algorithmic LSM
system. In the theoretical work [58], it has been suggested that vortices—regions in a fluid
where the flow revolves around an axis line—can be used as such perturbations. Vortices
are ubiquitous in nature and they can be observed, for example, as whirlpools, smoke rings
and winds surrounding tropical cyclones and tornados.

Since the behaviour of vortices often exhibits complex nonlinear dynamics that can
be suitable for applications in reservoir computing, the authors of Ref. [58] carried out a
rigorous numerical study to explore this opportunity. They chose a von Kármán vortex
street that is well known in the field of fluid dynamics as a repeating pattern of swirling
vortices that are caused by a process known as vortex shedding [117]. This phenomenon
can be observed at a certain range of flow velocities that are defined Reynolds numbers
(Re), typically whenRe > 40.

Very often, the formation of a vortex street is discussed using a system where a fluid
flows past a cylindrical object of infinite height [117]. This classical two-dimensional system
was used in [58] as a computational reservoir (Figure 8a). As the input of the reservoir, the
author used the modulation of the flow in front of the cylinder. To harvest the activation
states of the reservoir, they discretised the space behind the cylinder with a fine rectangular
mesh. Each node of the mesh contained the calculated values of velocity u = (u1, u2) and
pressure p of fluid flow.

Figure 8. (a) Contours of a numerically calculated velocity distribution showing vortex shedding.
The direction of flow is indicated by the arrow in the top-left corner. The mesh used to prepare the
reservoir dynamics can be seen in the region past the circular cylinder that is denoted as “object”.
The bottom panel shows an example of the profile of the input flow alongside the corresponding
profiles of the velocity components and pressure obtained from one node of the mesh used to prepare
the reservoir dynamics. (b) Result of the time series prediction task obtained at Re = 100. The
false colour maps show NMSE for the target physical parameters of the fluid u1, u2 and p in the
two-dimensional computational domain covered by the mesh used to prepare the reservoir. The
panels located next to each colour map show the prediction of the RC system made for a single
discrete point in the computational domain (the expected actual signal is denoted by the dashed
curve). Reproduced from [58] under the terms of the Creative Commons Attribution 4.0 licence.
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Since the dynamics of the so-constructed reservoir depend on the value ofRe, several
tests aiming to verify the performance of the reservoir were conducted for different values
ofRe below and above the threshold of the formation of a von Kármán vortex street. Firstly,
the memory capacity of the reservoir was tested by employing a standard approach that is
often used to establish the ability of an RC system to reproduce and nonlinearly process
previous inputs using its current states [42,76,84] (however, Legendre polynomials were
used as the input signal in [58], instead of randomly generated square pulses as used
in [42,76,84]). In particular, it was shown that the effect of vortex shedding observed at
Re ≈ 40 resulted in the largest memory capacity of the system, which means that the
reservoir should have the highest computational efficiency at this flow regime.

Secondly, the ability of the system to forecast chaotic time series was tested. These tests
revealed (Figure 8b) that the reservoir based on vortices can make accurate predictions of
time series data, while also predicting the physical parameters of the physics flow, similarly
to the physics-informed systems discussed in Section 4. The latter means that the reservoir
dynamics may be prepared using some knowledge of the dynamics of the velocity and
pressure of a fluid and then they can be used to produce a complete spatio-temporal profile
of the velocity and pressure.

5.4. Physical Reservoir Computing Based on Solitary Waves

In this section, we discuss physical RC systems based on solitary waves, which are
often observed in liquids. Several previous theoretical works [8,46,47,118] have demon-
strated the plausibility of physical RC systems based on solitary waves propagating in
optical media [119]. The reader interested in such RC systems is referred to the cited papers.

Solitary waves maintain their shape and propagate with a constant velocity due to
an interplay between nonlinear effects and dispersive processes in the medium [94,119].
Such waves have been of significant fundamental and applied research interest in optics [119],
magnetism [120], fluid dynamics [121], electronics [122], acoustics [123] and biology [124,125].

In the field of fluid dynamics, there has also been significant interest in the solitary-
like (SL) surface waves that originate from the spatio-temporal evolution of falling liquid
films [126,127]. Due to their rich nonlinear dynamics and the relative technical simplicity of
their experimental implementation, SL waves have attracted significant attention [128–138].
Furthermore, although SL waves share many physical features with the other types of
solitary waves, they exhibit unique physical properties that are not observed in other
physical systems [138–140]. For example, in contrast to two Korteweg–de Vries (KdV)
solitary waves that represent waves on shallow water surfaces and that can pass through
each other without significant change [121,141], two SL waves can merge, thus exhibiting
intriguing nonlinear dynamical behaviour [138].

5.4.1. KdV Soliton-Based Reservoir Computing

In the paper [142], a novel RC system that uses the superposition of KdV cnoidal
waves as a method of information encoding and processing has been proposed and nu-
merically validated. A cnoidal wave is an exact nonlinear periodic wave solution of the
KdV equation [121]. Compared with a sinusoidal wave, a cnoidal wave is characterised
by sharper crests and flatter troughs. Such waves can often be observed in nature—for
example, as ocean and lake swell waves existing in shallow water [94].

The instantaneous wave velocity u = u(x, t) of shallow water waves is described by
the differential equation

∂u
∂t

+ u
∂u
∂x

+ β
∂3u
∂x3 = 0, (9)

where β is a dispersion coefficient. In the case of travelling waves, the solution of
Equation (9) has two limiting regimes, known as low-amplitude waves and KdV soli-
tons. In [142], the former waves have been used to encode the input data, but the latter
ones underpinned the operation of the physical reservoir, as shown in Figure 9. The au-
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thors called this system Aqua-Photonic-Advantaged Computing Machine by Artificial
Neural Networks (Aqua–PACMANN), because they envisioned that the detection of shal-
low water waves can be achieved using purely photonic devices, such as a digital video
camera. Specifically, it was suggested that Aqua–PACMANN could be implemented using
a square-shaped 10 × 10 cm container filled with a 1-cm-thick layer of water. The area of
the container could be discretised with a spatial step of 1 mm to obtain the nodes of the
reservoir and harvest its states. It was also shown that a standard digital camera with
a frame rate of 1000 FPS could provide a suitable temporal resolution sufficient for the
training and exploitation of the computational reservoir.

Figure 9. Illustration of Aqua-PACMANN physical RC system. The system consists of three layers.
In the first layer, low-amplitude periodic waves represent the input information, using the wave
numbers and peak amplitudes as data labels and numerical values, respectively. In the second
layer, which acts as the reservoir, the periodic waves propagate in shallow water and collide with a
KdV soliton, resulting in nonlinear (NL) interaction processes. In the readout layer, the water wave
amplitude is measured and sampled in time following the standard ESN algorithm, where the linear
combination of NL information channels takes place. Reproduced from [142] under the terms of the
Creative Commons Attribution 4.0 licence and with the permission of the authors.

The plausibility of Aqua–PACMANN to realise a logic gate was verified by tasking it
with an XNOR test. Figure 10 shows the profiles of the waves used to encode the XNOR truth
table, and Figure 11 shows the result of the simulated spatio-temporal evolution of the input
waves, which is the stage where the information processing takes place due to the nonlinear
interaction. The reservoir states are harvested by measuring the wave profile in the centre of
the reservoir, which is denoted by the dashed line in Figure 11. Using these data, the weight
matrix Wout is calculated, thereby concluding the training of the RC system and preparing it
for exploitation, similarly to how the standard trained ESN system is used.
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Figure 10. (a–d) Low-amplitude waves that encode the input signals of the XNOR task. The titles of
each panel denote the encoded Boolean variable couple. Reproduced from [142] under the terms of
the Creative Commons Attribution 4.0 licence and with the permission of the authors.

Figure 11. (a–d) False colour maps showing the simulated evolution of KdV solitons with the initial
states given by the XNOR truth table, as shown in Figure 10. The titles of each panel denote the
encoded Boolean variable couple. The vertical dashed line shows the region where the wave shapes
are recorded and processed to harvest the states of the reservoir. Reproduced from [142] under the
terms of the Creative Commons Attribution 4.0 licence and with the permission of the authors.
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5.4.2. Reservoir Computing Using Solitary-like Surface Waves

A similar RC system that uses SL waves to encode the input information and to
prepare the reservoir states has been proposed and experimentally verified in [143]. The
experimental setup is shown in Figure 12a, where water flows over a metal plate that is
inclined with respect to the horizontal plane by the angle θ = 3◦. The flowing water forms
a thin film with a thickness of approximately 1 mm. The electric pump that is used to create
the water flow is controlled by a microcontroller that modulates the water flow velocity
to create SL waves (Figure 12b). Since the pump can reasonably follow the low-frequency
(0.1–5 Hz) electric signals synthesised by the microcontroller, the SL waves can encode
diverse input data sets, including complex signals such as MGTS.

To implement the standard ESN algorithm in the experimental setting depicted in
Figure 12a, a digital camera was used and several possible detection mechanisms were
tested. For example, the digital camera can be used to detect one image pixel located in the
middle of the inclined plate, thus recording the time-dependent behaviour of SL waves
that corresponds to only one neural activation of the reservoir. To produce additional
neural activation, a well-known sampling technique described in [42,84] was applied.
Alternatively, many image pixels located across the inclined plate can be used to create
independent neurons. Both these approaches were tested and demonstrated approximately
the same efficiency. In all experiments, a fluorescent material was added to the liquid and a
source of UV light was used to increase the visibility of the SL waves.

Figure 12. (a) Schematic representation of the experimental setup of the SL wave physical RC system.
(b) Photograph of the experimental and SL waves taken by the digital camera. Reproduced with
permission from [143], Copyright 2023 by EPLA.

The resulting SL wave RC system (SLRC) was tested using several standard benchmark
tasks aiming to study the memory capacity of the reservoir and its ability to make free-
running forecasts. When a trained RC system is exploited in a free-running forecast regime,
it uses its own outputs as the input data. It is noteworthy that this operating regime is, in
general, challenging for algorithmic RC systems [14]. However, some physical RC systems
have been able to successfully make such predictions even more efficiently than a standard
ESN computer program [35].

The experiments conducted in [143] revealed that SLRC has a very good memory
capacity compared with the physical RC systems that use electronic, magnetic and optical
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devices as the reservoir [17,42,59,76,84]. This result is attributed to the unique ability of SL
waves to interact and merge, which means that the response of SLRC to one SL wave does
not fully decay until the reservoir is presented with a series of following pulses.

Of course, to optimise this behaviour, the amplitude and duration of the SL waves
and the spacing between them must be carefully controlled. SL waves also evolve as they
move from the inlet in the downstream direction (Figure 12). All these characteristics of
SL waves were numerically investigated using a hydrodynamic Shkadov model that was
based on the boundary layer approximation of the Navier–Stokes equation [144,145]. The
modelling demonstrated that the optimal region for the detection of SL waves was located
in the middle of the inclined plate, which was the location used in the experiments in [143].

The outcomes of the free-running forecast of MGTS are presented in Figure 13a. We
can see that SLRC can forecast MGTS with the accuracy of the standard ESN that uses a
reservoir with 40 neurons. Due to current technical limitations, the number of neurons in
SLRC cannot be larger than 40. However, since the accuracy of the forecast made by SLRC
(Figure 13b) scales with the number of neurons, similarly to the accuracy of the standard
ESN, it is expected that SLRC with approximately 200 neurons will produce a very accurate
forecast of at least the first five oscillations of MGTS.

Figure 13. (a) Free-running forecast of MGTS (blue dotted curve) made by the SL wave RC system
(labelled SLRC, red solid curve) and standard ESN (dash-dotted curve). Both RC systems used a
reservoir consisting of 40 neurons. (b) Modulus of absolute error of SLRC (red curve) and ESN
(dash-dotted curve). Reproduced with permission from [143], Copyright 2023 by EPLA.

It is also noteworthy that the cost of the prototype of SLRC does not exceed USD 500
and that the auxiliary measurement equipment used in its tests, including oscilloscopes
and signal generators, can be substituted by inexpensive open-source electronic platforms
such as Arduino (this implementation option was tested by the authors of Ref. [143]). Of
course, further research and development work is required to improve SLRC and prepare
it for the next verification stages. However, the expected cost of such works should not
significantly exceed the investments made at the prototyping stage. While the cost of the
Aqua-PACMANN device proposed in [142] has not been announced in the literature, it
should be similar to that of SLRC, since both devices rely on similar physical phenomena
and require technically simple measurement equipment.
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6. Conclusions and Outlook

The recent advances in the field of AI have changed the dynamics of the ways in which
we work and live. Nevertheless, AI systems remain inaccessible for most of the population,
in large part due to their high complexity and costs. These problems are especially pressing
in rural and remote areas, where access to new technologies is often limited compared with
urban areas.

Physical RC systems hold the potential to make some aspects of AI more accessible. In
particular, the liquid-based RC architectures reviewed in this article can be employed as
simple and inexpensive AI systems implemented as microfluidic processing unit chips [96].
Such chips may be integrated with the hardware of a typical desktop digital computer,
thereby converting the latter into a much more computationally powerful but still fi-
nancially affordable device that can replace a high-performance supercomputer while
completing specific complex tasks.

It is also noteworthy that the strong nonlinearity of water waves used in the reviewed
physical RC systems is advantageous compared with the nonlinear dynamical phenom-
ena observed in solid-state systems [98,146]. Indeed, while significant theoretical and
experimental efforts have been made to understand nonlinear optical effects and create
optical devices based on them [98], one can readily create water waves and exploit their
nonlinear properties, which has been convincingly demonstrated in this article and the
papers reviewed in it. The physical properties of water waves also align with the original
paradigm of RC, i.e., to exploit the concepts of reverberations [18] and of waves on the
surface of an abstract liquid contained in a reservoir [19].

Another considerable advantage of the liquid-based systems [147] is the possibility of
the complete elimination of electronic and photonic circuits, which play an ancillary role in
the operation of many physical RC systems but often limit the speed of computation, also
increasing the complexity and cost of the hardware [50]. Indeed, in the free-running forecast
mode, an RC system operates using its own past predictions as the input data [14,71,82],
which is achieved by means of a feedback loop that converts the output into input data
at every discrete time step [82]. In a physical RC system implementing this approach, the
feedback is realised using electronic or optical circuitry controlled by a computer [45,50]. This
feedback loop inevitably introduces a time delay that can be longer than the temporal scale
of the dynamics of the reservoir [50]. Subsequently, the introduction of the feedback loop
interrupts the natural dynamics of the reservoir. While, in electronic and photonic feedback
loops, such interference with the operation of the reservoir has been compensated using
sophisticated experimental approaches [50], a water wave feedback loop can be created
naturally without introducing any delay [143,147].

Furthermore, the potential ability of water-wave-based RC systems to incorporate nat-
ural feedback enables them to be optimised and combined with more advanced algorithms,
such as the nonlinear vector autoregression (NVAR) machine [16,27]. In Ref. [143], it has
been shown that a hybrid water-based RC-NVAR system requires a shorter training time
compared with standard ESN, without compromising the accuracy of forecasts.

Speaking broadly, although the original ESN algorithm was outperformed by deep
learning techniques, which have demonstrated high efficiency in complex tasks such as
language and speech processing [30], ESN and LSM and their physical hardware imple-
mentations remain highly competitive in many areas. For example, since physical RC
systems can naturally approximate complex dynamical systems, they may provide a
unified analogue-computer-like modelling framework for the simulation, control and opti-
misation of time-critical operations in complex multi-component and multi-scaled electric
networks [148–151]. RC systems in general and physical RC systems in particular have
also been efficient in modelling highly nonlinear processes often encountered in energy
research [62–69,152] and the predictive control of industrial processes [153]. However, as
mentioned previously, RC systems can be readily hybridised with deep learning methods,
resulting in a combined approach that benefits from the strengths of deep learning, of ESN
and LSM and of the hardware implementation of these algorithms [30].



Energies 2023, 16, 5366 21 of 26

As a concluding remark, it is worth noting that, as with any machine learning tech-
nique, analogue and physical reservoir computers are not a "silver bullet" and they should
be used judiciously depending on the specific goals. As a metaphor, consider an electric
screwdriver set that can be used around the house in many life situations. However, this
tool is not universal and cannot fully replace, for instance, precision screwdrivers and long-
reach screwdrivers. In light of this comparison, the field of physical reservoir computers
is rapidly expanding and commercial products implementing them are already available,
carrying out tasks that cannot be readily performed by digital computers.
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