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Abstract: The wave energy sector has not reached a sufficient level of maturity for commercial
competitiveness, thus requiring further efforts towards optimizing existing technologies and making
wave energy a viable alternative to bolster energy mixes. Usually, these efforts are supported
by physical and numerical modelling of complex physical phenomena, which require extensive
resources and time to obtain reliable, yet limited results. To complement these approaches, artificial-
intelligence-based techniques (AI) are gaining increasing interest, given their computational speed
and capability of searching large solution spaces and/or identifying key study patterns. Under
this scope, this paper presents a comprehensive review on the use of computational systems and
AI-based techniques to wave climate and energy resource studies. The paper reviews different
optimization methods, analyses their application to extreme events and examines their use in wave
propagation and forecasting, which are pivotal towards ensuring survivability and assessing the local
wave operational conditions, respectively. The use of AI has shown promising results in improving
the efficiency, accuracy and reliability of wave predictions and can enable a more thorough and
automated sweep of alternative design solutions, within a more reasonable timeframe and at a lower
computational cost. However, the particularities of each case study still limit generalizations, although
some application patterns have been identified—such as the frequent use of neural networks.

Keywords: renewable wave energy; artificial intelligence; metaheuristic algorithms; neural networks;
evolutionary algorithms; wave conditions prediction

1. Introduction

Improving energy conversion technologies has been a key objective towards ensuring
a reliable and sustainable energy supply to human activities. After decades of investment
in fossil-fuel-based systems, investors and researchers set their sights on renewable energy
sources (RES)—mainly wind, solar and hydropower—to promote a greater energy mix
and an energy transition towards more environmentally friendly solutions. This promoted
long-term research, learning curves and investments, which resulted in increasingly lower
costs of RES [1] at greater scales, deployed capacity, reliability and efficiency [2]. RES have
become economically competitive with fossil fuels, but the latter still retain a global supply
market share of about 80.9% [3]. Thus, further efforts must be put into developing and
deploying RES.

At sea, the scenario is different. Aside from the growing energy production injected
into mainland electrical grids, the advent of promising markets, from aquaculture [4] to de-
salination [5], as well as the necessity of green transition within seaports [6] have prompted
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a significant penetration of RES, particularly solar [7] and offshore wind [8]. They also en-
able a greater degree of autonomy at sea for floating systems, such as buoys. Even so, there
may be more suitable energy alternatives within the ocean environment. In particular, wave
energy has received significant attention, given its high energy density, forecasting accuracy
and availability [9,10]. Currently, hundreds of different concepts are being developed, but
this has not ensured a design convergence or a sufficient degree of maturity for the wave
energy sector to be commercially competitive [11,12]. One of the major issues derives from
the optimization problem of wave energy converters (WECs). Several variables are required
for a suitable development, from structural design to Power Take-Off (PTO) configuration,
to which adds nonlinear wave–structure interactions. Standard practices towards improv-
ing the WECs include physical [13] and numerical modelling [14] campaigns. Depending
on their goals and methods, they can be demanding in both time (days to weeks), effort
(learning curves and data processing) and logistics (model configuration, construction and
setup), whilst not ensuring a sufficiently optimized solution towards commercial viability.
Complementary algorithmic tools can enable a more thorough and automated sweep of
alternative design solutions, at much lower computational effort and time. In fact, this has
already been demonstrated for other energy technologies, as highlighted in [15,16].

With the increasing capabilities of computational systems, reliable algorithms can be
applied to a wide variety of case studies, including those found within the wave energy
sector. Some of the most advanced tools are supported by Big Data and employ artifi-
cial intelligence (AI) [17]. In this regard, a summarized taxonomy can be found in [18],
which also features a review of WEC park layout optimization supported by AI techniques.
An extended classification is provided in Figure 1, adapted to the main algorithms dis-
cussed in this paper. A distinction is made between “indirect” and “direct” optimization
algorithms. While the former are more oriented towards wave propagation, body mo-
tion prediction and/or gap filling (e.g., required for resource matrices and time series
completion) [19], the latter tend to more directly solve optimization problems, from WEC
design to parameter minimization/maximization. Indirect algorithms are, furthermore,
designated upon a necessity of data interpolation for pattern identification, based on re-
gression and classification approaches. Specific examples can be found in Artificial Neural
Networks (ANNs), Support Vector Machines (SVM) and Random Forests (RF). The direct
algorithms are considered when an optimization problem within a set search space exists,
aiming at minimizing/maximizing a concrete objective function [20]. Ideally, the global
optimal solution can be found over existing local minima/maxima, thus avoiding the
vanishing gradient problem found in other techniques (e.g., ANNs [21]). The most com-
mon algorithms are (or operate with) metaheuristic and attempt to mimic certain natural
patterns, such as evolution—Evolutionary Algorithms (EA)—population and individual
behaviour—Swarm Intelligence (SI)—and nonbinary bounded human logic—Fuzzy Logic
(FL). Complementary tools such as Principal Components Analysis (PCA), Model Pre-
dictive Control, Harmony Search Algorithm, Covariance Matrix Adaptation Evolution
Strategy and regression techniques are also addressed.

The potential applications of such algorithms to wave energy development are im-
mense, and not limited to electricity generation:

• A recent study by Mares-Nasarre et al. [22] resorted to an explicit ANN-derived
formula for estimating overtopping layer thickness and overtopping flow velocity
on rubble-mound breakwaters, subjected to depth-limited wave breaking conditions.
A total of 235 2D experimental tests were performed to obtain data for developing
the ANN-based formulae, from which it was found that the Iribarren number and
dimensionless crest freeboard were the key variables;

• Schmitt et al. [23] configured a numerical wave tank within OpenFOAM through
the application of ANNs, mainly to approximately “solve” the Navier-Stokes equa-
tions and obtain nonlinear tank transfer functions required for the wavemaker. In
total, 800 out of 1000 samples of wavemaker input were applied to train the ANN
(80-20 training-validation ratio), during which a mean square error (MSE) was used
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as the loss function. The ANN was composed of two hidden layers with 310 nodes,
to which were added the input and output layers. The hyperbolic tangent (tanh) and
linear activation functions (AFs) were used for 350 training epochs. Details on the
software (Python) and hardware can be found in [23]. As a result, a fast and reliable
prediction of the desired waves, which were measured via a numerical wave gauge,
was obtained;

• Guo et al. [24,25] employed a long short-term memory (LSTM)-based machine learning
model, a type of recurrent neural network (RNN), to predict future surge and heave
motions of a semi-submersible. A step-decay algorithm was used for the learning
rate schedule, set at 0.01 for the first 10 epochs, followed by a decayed rate of 0.1 for
every 50 epochs (200 maximum). Two LSTM layers with 200 output layer neurons
were configured, which incorporated five fully connected blocks of 80 neurons each.
The tanh was the AF, while the Adaptive Moment Estimation (Adam) optimizer was
selected. A high degree of correspondence was obtained (~90%), and it was found
that, for any single point prediction, the outputs from the LSTM model followed
a Gaussian distribution;

• Sirigu et al. [26] resorted to a genetic algorithm (GA) combined with a boundary
element method code to perform a holistic optimization of the PeWEC device [27].
Several bounded study variables were considered for optimization, including the
hull (6), the PTO (2) and the pendulum component (5). As objectives, three fitness
functions were defined—minimize capital expenditures over productivity, maximize
the capture width ratio (CWR) and mitigate manufacturing/weight costs—resulting
in a multi-objective Pareto optimal set. GA convergence was achieved after less than
120 generations. The results point to significant, yet diverging gains, in the sense
that beneficial design alterations that increase the CWR, for instance, may cause
a detrimental cost increment (to which minimization priority is given);

• A more concrete application can be found in the recently established partnership
between EMEC and H2GO Power, HyAI [28], where offshore renewables (including
wave energy) are deployed towards electricity generation for hydrogen production.
To optimize the operations, an AI software-controlled hydrogen storage technology is
employed for data-driven asset management decisions in real time.
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The aforementioned studies condense a small portion of existing research on the
subject of AI-supported wave energy sector development, which constitutes the core of this
paper. As such, one of its main goals is to provide a thorough overview of recent case studies
and summarize the main findings, methodologies and algorithms employed by researchers.
The paper ought to serve as a guideline and database for other researchers to follow in
their own works, as well as highlight the key advantages and challenges of employing AI
within the wave energy sector. To avoid overlapping with other reviews in the literature,
namely in terms of WEC design and control and wave farm layout optimization, the
selected case studies are mainly related to ocean/wave conditions—survivability, resource,
forecasting and propagation. These are pivotal towards reliable estimates of available
wave energy resource, predictions for WEC control purposes and planning of survivability
strategies and designs, among others. The paper follows this structure: Section 2 provides
a background summary of the most commonly applied algorithms within the wave energy
sector; Section 3 lists and summarizes the latest applications of AI-based algorithms to
wave climate; and Section 4 synthesizes the principal remarks of the paper, based on the
main algorithmic application patterns found in the literature.

2. Algorithm Overview
2.1. Indirect Algorithms
2.1.1. Neural Networks

The underlying principle behind ANNs is the human brain, namely the neurons
and their components, Figure 2. Mimicking, to some extent, the way that information is
transmitted from one neuron to the next, ANNs can identify patterns, classify, approximate
and interpolate outputs (output layer) based on a set of input data (input layer), so long as it
is adequately “trained” (e.g., avoids overfitting). The fundamental architecture incorporates,
aside from the input and output layers, one or more “hidden” intermediate layers where
the information is processed—a black-box model. The input data, or “nodes”, are passed
through one layer made up of “neurons”. For one of the most common subtypes of neural
networks, ANNs, two hyperparameters must be defined for each neuron—a weight and
a bias—either randomly or via an optimization technique. A net input is obtained after the
original input data are multiplied by the neuron’s weight and modified by its bias. This net
input is then passed through an AF [29]—rectified linear unit (ReLU), tanh, sigmoid and
Softmax, among others—which defines whether the neuron is active or not, and to what
degree. Depending on the network architecture, the resulting data are carried directly to
the output layer (single hidden layer) or indirectly, first passing through the neurons of
another hidden layer and serving as input data for them (multilayer) [30].
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In some cases, the neurons of one hidden layer can be fully connected to neurons
from another layer and incorporate nonlinear AFs. This is designated as the Multilayer
Perceptron (MLP), which enables identification of nonlinear patterns between input and
output data. Moreover, the MLP is a class of ANNs [31] which requires two key operating
processes—feedforward and backpropagation. The former has been summarized in the
previous paragraph, while the latter implies the calculation of a loss function. This step
is required to check the quality of the obtained results versus the expected ones. Should
the difference surpass a specified limit, an iterative process occurs in which the loss is
backpropagated through the hidden layers to update the hyperparameters with more
suitable values. The adjustment can be improved through gradient descent algorithms,
although control of vanishing gradient should be exercised. The iterative process of
feedforward and backpropagation occurs over numerous iterations until the stopping
condition is met (e.g., loss below a certain threshold). This process is first employed for
training purposes, in which a portion of the input data (e.g., 80%) is used to train the ANN
towards finding the desired outputs, while the remaining portion is used for validating
it. The training can be tracked through its learning rate and loss function evolution over
the iterations/epochs. The learning processes are commonly either supervised (input
and output are given), unsupervised (self-organize to reach the output), semi-supervised
(partially labelled data) or reinforced (learning based on reward mechanism).

Another subtype of neural networks is the convolutional neural networks (CNNs) [32],
in which the weight matrices are created from convolution with filter masks, mainly for
pattern recognition across space. The CNNs’ hidden layers are, in fact, convolutional layers
where the input is taken and convolved, for each neuron, over a matrix filter to produce the
corresponding output, which is then passed on to the next layer. As such, it is pivotal to
define the number of filters and the values found within the inherent matrix. In the field
of wave energy, there is equal interest in finding patterns across time, such as wave climate
hindcasting and forecasting. A suitable tool can be found in the form of RNNs [33], in which
the connection scheme enables a “memory” effect: the input of a hidden layer derives from
the preceding layer’s output and its own output from the previous time-step. This internal
information flow—input, weight and output vectors—creates a loop between subsequent
time-steps and is designated as “hidden state”, which is also regulated by AFs. Therefore,
they represent the outputs of the hidden layers and are subject to update for each time-step,
depending on the previous time-step’s hidden state and the current input. This summarizes
the standard principles of RNNs, but modified variants exist, namely to counter the vanishing
gradient problem and consequent short-term memory issues. Among them are the LSTM [34]
and gated recurrent units (GRUs) [35], which apply forget/input/output gates alongside
a cell state and update/reset gates with a hidden state, respectively, to regulate the flow
of information. In other words, these mechanisms control which information should be
stored—and passed on to the following step or state—or forgotten.

2.1.2. Random Forests

A different indirect method applied in the wave energy field of research is related to
ensembles of decision trees. Although standard decision trees permit an intuitive, straight-
forward and fast classification process, they are prone to accuracy and generalization issues
for variable datasets, thus demonstrating relatively low adaptability. Complexity can also
cause overfitting of the data. To circumvent these problems, the RF approach is applied,
where a multitude of random decision trees is employed [36,37], Figure 3. In essence,
each decision tree is randomly constructed in a subspace of the feature space using the
entire training dataset. For training purposes, the process of bootstrapping aggregating, or
bagging, is used, in which training subsets are initially randomly sampled from the original
dataset, with replacement. A “forest” is generated from the different trees originated out
of each subset, which can be used for validation purposes—bootstrapping. For instance,
validation data can be passed through this ensemble of decision trees, resulting in different
predictions that can be combined—aggregation. A final selection of the most adequate out-
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come is performed through a discriminant function, which can operate through prediction
averaging (regression) or “majority vote” (classification), depending on the nature of the
case study. Consequently, the trained model is less sensitive to variance in the original
dataset whilst retaining significant accuracy, as different datasets are applied for each tree
and the correlation between different trees is controlled, ensuring greater solution diversity.
Even so, this comes at the expense of harder interpretation, as the bagging process is more
intricate than the standalone decision tree configuration. Lastly, a recent study addresses
the convergence rate of different random forest variants, for a classification problem [38],
from which similar RF convergence rates were obtained for multi-class learning and binary
classification, albeit with alternative constants.
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2.1.3. Support Vector Machines

Although additional techniques exist, a third indirect algorithm that is commonly
applied in studies on wave conditions will be addressed, here, to close this subsection: the
SVM approach. Following on the schematic in Figure 4, one starts with an nth dimensional
dataset that can be either categorized, regressed or swept for outliers. Assuming the former
as an example, it is pivotal to ensure that an adequate classification is obtained, which
promotes generalization for new datasets and their accurate labelling [39]. As such, one
must accurately define a separation threshold between the different data types. This also
implies setting a margin between reference points from each data type. In linear problems,
such a margin can fully restrict potential classification errors from data outliers—hard
margin—or enable some degree of error—soft margin. The former does not allow for
training errors but can be very sensitive to outliers of one data type in the vicinity of another
data type, while the opposite is found for the latter. Soft margin also demonstrates higher
generalization and can be adjusted through slack variables ξ. In fact, a hard margin can be
perceived as a soft margin with such variables set to 0. To control the complexity–training
accuracy trade-off and mitigate overfitting risks, a penalty factor is also employed. These
steps enable the definition of n − 1th dimension support vector classifiers, or hyperplanes,
separating the data types. An optimal hyperplane ought to maximize the margin, and in
SVM it can be found at a higher data dimension by kernel functions, including for nonlinear
problems. In reality, the relationships between the data types does not require an actual
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transformation of said data into higher dimensions, but rather a projection of them onto
which the kernels perform the relationship assessments, at said higher dimensions—kernel
trick—thus avoiding the need for computing the data transformations. Different kernels
can be selected, but the most commonly employed and nonlinear are the polynomial, the
Gaussian radial basis function and the tanh/sigmoid [40].
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SVMs have demonstrated superb capabilities with regard to generalization and classi-
fication error mitigation (reliable results upon cross-validation). However, large datasets
can lead to significant computational requirements, while multiple binary classification
problems present a very complex challenge that is commonly addressed through one-
against-all or one-against-rest approaches. Furthermore, imbalanced datasets can lead to
suboptimal separation hyperplanes, causing lower accuracy and high bias towards minor-
ity classes. Some solutions have been proposed, including a combined application with
“direct” algorithms, such as GAs [41] and FL [42], to balance out the datasets and optimize
the SVM parameters. In fact, these and other “direct” algorithms are the subject of the next
subsection of this paper. An in-depth assessment of SVM fundamentals, implementations,
advantages and disadvantages can be found in [40].

2.2. Direct Algorithms
2.2.1. Evolutionary Algorithms

As a follow-up to the previous subsection, the direct algorithms are hereafter de-
scribed. The underlying premises tend to mimic a certain natural phenomenon, depending
on the selected technique. The first to be discussed are based on evolution and natural
selection—Evolutionary Algorithms. Distinct techniques exist, such as Genetic Program-
ming, Evolutionary Programming, Evolution Strategies, Differential Evolution and Genetic
Algorithms [18]. However, the key premises remain [43]:

• Generate an initial population of individuals/candidate solutions found within the
search space;

• Iteratively perform three tasks—evaluate an objective/fitness function for each indi-
vidual, select the most “fit” individuals and apply variation operators to them in order
to create a new generation of individuals towards an optimal solution;

• Execute the iterative process over various generations until the stopping criterion is met.



Energies 2023, 16, 4660 8 of 28

One of the most commonly applied EA tools are Genetic Algorithms [44], Figure 5.
GAs start with an initial population of individuals (usually random) which is modified over
the course of several generations to promote the existence of “fitter” individuals, capable
of providing a suitable solution for the optimization problem. Each individual has a set
of parameters, or “genes”, that categorize it as a potential problem solution. Even so, it is
pertinent to promote an adequate level of population diversity for a better application of
the GA algorithm (accuracy versus convergence). The selection or exclusion of individuals
is performed by their scores with regard to a fitness function, which is specified by the
user. This function can be discontinuous, stochastic, (un)bounded, non-differentiable or
nonlinear. For the creation of a new generation, three main tasks are required:

• Selection—as mentioned previously, the individuals with the best fitness function
scores, or “parents”, are selected for producing the next generation, or “children”. To
that end, fitness scaling can be applied, initially, so that an adequate comparison can be
established. As a follow-up, a selection function is used to determine which individuals
will be the parents of the next generation. Distinct rules can be applied, such as
stochastic uniform, remainder, roulette or tournament. This is usually conducted with
a ranking system (highest sorted fitness scores), but a top system (a fixed number
of selected individuals with equally set scores) can be employed as an alternative.
It is worth noting that the top system, albeit more straightforward in selecting fit
individuals, promotes less diversity than the ranking system;

• Reproduction—the selected parent individuals are conjugated to “reproduce” children
of the next generation, analogous to the biological reproduction process found in
nature. Even so, it may be of interest to keep some of the parents with the best fitness
scores for the following generation, or “elite children”. They should be carefully
defined, though, as an excessive amount may lead to unwanted dominance over
the remaining population, thus reducing the algorithm’s effectiveness. To that end,
a crossover fraction is established, whose value defines the percentage of newly created
individuals, aside from the elite children, and depends on the case study characteristics.
Reference fractions will be provided along this paper;

• Mutation and crossover—two key processes associated with reproduction, mutation
and crossover promote the creation of non-elite children solutions distinguishable
from their parents. Crossover children result from direct “reproduction” between
two parents, where the respective “genes” are combined into a new configuration (e.g.,
a new vector entry of parameters). Numerous options exist for performing crossover,
such as single-point or two-point swapping of vector entries at a given index(es), or
even by applying a heuristic or scattered approach, among others. As for mutation, it is
a process that also mimics the natural mutations that occur in genes. In GAs, mutation
is applied to one individual in each pair of parents. A random change in the parent’s
“genes” occurs (e.g., randomly changing a value in the vector entry of parameters).
The mutation can be controlled through an uniform, Gaussian or adaptable function,
among others, and is transmitted to the children. While mutation promotes diversity
within the population, prompting the existence of potentially “fitter” individuals,
crossover ensures the transmission and recombination of the best “genes” from the
parent generation to the children generation.

The aforementioned tasks are repeated for each generation until a termination cri-
terion is met, thus providing an optimized solution to the studied problem. While EAs
provide a varied set of techniques to handle numerous optimization problems, which are
constantly being upgraded, they are not without problems. A straightforward issue falls
on the selection of not only the technique, but also the adequate hyperparameters and
settings (e.g., selection, reproduction and mutation rules). Premature convergence towards
suboptimal solutions can also occur, and finding an optimal trade-off between exploitation
and exploration properties is equally challenging [46]. Even so, they have demonstrated
their capabilities when handling WEC-related problems, such as parameter optimization
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(shape and damping) [47,48] or wave farm layout [49,50]. They can be equally applied to
problems related with wave climate and resource, as addressed in this paper.
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2.2.2. Swarm Intelligence

Whereas EAs focus on reproducing the biological processes of evolution, gene trans-
mission and natural selection, SI algorithms attempt to mimic the collective behaviour
of a self-organized population. In detail, the original proposition revolves around artifi-
cial life systems—boids—which are defined by a position and velocity vectors and can
simulate flocking behaviour [51]. By applying a set of rules to these simplistic artificial
lifeforms—separation (direct contact/collision avoidance), alignment (movement towards
the average direction of local units) and cohesion (movement towards the centre of gravity
of local units)—higher-level complex behaviours emerge, which can be tuned to solve
optimization problems. Once again, distinct metaheuristic algorithms exist, such as Ant
Colonies, Artificial Bee Colonies, Glowworm Swarming or Particle Swarm Optimization
(PSO), among others [18]. Within the wave energy field of research, the latter is more
commonly applied to solve optimization problems. PSO was originally conceived in the
late 1990s [52,53], but it has seen significant application and improvement since then [54].
In terms of implementation and algorithm convergence, the following steps are required,
Figure 6:

• Initialize a random set of swarm particles within the search space, each with an inherent
initial position x0 and velocity v0 vectors;

• Define and compute a fitness function to evaluate each particle, at its current position.
This initial evaluation is to be repeated iteratively afterwards, as each particle’s new
position should be assessed and compared, in terms of fitness, with its best previous
position. Therefore, the best position is updated only if the current position yields
a better fitness than the previous best;

• At each time-step t, update the position xt and velocity vt vectors of each particle. Its
new position results from the previous position xt−1 adjusted by a new velocity vector.
Aside from the previous velocity vt−1—inertial term—this vector considers the parti-
cle’s best fitness history Pb (and inherent position and velocity)—cognitive/personal
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term—as well as the best fitness/position/velocity found within the swarm gb—social
term. It is worth noting that each of these three terms is weighted by a hyperparameter,
and tuning them presents a pivotal challenge in each case study;

• Evaluate the best global fitness from the personal best of each particle in the swarm.
This should be executed in conjunction with the previous step, so that the particles’
new positions can be updated. The global best should then be assessed through
a termination criterion: should the result meet the termination target, then the algo-
rithm stops, and the best solution is provided. Otherwise, the algorithm carries on
with the previous steps, iteratively, until the termination criterion is met.
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Although relatively simple to configure and execute, PSO can exhibit some application
difficulties, such as setting up the swarm size or defining the number of iterations required
towards convergence, as they affect the model’s accuracy and computational effort. It can
be equally challenging to define an adequate set of hyperparameters, although reference
values exist. Recommendations on parameter tuning for both evolutionary and swarm-
based algorithms, including PSO, can be found in [55].

2.2.3. Fuzzy Logic

FL [56] addresses problems where the logical reasoning is nonbinary, Figure 7. In other
words, it is not necessarily a “true” or “false” statement definition (e.g., integer value of
1 or 0), but rather a degree of truth that ranges in between (e.g., between 0 and 1)—partial
truth. This follows on human interpretation, where the concept of vagueness overrules
classical logic. From a practical perspective, FL takes in the input variables from a case
study and, in general, executes the following tasks [57,58]:

• Fuzzification—the input data, also designated as “crisp” inputs, are introduced into
the algorithm and subjected to a fuzzification procedure that converts it into fuzzy
datasets/variables. This is achieved through implementing membership functions,
from which a membership degree can be attributed to the input. Such a degree is
usually bounded by an upper and lower limit (e.g., 0 and 1), but it can be any value
in between (e.g., 0 < degree < 1) and represents the degree of partial truth inherent
to FL. The degree of a given input is a combination of each membership value that
intercepts, vertically, one or more user-defined membership functions, which can be
triangular, gaussian, trapezoidal or sigmoid in shape, among others;
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• Fuzzy inference with operators—following on the fuzzification process, the fuzzy
variables are passed through a set of user-defined rules (e.g., IF-THEN) controlled by
logical operators. The original Boolean operators, such as AND, OR and NOT, are
substituted with corresponding fuzzy operators: Min(input), Max(input) and 1-Input
(note that the input, here, is the fuzzy variables). This allows for the output fuzzy
variables to be inferred from the input fuzzy variables, as the former are required for
the next step;

• Defuzzification—the inferred fuzzy variables are used, here, to obtain the final output
crisp values. Each fuzzy variable is introduced into a new set of user-defined member-
ship functions—trapezoidal, triangular or other shapes. There are numerous methods
to apply defuzzification, such as Bisector, Smallest/Middle/Largest of Maximum or
Centroid, although the latter is more commonly used. They “fill up” each membership
function, based on the degree of membership to each, and one of the defuzzification
methods is applied to acquire the final crisp values.
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In the wave energy field of research, FL can be employed, for instance, towards
configuring control systems for optimal WEC operation [59]. However, it can also be used
towards predicting wave parameters [60], of greater interest to the scope of this paper, or
WEC design and deployment decision-making [61], as well as being employed alongside
metaheuristic-driven optimization algorithms [62]. As such, although regarded, in this
paper, as a “direct algorithm”, it can be applied in indirect optimization problems.

3. Applications of AI-Based Algorithms to Wave Energy Studies
3.1. Introduction

The following subsections summarize reference applications of AI-based algorithms
to case studies in which wave propagation modelling and assessment of wave conditions
were required. Complementarily, Cuadra et al. [17] conducted an extensive study about AI
for wave energy, including some topics discussed here. In detail, the present review focused
on post-2016 research, which, based on previous knowledge and searches by keywords in
journal repositories with a snowballing technique, comprises more than 60 different papers.
Although most of the studies resorted to indirect algorithms (mainly ANNs, Figure 8),
as defined previously, several cases in which direct algorithms are employed will also be
presented and discussed, as well as complementary modelling techniques.
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3.2. Neural Networks Applied to Wave Propagation, Prediction and Energy Resource Estimation

As seen previously, one of the most often employed group of algorithms is neural
networks, particularly ANNs. Even so, in several studies, more than one AI algorithm
was applied, but the following subsections partition will conserve the distribution patterns
found in Figure 8. Furthermore, many studies address topics related to estimating the
available wave energy resource, as well as forecasting and gap-filling data related to wave
climates, under operational conditions. This is pivotal towards WEC design optimization,
in order to promote resonance occurrence, as well as estimating energy cost (e.g., Levelized
Cost of Energy) and efficiency (e.g., Capacity Factor and CWR) metrics [63]. This subject is
the core of the present subsection.

Looking at specific studies, Abhigna et al. [64] analysed the prediction of significant
wave height (Hs) using various ANN algorithms. The data were collected from a moored
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buoy in the Bay of Bengal for a two-year period, with the first year used for training and
the second year used for prediction. According to the findings, the RNN that used the
Bayesian Regularization algorithm demonstrated superior performance, as evidenced by
a high correlation coefficient and a low MSE. However, the overall performance of the
neural network still needs to be improved for more accurate predictions. Berbić et al. [65]
applied ANN and SVM for forecasting Hs in near real time for two locations in Australia.
The algorithms’ forecasting ability was tested for different time periods, ranging from
0.5 to 5.5 h. The study found that using a smaller number of input attributes (e.g., three or
six Hs values) resulted in forecasts that are more accurate. They suggest that both ANNs
and SVMs can be useful, with ANNs being suitable for shorter forecasting periods and
SVMs for longer periods.

Mahmoodi et al. [66] used three different data mining methods (FFNN, CFNN and
GEP) to estimate wave energy flux using meteorological data (wind speed, air and sea
temperature) as input. The accuracy of the methods was evaluated using performance
evaluation criteria (root mean square error (RMSE) and regression coefficient), and it was
found that the FFNN method was the best in terms of accuracy. The study also found
that there is a good correlation between wave energy flux and meteorological parameters,
and that it is possible to estimate wave energy flux in areas without wave records. In
a second study, Mahmoodi et al. [67] used machine learning methods, such as nonlin-
ear autoregressive (AR) NNs, group method of data handling (GMDH) networks and
LSTM networks, for forecasting the wave excitation force, which is the force exerted on
a two-body heaving point absorber due to wave motion, for this study. The authors com-
pare the performances using mean absolute error (MAE), RMSE, correlation coefficient and
scatter index. They found that the nonlinear AR-NN generally provided the most accurate
and reliable results for short-term wave elevation and wave excitation force forecasting,
whereas the GMDH network performed well for longer time horizons. The LSTM network,
on the other hand, gave mixed results depending on the dataset.

Guijo-Rubio et al. [68] analysed the performance of four different types of multi-task
evolutionary artificial neural networks (MTEANNs) in predicting marine energy flux. The
input data were from three buoys in the Gulf of Alaska and seven variables from reanalysis
data. The MTEANNs were tested at different time prediction horizons (6 h, 12 h, 24 h
and 48 h). The combination of sigmoidal units in the hidden layer with linear units in the
output layer was found to perform best among the four MTEANN models tested and more
traditional approaches, such as Support Vector Regression (SVR) and Extreme Learning
Machine (ELM). Gómez-Orellana et al. [21] used the MTEANN to simultaneously predict
short-term Hs and wave energy flux in two different coastal zones in the United States: the
Gulf of Alaska and the southwest coast of the United States. The model was trained with
data from three buoys in each zone and compared against standalone MTEANN models
trained for each buoy and against other popular regression techniques. The results showed
that the MTEANN model using a zonal strategy (MTEANNZ) had the best performance in
terms of MAE and standard error of prediction, whereas other linear models had lower
complexity. The authors also found that the MTEANNZ model was able to capture the
nonlinear behaviour of the wave data and had good generalization capabilities.

Sadeghifar et al. [69] used RNNs called nonlinear AR exogenous inputs to predict
wave height H at various time intervals. The use of RNNs with different training functions
showed improvement in the prediction of wave height, with a high correlation coefficient
of 0.96 for 3-h predictions and 0.87 for 12-h predictions. The model was found to be
more accurate in predicting higher waves and was demonstrated to be useful in various
coastal engineering and oceanography applications. Kumar et al. [70,71] presented machine
learning approaches for predicting daily H at various locations around the world. In [71],
the Minimal Resource Allocation Network and Growing and Pruning Radial Basis Function
algorithms were found to outperform ELM and SVR in predicting daily wave heights at
13 stations in the Gulf of Mexico, Korean region and UK region, requiring relatively few
network resources. In [70], the authors presented the ELM Ensemble approach, which
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involves using multiple ELMs with different input parameter initializations. It was found
to outperform other machine learning approaches such as SVR, ELM and Ordered Subsets
ELM in predicting daily H. The approach was tested on wave data and atmospheric
conditions from 10 stations in the Gulf of Mexico, Brazil and Korean region.

Wang et al. [72] presented a model based on deep neural networks, or DNNs, to
calculate the mean wave period T from altimeter observations and signal parameters.
The model is trained using data from the National Data Buoy Center (NDBC) buoys and
observations from the Jason-3 satellite. The model included Hs, Hs standard deviation and
the Hs gradient as input variables to account for the dependency of the wave period on these
parameters. The DNN model was found to provide accurate results with a RMSE of 0.57 s
and a scatter index of 9.7%. The model was also found to provide good agreement with
wave reanalysis data from the WAVERYS product, with a lower bias compared to buoys in
some cases. The model was also tested on data from other altimetry missions, including
SARAL, Jason-2 and HY2B, and found to have promising results. However, the limitations
include difficulty in accurately predicting the mean T under crossing sea-states, where
the Hs gradient may be limited due to opposite gradients of different wave systems. The
authors suggest that using alternative data sources such as SAR directional wave spectra
or the SWIM wave spectra from CFOSAT may help to improve the accuracy of the model
in these cases. They also recommend using the empirical mode decomposition (EMD)
technique to reduce noise in the Hs data and improve the accuracy of the Hs gradient.

Choi et al. [73] proposed a method for real-time estimation of Hs from raw ocean
images using ANNs. Four CNN models were investigated for ocean image processing, and
transfer learning with various feature extractors was applied to improve performance. A bi-
directional ConvLSTM-based regression model was also proposed to estimate real-valued
Hs from sequential ocean images. The proposed method showed favourable performance
in terms of MAE and mean absolute percentage error (MAPE). However, the method
cannot estimate other wave conditions such as direction and period. Pirhooshyaran and
Snyder [74] focused on using ANN, specifically sequence-to-sequence, and RNN, such as
LSTM, for the reconstruction, feature selection, and multivariate, multistep forecasting of
ocean wave characteristics based on real data from National Oceanic and Atmospheric
Administration buoys around the globe. The performance of various optimization algo-
rithms was tested on the introduced networks, with AMSGrad and Adam showing the most
promising results. The epoch-scheduled training concept was introduced as a method to im-
prove the consistency of the networks while avoiding overfitting. The proposed networks
were found to perform better than existing techniques in reconstructing wave features and
in multivariate forecasting. In addition, the elastic net concept was incorporated into the
networks for feature selection, and it is found that deeper recurrent structures are more
effective for this purpose than single-layered ones. In [75], they used sequence-to-sequence
and single-layered LSTM for reconstructing and forecasting ocean wave characteristics,
outperforming other optimization algorithms and traditional methods in both tasks.

Vieira et al. [76] proposed a methodology for filling gaps in acoustic Doppler current
profiler measurements off the coast of Dubai, United Arab Emirates, by combining the
SWAN numerical wave model with ANNs. The performance was compared to a wave
model implemented to estimate wave conditions at the acoustic Doppler’s location, using
error metrics such as bias, RMSE, scatter index and correlation coefficient. The ANN
method had slightly better statistical performance compared to the wave model, with no
significant difference between the two used ANNs (one with just wave data and the other
with wave and wind data). This suggested that wind was not a compulsory parameter
for wave transformation and propagation, in this specific case. James et al. [77] used MLP
and SVM to predict Hs and peak wave period, Tp, as an efficient alternative to SWAN. The
MLP model required three hidden layers with 20 nodes each and used the ReLU AF to map
741 inputs to 3104 Hs outputs. The SVM was used to classify Tp. These models were found
to be over 4000 times faster than the physics-driven SWAN model whilst producing simi-
larly accurate results for predicting wave conditions in a specific domain. Sanchéz et al. [78]
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characterized the wave resource at a specific site in Brazil through in situ measurement and
modeled it using ANNs. The authors used an Acoustic Doppler Current Profiler to collect
wave data at the site and used two hindcasts, 2.5 years and 23 years, to train the ANN.
The model’s performance was then compared to that of the Nearshore Wave Prediction
System (NWPS), which combines multiple numerical models. The authors found that the
ANN trained with the 23 years’ hindcast had satisfactory performance and was better than
the NWPS in terms of relative bias, but worse in terms of scatter index. In contrast, the
ANN trained with the 2.5 years’ worth of hindcast data had a significantly higher error,
suggesting it may be more suitable for filling gaps in datasets than for resource assessment.

Lastly, Penalba et al. [79] developed a data-driven approach for long-term forecasting
of metocean data (such as wave height and wind speed) for the design of marine renewable
energy systems in the Bay of Biscay. The authors used three machine learning models (RF,
SVR and ANNs) to predict metocean data based on past data obtained from the SIMAR
ensemble. The models were evaluated using various statistical measures, including root
mean square deviation, standard deviation and correlation coefficient. The authors found
that all the models and input combinations performed similarly and that the long-term
trend did not have a significant impact on the forecasting of long-term metocean data.
However, the authors suggested that an alternative classification problem may have the
potential to improve the prediction of long-term metocean data. The authors emphasized
the importance of long-term forecasting for the selection of deployment sites, feasibility
studies and system design in the marine renewable energy industry.

A summary of these and other literature studies where ANN use is predominant is
shown in Table 1.

Table 1. Case studies summary—neural networks for operational conditions.

Ref. Input Parameters Output Parameter Method Algorithm

[64] Hs, Wind Speed Ws, Wind Direction
Wd, Wind Gust Wg

Hs NN ANN, (LM, CG, BR)

[65] Hs, Wsx and Wsy Hs NN, SVM ANN, SVM

[66] Ws, Hs, Atmospheric pressure (Atm),
Air Pressure (Pair), Water Temperature Wave Power NN, EA CFNN + GEP

[67] Wave spectra Hs, Excitation Force NN, Regression NAR, GMDH and
LSTM

[80] Hs, Ws Hs NN, SVM, Regression AIRS, ANN, BN, SVR,
M5P, RST

[69] Hs (3-6-12-24 h average) Hs NN RNN (NARX)

[70]
Ws, Month, Air to sea temperature

difference, Water Depth d, Hs (6-12-18
h), Atm

Hs NN, SVM ELM, SVR

[71]
Lat/long, Hs, Month, Air to sea

temperature difference, d, Hs (6-12-18
h), Atm

Hs NN

MRAN and GAP-RBF
(MRAN) + Growing

and Pruning RBF
network

[81] Ws, Hs, Lagoon length and depth,
Reef top width and depth Hs NN + Numerical Bayesian belief

network, SWAN

[77]
Hs (from SWAN, which used Hs, Tp),

Wave direction wd, Wd, Ws, Ocean
currents

Hs, Tp NN, SVM, Numerical ANN (MLP) and SVM
compared with SWAN

[82] Hs, Wsx and Wsy, Atm Hs NN EOFWNN

[78] Hs, Tp, wd Hs NN + Numerical
NWPS versus ANN

(non-linear
autoregressive)

[83] Hs (30 min) Hs NN, RF ELM, Random Forest

[84]
Hs (30 min), Maximum Hs, Tp, Zero
Up-crossing wave period Tz, d, Sea

Surface Temperature (SST)
Hs NN, Regression MLR optimized by

CWLS
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Table 1. Cont.

Ref. Input Parameters Output Parameter Method Algorithm

[85] Tp Tp NN
ELM, CNN, RNN,

M5tree, MLR-ECM,
and MLR

[86] Hs, SST, Salinity, Currents, d Hs, SST NN, SVM, Regression GRU-DNN, SVR, and
ARIMA

[87] Maximum, minimum and mean Hs,
Hs standad deviation Hs NN, Regression CRBM-DBN, ARMA,

BPNN
[73] Ocean Images, Hs Hs NN CNN, CNN-LSTM

[68]
Hs, Average T, Atm, Air temperature
Tair, Pair, Humidity, Omega vertical

velocity
Hs, Wave Power NN, SVM MTEANNm ELM, SVR

[21] Wsx and Wsy, Tair, Humidity, Omega
vertical velocity, Pair, Rain Hs, Wave Power NN MTEANN

[88] Wave train Hs NN LSTM

[89] Hs, T, d, Wsx and Wsy, Tair, Humidity,
Atm, Water temperature, Salinity Hs NN, SVM, RF LSTM/PCA, LR, RT,

SVM and GPR

[74] Hs, Ws, Wd, Wg, Average T, Atm, Tair,
SST Hs NN

LSTM/FCL, seqtoseq
LSTM, SGD, RMSProp,
Adam, and AMSGrad

[75] Hs, Ws, Wd, Wg, Average T, Atm, Tair,
SST Hs NN

LSTM, RNN, and
epoch-scheduled

seqtoseq with Adam
and AMSGrad

[90] Ws Hs NN, SVM, Numerical SWAN, ANN, ELM
and SVR

[76] Hs, Tp, d, Wsx and Wsy Hs, Tp, wd NN + Numerical SWAN combined with
ANN

[91]
Hs, Tp, Wave periods of the second

and first moment of the energy
spectrum

Hs, Tp NN GMDH and ANN

[72]
Hs, Wave period of the second

moment of the energy spectrum, Hs
standard deviation

Tp NN DNN

[92] Tm, Tair, d, Atm, Wd, Ws, SST, Hs (20
min), Dew point Hs, Tp, wd NN LSTM

[93] Maximum, minimum and mean Hs,
Hs standard deviation, d Hs NN, SVM

STL–CNN–PE, ANN,
ELM, SVR, LSTM,
CNN; EMD-LSTM

[79] Hs,Tp Hs, Tp NN, SVM, RF RF, SVR and ANN

3.3. Neural Networks Applied to Extreme Wave Events and Climate Change

As highlighted in [11,94], the survivability of WECs at sea is a matter of utmost impor-
tance. Extreme sea-states can severely damage WECs and even disrupt their operations,
prompting not only a loss of revenue due to inactivity, but also counterproductive mainte-
nance and/or replacement expenditures. Therefore, it is vital to design WECs to not only
withstand such events, but also to forecast them and understand the hazard requirements
that they will impose on the devices.

For starters, Dixit and Londhe [95] and Londhe et al. [96] demonstrated the use of
ANNs towards improving wave forecast accuracy in different locations. In the first study,
the Neuro Wavelet Technique (NWT) was applied to predict extreme wave events in the
Gulf of Mexico during major hurricanes. It was found that the NWT model performed
best when using wavelet coefficients from the seventh decomposition level. The NWT
model was able to accurately predict extreme wave events up to 36 h in advance. Londhe
et al. [96] used ANNs to improve wave forecasts at four wave buoys along the Indian
coastline. This was achieved by adding/subtracting the errors forecasted by the ANNs
to the forecasts made by a numerical model—MIKE21-SW. The results showed that this
approach significantly improved the accuracy of the 24 h forecasts at all four locations.

Durán-Rosal et al. [97,98] proposed a two-stage approach for detecting and predicting
segments with extreme Hs. In the first stage, a combination of GAs and a likelihood-based
segmentation was used to detect extreme Hs segments. In the second stage, multi-objective
EAs and ANNs were used to predict future extreme Hs events, based on the statistical
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properties of past segments. The approach is effective in detecting and predicting the
extreme segments, with the ANNs using hybridization of the basis functions performing
particularly well in the prediction stage. The proposed approach has potential applications
in offshore installations for oil and gas extraction, long-term energy yield prediction in
wave farms, and risk prediction for ship movements and port activity.

Mafi and Amirinia [99] aimed to predict wave heights during hurricanes in the Gulf
of Mexico. This was achieved by using SVM, ANN and RF. These algorithms were trained
using data from five buoys over one month, which included the passage of two hurricanes.
The trained models were then used to predict wave heights in a sixth buoy at different lead
times. The results showed that the use of more input parameters, including friction velocity
and pressure, improved the performance of the models compared to previous studies that
used only wind speed and wave height. All three methods were able to accurately forecast
wave heights for most of the time period, including the two hurricanes, but they had some
errors in the hurricane intervals, especially at a 24 h lead time. The performance of the
models was reasonable for small Hs but tended to underestimate larger wave heights.
The impact of different assumptions for friction velocity on the results was found to be
minimal, with an average change of less than 5% in the correlation coefficients and less than
2% in the scatter index values. Tsai et al. [100] used ANNs and precomputed numerical
solutions to forecast Hs in real time. The ANN-based model employs a MLP, whereas the
numerical model used a quadtree-adaptive model. The ANN-based model was compared
to multiple linear regression as a benchmark. The models were tested using data from
the 2005 hurricanes Katrina and Rita and were found to be accurate and consistent with
observed data from shipping-line buoys. The ANN-based model was also found to be more
efficient in terms of computation time, making it suitable for use in real-time forecasting
operations with a short-term range.

Wei [101], Wei and Cheng [102] and Wei and Chang [103] used data mining techniques
and ANNs for predicting wave heights during typhoon periods. Wei [101] compared the
performance of five data-driven models (kNN, LR, M5, MLP and SVR) using PCA-derived
data and found that MLP and SVR perform best overall, but M5 performs better at small
wavelet levels. Furthermore, MLP performs best at large wavelet and small/moderate wave
levels. Wei and Chang [102] proposed a two-step approach, which consists of two subcases
that use either current data attributes or observations from a lead time to predict future
data attributes, and they found that it was more accurate than the one-step approach. The
study also found that the error of the two-step approach is lower than one-step approach,
although it increases with prediction time, and that shallower networks (such as MLP)
produce higher errors than deeper ones (such as DNN and DRNN). Wei and Chang [103]
developed models based on GRUs and CNNs that use in situ and reflectivity data to predict
wind speeds and wave heights with good accuracy at two locations, Longdong and Liuqiu,
in Taiwan.

Lastly, Rodriguez-Delgado and Bergillos [19] used an ANN to assess the wave energy
potential in the Guadalfeo deltaic coast, Spain, under different scenarios of climate change.
The authors used Delft3D-Wave to generate wave data for a deep-water dataset consisting
of variables such as Hs, spectral Tp, wave direction, tidal levels, storm surge and rise in sea
level. The ANNs with two hidden layers performed best, with the lowest RMSE achieved
by the [8-8-40-2] architecture (RMSE = 0.009 m). The authors then used the optimized ANN
to assess the cumulative wave energy at 704 locations over a 25-year period, under three
different scenarios of sea level rise. The results showed that the rise in sea level led to increases
in cumulative wave energy, with maximum values around 8 MWh/m and 12 MWh/m for
the RCP4.5 and RCP8.4 scenarios, respectively. The authors concluded that ANNs have
the potential to assess wave energy availability in the long term, with significantly reduced
computational cost compared to advanced numerical models such as Delft3D.

A summary of these and other literature studies in which ANNs were applied to
model extreme events and climate change is provided in Table 2.
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Table 2. Case studies summary—neural networks for extreme events and climate change.

Ref. Input Parameters Output Parameter Method Algorithm

[95] Hs Hs NN NWT
[96] Hs (3 h) Hs NN + Numerical ANN + MIKE21 SW
[97] Hs Hs NN, EA GA + LS + ANN
[98] Hs Hs NN, EA GA + LS + ANN

[99] Hs (1 h), Ws, T, Atm, Tair, Water
Temperature, Dew point Hs NN, SVM, RF SVM, ANN, RF

[100]
Hurricane intensity and center

(location and pressure), Atm, Ws, WD,
Hs

Hs NN + Numerical ANN + Numerical
model

[101]

Typhon location, Pressure at centre,
Radius, speed and intensity, Atm, Tair,

Dew point, humidity, Wd,
precipitation (quantity and duration),

Ws, ground solar radiation, Wg, Hs,
Average and maximum T, d, SST

Hs NN, SVM ANN, SVR

[102]

Typhon central minimal pressure,
Near centre maximum wind speed,

Storm radius for winds ≥ category 7.
Ws, Wg, Wd, Hs, Pair, Atm,

precipitation hours

Hs NN DRNN, MLP, DNN

[103]

Pair, Temperature, Dew point,
humidity, Maximum and mean Ws

and WD, Precipitation (quantity and
duration), Hs, Radar reflectivity

images

Hs NN RNN (GRU) + CNN

[19] Hs, Hs, d, Tide, Storm surge, Sea level
rise Hs, Tp NN + Numerical Delft3D-Wave + ANN

[104] Ws, Wd, Hs Hs NN RNN (BiGRU)

3.4. Applications of Non-NN Algorithms

To complete this review of AI algorithms, the studies in which non-NN approaches are
predominant are presented and discussed in the following paragraphs. The fields of applica-
tion encompass both operational and survivability conditions. For starters, Stefanakos [105]
proposed Fuzzy Inference Systems and adaptive-network-based Fuzzy Inference Systems
(ANFIS) with nonstationary time series modelling to remove the nonstationary character
of wind and wave time series before forecasting Hs and Tp. The method was tested on
pointwise forecasts, for a specific data point, and fieldwise forecasts, for the whole field of
wave parameters. The performance of the method was compared to standalone FIS/ANFIS
models using various error measures, such as RMSE, MAPE, mean absolute scaled error
(MASE) and root mean square scaled error (RMSSE). The proposed method outperforms
those using only FIS/ANFIS models, with an average error reduction of 40% in RMSE
and RMSSE, and over 50% in MAPE (55%) and MASE (65%) for fieldwise forecasts. These
results suggest that the proposed method is more effective for forecasting wave parameters
in the study area.

Cornejo-Bueno et al. [106,107] proposed a method for predicting Hs using a hybrid
Grouping Genetic Algorithm (GGA) and ELM model. The GGA was used to identify
important features for solving the prediction problem, whereas the ELM provided Hs and
energy flux predictions based on the selected features. The method was tested on real data
from buoys on the west coast of the United States and was shown to improve the predic-
tion of Hs and energy flux. In a separate study, Cornejo-Bueno et al. [108] also proposed
a method for estimating Hs from noncoherent X-band marine radar images using SVR. The
method was compared to a standard method, and it was found to have better performance,
with lower MSE and higher correlation coefficient of the Hs time series. Cornejo-Bueno
et al. [109] proposed a new approach called FRULER for predicting Hs and wave en-
ergy flux in one buoy on the West Coast of the United States. The approach combines
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an instance selection method for regression, a multi-granularity fuzzy discretization of
input variables, and an EA to generate accurate and interpretable Takagi-Sugeno-Kant
fuzzy rules. The performance of FRULER was compared to that of a hybrid GGA-ELM and
a Support Vector Regression algorithm, and it was found to perform similarly in terms of
accuracy whilst providing fully interpretable results based on the physical characteristics
of the prediction problem. In another study, Cornejo-Bueno et al. [110] used Bayesian
optimization to improve the performance of a hybrid prediction system for wave energy
prediction consisting of a GGA for feature selection and an ELM or SVR for prediction.
The results showed that the optimized system outperformed the non-optimized system in
terms of accuracy and robustness.

Emmanouil et al. [111] used Bayesian networks to predict Hs, with the models being
tested in real-time scenarios to determine their applicability in operational environments.
The five-variable fixed-structured Bayesian network model performed best, but it requires
short-term past data and cannot produce corrected forecasts in the absence of recent
observations. The long-trained Bayesian network model, on the other hand, can produce
forecasts of enhanced accuracy consistently, even in the absence of recent observations,
making it an attractive option for real-time use. The models provide uncertainty estimates
that cover nearly 90% of the total number of measurements in the validation set, with
normal confidence intervals showing good performance.

Ge and Kerrigan [112] reviewed two existing state-space models for forecasting ocean
wave elevations and compared their performance. They found that the ARMA model gave
the best prediction performance and was the most efficient, compared to the AR model
with ALS method. The authors also found that using smoothed data did not improve
prediction accuracy. The results were based on tests using 10 different ocean wave data
files. Duan et al. [113,114] focused on developing and comparing machine learning models
for predicting nonlinear and non-stationary wave heights. In [113], they proposed a hybrid
model called EMD-SVR, which combines EMD with SVR, and compared its performance
to other models, including AR, EMD-AR and SVR. Furthermore, in [114] they proposed
a hybrid model called EMD-AR, which combines EMD with AR modelling, and compared
its performance to the AR model. Both papers used data from NDBC buoys to test the
models, from which they found that the hybrid EMD-SVR models outperform the other
models in terms of prediction accuracy and ability to capture the general tendencies of wave
peaks and troughs. Peña-Sanchez et al. [115] compared the four strategies for short-term
wave forecasting: the Discrete Markov-Switching Subspace strategy, the AR Linear Least
Squares strategy, the AR with Linear Regression of Past Inputs strategy and the Discrete
Markov–Switching Linear Least Squares strategy. These methods were applied to both
simulated and real data, with the goal of predicting the wave elevation at one wave period
ahead. The Discrete Markov–Switching Subspace strategy was the most accurate, but all
four methods showed relatively low accuracy, with a goodness of fit lower than 50% for one
wave period ahead in the best case. The authors suggest that using multiple measurement
points in the vicinity of a WEC may be necessary to improve prediction accuracy.

Shi et al. [116] compared Gaussian processes (GP), AR models and ANN in short-term
wave forecasting. They found that GP is capable of calculating forecasting uncertainties
and provides slightly better prediction accuracy compared to AR and ANN models. How-
ever, GP is hindered by limited expressiveness of covariance functions and has a higher
computational burden compared to the other two models. ANN models generally have
a more flexible learning structure compared to GP but still struggle to extract satisfactory
hidden representations in wave data. On the other hand, although the AR model has
a simple structure compared to GP and ANN, it performs similarly in terms of prediction
accuracy by implicitly reconstructing the cyclical behaviour of the waves. Hasan Khan
et al. [117] focused on using an AR filter model for predicting wave excitation forces in
a semi-submerged spherical buoy model. The model was tested using irregular waves
generated with the JONSWAP spectrum, and the results showed that a 10th-order filter was
able to provide good prediction accuracy for wave periods of 6, 7 and 8 s. This prediction
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methodology was found to be feasible for real-time processing and could potentially be
used in the control of wave energy conversion systems.

Akbarifard and Radmanesh [118] attempted to predict H values at hourly and daily
intervals for 2006 and 2007 using a variety of algorithms and numerical models, including
Symbiotic Organisms Search (SOS), Imperialist competitive algorithm, PSO, ANN, SVR
and SWAN. The data were normalized to improve the accuracy of the predictions. The
results showed that the SOS algorithm performed well in both hourly and daily intervals,
and the methods performed better in the hourly prediction than the daily prediction. The
algorithms also had acceptable accuracy in predicting extremum points, and the coefficients
obtained from the algorithms showed the effectiveness of factors such as wave height and
wind speed with a delay on wave height. The SOS algorithm had a slight advantage over
the other methods in predicting wave height, and the hybrid SWAN–SOS model performed
well in predicting H in areas with limited observations. Fan et al. [119] applied six machine
learning algorithms (LSTM, BPNN, ELM, SVM, ResNet and RF) to predict Hs at 10 different
stations in the ocean. The LSTM algorithm had the highest accuracy and stability for
1 h and 6 h predictions, and it was also able to perform long-term predictions of up to
3 days. The study also found that the SWAN–LSTM model was 65% more accurate than
the standard SWAN model for single-point predictions.

Bento et al. [120] applied a modified Moth-Flame Optimization algorithm to determine
the optimal input and feature selection for a DNN model in order to improve the accuracy
of wave energy flux, period and significant wave height forecasting. The algorithm was
tested on 13 real datasets from 13 different sites in 4 different months and was found to
produce good forecasting performance compared to existing model-based approaches.
It also showed improved accuracy for short-term horizons and displayed a consistent
performance across different lead times and datasets, with a clear contrast in behaviour
between winter/fall seasons and spring/summer seasons.

Lastly, Chen et al. [121] used RF to develop a surrogate model for estimating wave
conditions at a specific marine energy site off the coast of Cornwall, Southwest UK. The
RF algorithm was trained using output from SWAN and was able to provide accurate and
immediate estimates of wave conditions across the domain, using input data from three in
situ wave buoys. The surrogate model performed better than SWAN in terms of predicting
zero-crossing wave period, with a coefficient of determination (R2) of 0.7205 and a RMSE
half of the SWAN. The surrogate model also had an R2 value of 0.9067 for significant wave
height, an RMSE of 0.2556 m and a normalized RMSE of around 15%. The normalized
RMSEs of the surrogate model were also below 20% for both the peak wave period and
zero-crossing wave period. In addition, the model required approximately 100 times less
computation time.

A summary of these and other literature studies where non-NN algorithms are the
main application tool can be seen in Table 3.

Table 3. Case studies summary—non-NN predominance studies.

Ref. Input Parameters Output Parameter Method Algorithm

[112] Hs Hs Regression ARMA/AR
[105] Hs (3 h), Tp, Ws Hs, Tp Fuzzy, ANN FIS + ANFIS

[106] Ws, Wd, Wg, Hs, Tp, Average T, d, Atm,
Pair, SST Hs SVM, EA GGA-ELM, SVM

[107] Ws, Wd, Wg, Hs, Tp, Average T, d, Atm,
Pair, SST Hs, Wave Power EA GGA-ELM
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Table 3. Cont.

Ref. Input Parameters Output Parameter Method Algorithm

[108] Ws, Wd, Wg, Hs, Tp, Average T, d, Atm,
Pair, SST Hs SVM SVR

[109] Radar images Hs, Wave Power EA + Fuzzy FRULER (GFS for
regression)

[110] Ws, Wd, Wg, Hs, Tp, Average T, d, Atm,
Pair, SST Hs, Wave Power EA, Statistical GGA-ELM + Bayesian

optimization

[113] Hs Hs SVM, ANN EMD-SVR, SVR, ANN
(AR)

[114] Hs Hs Regression EMD-AR

[118] Hs, Ws, Wd, Huricane speed, Pair, Tair,
SST, Moisture Hs

SVM, Numerical, ANN,
EA

SOS, PSO, ICA, ANN,
SVR, SWAN, and

SWAN-SOS

[122] Hs, Tp Hs, Tp SVM Prony Method based
on ESPRIT, SVR

[123] Hs, Tp, d, Wsx and Wsy, Wd, Currents Hs, Tp, wd Statistical + Numerical SWAN + RR and EG
aggregation

[116] H, Wave frequency and phase, d Hs Regression, ANN Gaussian Process,
ANN, AR

[117] Wave excitation force Hs, Wave Excitation Regression AR
[111] Tz, d, Wd, Ws, Hs Hs Statistical Bayesian Network

[119] Hs, Ws, d Hs
SVM, ANN, Numerical,

RF
LSTM, SVM, RF, LSTM

+ SWAN

[115] Wave elevation Hs Regression
AR strategies (DMSSp,

ARLLS, ARLRPI,
DMSLLS)

[120] Average H and T, Tp, Wd, Ws Hs, Tp, Wave Power EA, ANN MFO + DNN
[121] Hs, d, Tz, Tp Hs, Tp, wd RF + Numerical SWAN + RF

[124] Typhon central pressure, Wind
velocity and cyclonic radius, Hs

Hs SVM, Fuzzy SVM, FIM

[125]
Hs, Tp, d, Ws, Wd, Maximum Wg, Pair,
Tair, Typhon central location, Pressure

and wind velocity, Cyclonic radius
Hs SVM SVR

4. Conclusions

The constant growth in energy demand emphasizes the importance of developing and
deploying RES, particularly wave energy technologies, to promote a greater energy mix
and ensure a transition towards more environmentally friendly solutions. However, the
wave energy sector has yet to reach commercial competitiveness due to the optimization
problem of WECs and the nonlinear wave–structure interactions, among other challenges.
To address this problem, the use of advanced computational tools and AI algorithms
provides a more thorough and automated sweep of alternative solutions that help the path
of WECs towards commercial viability.

A review of different optimization methods was carried out, including “indirect” and
“direct” algorithms that focus on wave climate prediction and optimization problems. The
ANNs were the most used method, occurring in almost three quarters of the studies. They
are often used in studies related to wave energy resource estimation, forecasting and data
gap filling. Several studies were discussed using a range of ANN settings, from activation
functions to hybridizations with other machine learning techniques. Often, the goal was to
predict wave heights and energy flux, but it was found that most were applied in specific
cases, with input data relying on isolated observations and different frameworks. This
restricts the feasibility of a direct comparison between them.

This study also reviewed extreme sea-states events forecasting, which is crucial to pre-
diction and understanding the survivability of WECs, at sea, in order to minimize damage
and disruption to operations. Although there were joint applications of different EAs, SVM,
RF and AR, which yielded good results on improving wave forecast accuracy, detecting and
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predicting extreme wave events and reducing the computation time, in general, the ANNs
outperformed them, in terms of accuracy and computation time. These approaches have
potential applications in offshore installations, long-term energy yield prediction in wave
farms, and risk prediction for ship movements and port activity. However, it is important
to note that these models can have limitations in accurately forecasting larger wave heights
and in predicting wave conditions during hurricanes.

Overall, the predominant non-NN algorithms such as FIS, ANFIS, GGA, ELM, SVR,
Bayesian optimization and state-space models were effective in predicting wave elevations
and energy flux. These approaches have been shown to be effective in removing the
non-stationary character of wind and wave time series, identifying important features
for solving prediction problems, and providing accurate and interpretable predictions.
Some of these methods have been tested in real-time scenarios and found to be suitable
for operational environments, providing uncertainty estimates and improved accuracy
and robustness.

In brief, the use of AI techniques in the wave energy sector can significantly improve
the accuracy and efficiency of WEC design and can provide a pathway towards commercial
viability. Different algorithms can be effective in predicting and forecasting wave energy
and other wave parameters, with some performing better than others depending on the
specific application and dataset. Additionally, the use of hybrid approaches or optimization
methods can improve the accuracy and robustness of the prediction system. Nevertheless,
further efforts are needed to optimize WECs and to make wave energy a viable alternative.
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Abbreviations

AI Artificial Intelligence
AF Activation Function
ANFIS Adaptive Network-based Fuzzy Inference Systems
ANN Artificial Neural Networks
AR Auto-regressive
CNN Convolutional Neural Networks
CWR Capture Width Ratio
DNN Deep Neural Networks
EA Evolutionary Algorithms
ELM Extreme Learning Machine
EMD Empirical Mode Decomposition
FL Fuzzy Logic
GA Genetic Algorithm
GGA Grouping Genetic Algorithm
GMDH Group Method of Data Handling
GP Gaussian Process
GRU Gated Recurrent Unit
LSTM Long Short-term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MASE Mean Absolute Scaled Error
MLP Multilayer Perceptron
MSE Mean Square Error
MTEANN Multi-task Evolutionary Artificial Neural Networks
NWPS Nearshore Wave Prediction System
NWT Neuro Wavelet Technique
PCA Principal Components Analysis
PSO Particle Swarm Optimization
PTO Power Take-Off
RES Renewable Energy Sources
ReLU Rectified Linear Unit
RF Random Forests
RMSE Root Mean Square Error
RMSSE Root Mean Square Scaled Error
RNN Recurrent Neural Network
SI Swarm Intelligence
SOS Symbiotic Organisms Search
SST Sea Surface Temperature
SVM Support-Vector Machines
SVR Support-Vector Regression
WEC Wave Energy Converter
Atm Atmospheric Pressure (atm)
Hs Significant Wave Height (m)
H Wave Height (m)
Pair Air Pressure (Pa)
Tair Air Temperature (◦C)
Tp Peak Wave Period (s)
Tz Zero Up-crossing Wave Period (s)
T Wave Period (s)
tanh Hyperbolic Tangent Function (-)
d Water Depth (m)
wd Wave Direction (◦)
Wd Wind Direction (◦)
Wg Wind Gust (m/s)
Ws Wind Speed (m/s)
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