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Abstract: This paper addresses the problem of economic/environmental optimal power flow with a
multiobjective formulation using a second-order conic programming (SOCP) optimization model.
This problem formulation considers renewable energy sources (RES), fossil-fuel-based power genera-
tion units, and voltage control. The proposed SOCP model is a stochastic scenario-based approach to
deal with RES and load behavior uncertainties. An ε-constrained algorithm is used to handle the
following three objective functions: (1) the costs of power generation, (2) active power losses in the
branches, and (3) the emission of pollutant gases produced by fossil-fuel-based power generation
units. For comparative purposes, the SOCP model is also presented using a linearized formulation,
and numerical results are presented using a 118-bus system. The results confirm that changing the
energy matrices directly affects the cost of objective functions. Additionally, using a linearized SOCP
model significantly reduces reactive power violation in the generation units when compared to the
nonlinearized SOCP model, but also increases the computational time consumed.

Keywords: ε-constrained algorithm; emission pollutant gasses; multiobjective optimization; optimal
power flow; renewable energy sources; second-order conic programming

1. Introduction

The optimal power flow (OPF) is a classical nonlinear (NL) optimization problem that
aims to determine the operational point for a given electric power system (EPS) that would
minimize objective function (OF), meet the electric demand of the system, and satisfy a
set of physical and operating constraints. For this problem, the most common OF is to
minimize the fuel cost of electric power generation; however, many alternative objectives
can be studied to optimize the EPS operation, including, for example, modern electricity
markets and renewable energy resources (RES) integration. In this regard, OPF tools must
be adapted to solve more complex applications [1–6].

The EPS generation framework is undergoing continual development, with the inten-
tion to substitute conventional fossil-fuel-dependent generation facilities with sustainable
and eco-friendly RES. However, the high RES penetration in the power system raises the
complexity of the problem, due to the presence of uncertainties in the parameters that de-
fine the functioning of diverse types of RES [7]. Thus, solving the economic/environmental
OPF (EEOPF) problem is still a timely topic in power systems research, and one that could
guide us toward environmental preservation by decreasing the emission of those green-
house gases (GHG) which result from producing electric power with fossil fuels [8–10]. In
this study, probabilistic and stochastic approaches have been frequently used to include
uncertainties in the EEOPF formulation, and thus obtain a more realistic (if complex)
model [11–13].
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Multiobjective approaches are being developed to solve the EEOPF problem by min-
imizing both the generation costs and the GHG emissions produced in energy power
generation [14–18]. For example, in [14], a multiobjective evolutionary algorithm was
applied to a deterministic economic and environmental dispatch (EED) problem, mini-
mizing not only the cost of generation, but also the number of active power losses of the
system, in addition to the emission of pollutants from fossil-fuel-based thermoelectric
generations (TG).

Metaheuristic algorithms are an alternative approach to providing solutions to the OPF
problem when classical approaches are not able to deal with the complexity of the model.
However, the quality of their solutions cannot be considered the optimal global solutions
to the problem. On the other hand, the OPF problem can be expressed using a well-defined
mathematical formulation and solved using classical optimization techniques. Moreover,
various convexification techniques have been developed to determine the optimal global
solution of the OPF problem, employing algebraic manipulations of the objective function
and constraints [1,19]. Among them, the second-order conic programming (SOCP) models
are widely used, striking a balance between computational effort and the precision of the
solutions [20–22]. In addition, a convex formulation of the OPF problem enables it to be
adaptable to the evolving challenges of modern EPS planning/operation [19,23,24].

Decentralized approaches are also an alternative, suited to addressing large and
complex problems in power systems [25]. For example, a decentralized model can be used
to solve the OPF problem by considering electricity market environments, as is presented
in [26–28], due to the improvement of security and privacy of each area of the EPS; this
concept can also be extended to distribution systems [29].

1.1. Related Literature

The multiobjective probabilistic EEOPF model, outlined in [15], aimed to minimize the
pairs of OFs: power generation costs vs. GHG emissions, power generation costs vs. active
power losses in the transmission lines, and GHG emissions vs. active power losses in the
transmission resulting from high RES penetration. The Nondominated Sorting Genetic
Algorithm II (NSGA-II) was used to deal with the nonlinearities of the problem. The
incorporation of uncertainties related to both electrical demands and RES was facilitated
through a fast and effective point–estimate probabilistic approach. The operational status
of the system was ascertained utilizing the conventional Newton AC power flow technique.
A similar probabilistic multiobjective EEOPF problem has been formulated in [16], with
the objective of minimizing the cost of generation and GHG emissions. Their version of
the problem incorporates TG and wind generator (WG) resources, while also accounting
for uncertainties by employing random variables to represent variations in electrical and
environmental behaviors. A biogeography-based optimization algorithm was utilized to
solve the problem, and the point estimate method was employed to analyze the uncer-
tainty parameters. In [30], by contrast, the authors formulated an active and reactive EED,
adopting a dynamic wind–thermal generation scheduling approach to minimize the gener-
ation costs and pollutant emissions in the EPS. The probability density functions of WGs
were estimated based on the gaussian mixture model. A population –heuristic technique
was proposed to solve the EED problem and improve accuracy during the optimization.
In [11], a hybrid algorithm (composted using phasor particle swarm optimization and a
gravitational search algorithm) was applied to solve the EEOPF problem, with particular
consideration given to WG and photovoltaic (PV) generation in the system. National
Renewable Energy Laboratory data were used to estimate the output of WG and PV, while
Monte Carlo simulation was used to evaluate the statistical features of the EEOPF problem.
In [12], a stochastic OPF-based active–reactive power dispatch problem was proposed, with
consideration to the renewable generators. The problem was solved through an efficient
differential evolution algorithm (DE) that aimed to minimize the generation costs of all
units installed in the EPS. In [13], a modified quantum-behavior lightning search algorithm
was applied to solve the EED problem of minimizing the emission cost of a given power
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system with TG, small hydroelectric generation (HG), and WG generations. A particle
swarm optimization algorithm with an artificial neural network was used to capture the
probability factor of wind speed. The proposed approach was applied in a small system
(six-bus). In [26], the authors presented an iterative algorithm for the decentralized DC
single-objective OPF problem, under various contingencies. Reference [28] proposed an
MINLP formulation of the decentralized AC single-objective OPF problem, with considera-
tion to prohibited operational zones within the generation units. Both [26,28] dismissed
the presence of RES, minimizing just the power generation costs, and consumed more
computational time than the centralized approach presented in the literature.

1.2. Research Gap and Novel Contributions

Based on the literature review presented below, it can be concluded that metaheuristic
algorithms are frequently used to tackle the EEOPF problem. Nevertheless, the conven-
tional approach needs to be further investigated and developed to adequately handle the
intricate challenges associated with the problem, including nonconvexity, nonlinearity,
and other related issues. Table 1 summarizes the main works from literature related to
the EEOPF problem which consider an EPS approach (centralized/decentralized), opera-
tional uncertainty, voltage control, fossil-fuel-based generation, RES, OFs of costs of power
generation, active power losses, and GHG emissions in the power system.

Table 1. Brief comparative analysis of the some works from literature.

Ref. Model Approach EPS

Operation
Uncertainty

Voltage
Control Generations OF

Demand Weather Transf. Shunt TG HG WG PV $pg Ploss EGHG

[14] EED EA
deterministic Centr. 4 4 4 4

[26] OPF MINLP
deterministic Decentr. 4 4 4 4

[28] OPF MINLP
deterministic Decentr. 4 4 4 4

[15] EEOPF NSGA-II
probabilistic Centr. 4 4 4 4 4 4 4 4 4 * 4 * 4 *

[16] EEOPF BBO
probabilistic Centr. 4 4 4 4 4 4 4 4

[30] EED Pop.–Heur.
probabilistic Centr. 4 4 4 4 4

[11] EEOPF PPSO + GSA
stochastic Centr. 4 4 4 4 4 4 4 4

[12] EEOPF DE
stochastic Centr. 4 4 4 4 4 4 4 4 4

[13] EED MQLSA + PSO-
ANN stochastic Centr. 4 4 4 4 4 4

Proposed EEOPF SOCP
stochastic Centr. 4 4 4 4 4 4 4 4 4 4 4

4 *–OFs are analyzed in pairs separately; Pop.–Heur: Populational–Heuristic; PPSO + GSA: Combina-
tion of Phasor Particle Swarm Optimization and a Gravitational Search Algorithm; Centr/Decentr: Central-
ized/Decentralized model.

This paper provides a multiobjective stochastic SOCP optimization model for the
EEOPF problem, giving consideration to voltage control, the presence of fuel-based genera-
tion units, and RES. The voltage control was considered by optimally adjusting capacitor
banks and transformer taps. This study analyzed three distinct OFs: (1) power genera-
tion costs, (2) active power losses, and (3) GHG emissions. The ε-constraint method was
employed to deal with these objectives and present a representative subset of the Pareto
set. Historical data of uncertain variables were used to generate a set of representative
operational scenarios for RES and load behavior. Finally, a linearized version of the pro-
posed SOCP model was used to validate the robustness of the proposed approach to solve
the EEOPF multiobjective problem. The main contributions of this paper are presented
as follows:
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1. Proposing a stochastic-scenario-based SOCP model to solve the EEOPF problem,
including RES, fossil-fuel-based generation units, and voltage control. Moreover, this
paper also presents a linearized version of the SOCP model for the problem.

2. Developing a multiobjective method for the EEOPF problem, considering three
objective functions. This approach used the ε-constraint method to obtain Pareto
optimal solutions.

3. Analyzing and comparing the SOCP models (traditional and linearized) results to
verify their efficacy. The results highlighted that the linearized SOCP model can
significantly improve the precision of the reactive power subproblem, in regard to
the traditional SOCP model. The reactive power dispatches were verified using the
Newton–Raphson method of MATPOWER.

The remainder of this paper is organized as follows: Section 2 presents the modeling
of the uncertainties and the linear and SOCP models for the EEOPF problem. Then, in
Section 3, the results and discussion are presented. Finally, relevant conclusions are drawn
in Section 4.

2. Mathematical Models

This section first describes the scenario generation strategy to define both RES and
load behavior over a given planning horizon. Then, the RES power generation models were
presented for use in PV-based and wind-generation units. Finally, the SOCP and linearized
models used to solve the EEOPF multiobjective problem are defined.

2.1. Modeling Uncertainty

In power systems operations, the level of electrical demand and climatic conditions
are among the main factors that contribute to the introduction of uncertainties in the OPF
problem [1,2,31]. The uncertain behaviors of electrical demand, wind speed, and solar
irradiation are considered through historical measurements, and reduced into a treatable
set of representative scenarios, labelled Ω [31]. This methodology has been described in
the following steps:

1. Historical data of electrical demand (D), wind speed (W), and solar irradiation (I)
were divided by their peak values, respectively, to obtain the normalized data.

2. The data were sorted into descending order, according to the electric demand data, so
as to trace curve D, maintaining the hourly correlation with W and I.

3. Electric demand levels have a significant impact on the system’s operation; in this
regard, planning horizons were divided into time blocks, (t ∈ Ωt) according to curve
D. Then, the information of W and I in each time block was sorted in descending
order, as presented in Figure 1. Note that this strategy loses the chronology of the
data; however, this was not a significant issue for medium-term operation planning.

4. Using the information of D, W, and I, normalized, in each time block, it was then
possible to determine the cumulative distribution functions (CDFs) of each variable
according to their respective time blocks.

5. We then divided the CDFs into segments. The mean value of the information in
each segment was used to determine the value of the scenario (π). Therefore, the
probability of the scenario (ρ) was determined according to the size of the segments.
For illustrative purposes, Figure 2 illustrates this process for the CDF curve of W at
t3, where horizontal and vertical dotted lines represent the ρW

t3
and πW

t3
, respectively.

In this case, we used three segments of 30%, 70%, and 100% for light, nominal, and
heavy levels, respectively. The probabilities of the scenarios were 30%, 40%, and 30%
for light, nominal, and heavy levels, respectively.

6. The subsets of stochastic scenarios (ss) in each time block were obtained according
to Ωss

t = (πss
t , ρss

t ), where ss ∈ (D, W, I), ∀(t ∈ Ωb). Then, a one-by-one combi-
nation of scenarios contained in the same time block was carried out as follows:
Ωss

t =
(
ΩD

t , ΩW
t , ΩI

t
)
∀(ss, t ∈ Ωss

t ). Figure 3 shows the Ωss
t combination considering

three different levels to D,W, and I, respectively.
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The probability of each scenario was determined using the product of the in-
dividual probabilities of each variable presented in the same time block, such as
ρss

t = ρD
t ρW

t ρI
t , ∀(ss, t ∈ Ωss

t ).

2.2. RES Power Output

The active power injected by the PV and WG units was calculated according to
(1) and (2).

pi
(

λi
)
=

PI
RI

λi

λI
R

,

PI
RI ,

0 ≤ λi ≤ λI
R

λi ≥ λI
R

(1)

pW(λw) =



0,
PW

RW
λW

R − λW
I

λw + PW
RW

(
1−

λW
R

λW
R − λW

I

)
,

PW
RW ,
0,

λw < λW

λW ≤ λw < λW
R

λW
R ≤ λw < λW

λw ≥ λW

(2)

Constraints (1) and (2) are linear models of the power output of PV and WG units,
respectively. For each stochastic scenario, the power output of each renewable unit depends
on its available primary energy font λi and λw.

It is worth mentioning that modern EPS systems can include energy storage devices
to mitigate the effects of RES’ uncertainties in the EPS operation [32,33]. However, this
study focuses on verifying the efficiency/performance of the SOCP model to solve the
OPF problem in EPS that have high levels of RES penetration. Due to this, energy storage
devices were not considered in the problem formulation.

2.3. Multiobjective EEOPF Problem: SOCP Formulation

The EEOPF problem was formulated through a multiobjective stochastic scenario-
based SOCP formulation (7)–(25). The OF Ψ, as presented in (3), considered the following
three objectives: the energy generation cost

(
$pg
)

of all generation technologies available in
the system (ΓG), presented in (4); the creation of an Equation (5) to determine the active
power losses cost (ploss) in the EPS. Finally, the equation outlined in (6), to determine the
GHG cost (GHGC) in nature, calculated in TGs units [14].

min : Ψ = ∑
(t,ss)∈Ωss

t

[(
OF$pg + OFploss + OFGHGC

)
hrtρ

ss
t

]
(3)

OF$pg = ∑
g∈ΓG

((
pg

t,ss

)2
cg

2 + pg
t,sscg

1 + cg
0

)
∀t ∈ Ωt; ∀ss ∈ Ωss

t ; (4)

OFploss = ∑
km∈ΓB

(
rkmiSQ

km,t,ss

)
cploss ∀t ∈ Ωt; ∀ss ∈ Ωss

t ; (5)

OFGHGC = ∑
g∈ΓnR

[(
10−2

((
pg

t,ss

)2
γg + pg

t,ssβg + αg
))

cGHGC
]

∀t ∈ Ωt; ∀ss ∈ Ωss
t (6)
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In each t and stochastic scenario ss, the physical and operational constraints of the
EEOPF problem were modeled. Equations (7) and (8) are the active/reactive power bal-
ances, respectively.

∑
(t,ss)∈Ωss

t

 ∑
g∈ΓG
g=k

(
pg

t,ss

)
− πD

t PD
k,t,ss − ∑

km∈ΓB

(
pkm,t,ss + rkmiSQ

km,t,ss

)
+ ∑

mk∈ΓB

(pmk,t,ss)− vSQ
k,t,ssgsh

km


= 0 (7)

∑
(t,ss)∈Ωss

t

 ∑
g∈ΓG
g=k

(
qg

t,ss

)
− πD

t QD
k,t,ss − ∑

km∈ΓB

(
qkm,t,ss + xkmiSQ

km,t,ss − bsh
kmvSQ

k,t,ss

)
+ ∑

mk∈ΓB

(
qmk,t,ss + bsh

kmvSQ
k,t,ss

)
+ qsh

k,t,ss

 = 0 (8)

∀k ∈ ΓN ; ∀t ∈ Ωt; ∀ss ∈ Ωss
t

In this formulation, the square of the voltage and current magnitudes are repre-
sented with the variables vSQ

k = v2
k and iSQ

km = i2km, respectively. Constraints (9) and (10)
determined the reactive power injected by shunt compensators through a disjunctive for-
mulation. Thus, if the binary variable σsh

k = 0, then qsh
k = 0, otherwise qsh

k = vSQ
k bsh

k .
Constraints (11) and (12) were the magnitude and angular voltage limits in the bus.

−
(

1− σsh
k,t,ss

)
V2

k bsh
k ≤ qsh

k,t,ss − vSQ
k,t,ssbsh

k ≤ −
(

1− σsh
k,t,ss

)
V2

k bsh
k (9)

σsh
k,t,ssV

2
k bsh

k ≤ qsh
k,t,ss ≤ σsh

k,t,ssV
2
k bsh

k (10)

V2
k ≤ vSQ

k,t,ss ≤ V2
k (11)

−π
/

2 ≤ θk,t,s ≤ π
/

2 (12)

∀k ∈ ΓN ; ∀t ∈ Ωt; ∀ss ∈ Ωss
t

Constraints (13)–(15) described Kirchhoff’s voltage law, considering transformers with
on-load tap changers (OLTC). Equation (14) served as an approximation for the voltage
angle difference, where θkm = (θk − θm) and v̌k was the estimated voltage magnitude at
the bus k. Conic constraint (15) defined the voltage drop calculation through use of the
active/reactive power flow and the square variables of both voltage and current in the bus.
Constraint (16) defined the voltage angular opening limits in the branch.

vSQ
k,t,ss − vSQ

m,t,ss + δkm,t,ss = 2(rkm pkm,t,ss + xkmqkm,t,ss) + iSQ
km z

2
km (13)

v̌k v̌m(θkm,t,ss) = xkm pkm,t,ss − rkmqkm,t,ss (14)

vSQ
m,t,ssiSQ

km,t,ss ≥ p2
km,t,ss + q2

km,t,ss (15)
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−π/4 ≤ θkm,t,s ≤ π/4 (16)

∀km ∈ ΓB; ∀t ∈ Ωt; ∀ss ∈ Ωss
t

This study gave particular consideration to a continuous formulation of the OLTC tap,
wherein an ideal transformer’s tap ratio (τ) and impedance were adopted in the model-
ing. A fictitious node was adopted between the ideal transformer and the transformer’s
impedance. Equation (17) describes the square voltage magnitude in the fictitious node
(fn), while Equation (18) determines the voltage magnitude drop at buses k and m.

v2
f n = τ2

kmv2
k (17)

δkm = v2
f n − v2

k = v2
k

(
τ2

km − 1
)

(18)

∀km ∈ ΓT

The transformer tap ratio was defined based on the regulation percentage of the
OLTC (∆km) installed in the branch τkm = ∆km + 1, and could rewrite (18), as shown
in (19). Equation (20) defined τkm in function of δkm and vk. Constraint (21) represents
the operational limits of δkm, adopting the relaxing of (18) and the maximum regulation
percentage in OLTCs .

δkm = ∆km(∆km + 2)v2
k (19)

τkm =

(√
v2

k + δkm

)/
vk (20)

|δkm| ≤ ∆km
(
∆km + 2

)
vSQ

k (21)

∀km ∈ ΓT

Constraints (22)–(25) present the active, reactive, and apparent power injection limits
of TG, HG, WG, and PV generations, respectively. The set of generation buses was divided
into two subsets (ΓG = ΓnR ∪ ΓR), where: (i) ΓnR was the nonRES generations (TG); and
(ii) ΓR were the RES generations (HG, WG and PV).

Pth ≤ pth
t,ss ≤ Pth Qth ≤ qth

t,ss ≤ Qth
(

pth
t,ss

)2
+
(

qth
t,ss

)2
≤
(

Sth
)2

(22)

Ph ≤ ph
t,ss ≤ Ph Qh ≤ qh

t,ss ≤ Qh
(

ph
t,ss

)2
+
(

qh
t,ss

)2
≤
(

Sh
)2

(23)

0 ≤ pw
t,ss ≤ Pw − pw

t,sstg(θwCAP) ≤ qw
t,ss ≤ pw

t,sstg(θwIND )
(

pw
t,ss
)2

+
(
qw

t,ss
)2 ≤ (Sw)2 (24)

0 ≤ pi
t,ss ≤ Pi − pi

t,sstg
(

θiCAP
)
≤ qi

t,ss ≤ pi
t,sstg

(
θiIND

)
(25)

∀t ∈ Ωt; ∀ss ∈ Ωss
t ; ∀th ∈ ΓnR; ∀{h, w, i} ∈ ΓR;

2.4. Multiobjective EEOPF Problem: SOCP Linearized Formulation

For comparative purposes, a linearized version of the EEOPF problem (7)–(25) was ob-
tained by linearizing the conic constraint (15) through a piecewise linear approximation, as
has been presented in (26)–(33) [34], where ∆Skm = Skm/L and mS

km,l,t,ss = (2l− 1)/∆Skm,t,ss.
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In this linearization approach, the voltage magnitude was adopted as a parameter
(v̌) to overcome the nonlinear behavior presented in (26). Equations (27) and (28) de-
fined the positive slack variables used to calculate the power flows in each lth block.
Equations (29) and (30) described the active/reactive power flow in each lth block, whereas
(32) and (33) defined the active/reactive power flow limits in each lth block.

v̌2
m,t,ssiSQ

km,t,ss =

L

∑
l=1

(
mS

km,t,ss∆pkm,l,t,ss

)2
+

L

∑
l=1

(
mS

km,t,ss∆qkm,l,t,ss

)2
(26)

p+km,t,ss − p−km,t,ss = pkm,t,ss (27)

q+km,t,ss − q−km,t,ss = qkm,t,ss (28)

p+km,t,ss + p−km,t,ss =

L

∑
l=1

∆pkm,l,t,ss (29)

q+km,t,ss + q−km,t,ss =

L

∑
l=1

∆qkm,l,t,ss (30)

p+km,t,ss, p−km,t,ss, q+km,t,ss, q−km,t,ss ≥ 0 (31)

∀km ∈ ΓB; ∀t ∈ Ωt; ∀ss ∈ Ωss
t ;

0 ≤ ∆pkm,l,t,ss ≤ ∆Skm (32)

0 ≤ ∆qkm,l,t,ss ≤ ∆Skm (33)

∀km ∈ ΓB; ∀l ∈ {1, . . . , L}, ∀t ∈ Ωt; ∀ss ∈ Ωss
t ;

2.5. Solution Technique: ε-Constraint Method

This study used the ε-constraint method to determine a Pareto set for the proposed
multiobjective EEOPF model [35,36]. The ε-constraint method aims to optimize one OF,
while the others become constraints of the optimization model, as shown in (34). Where

n is the quantity of OFs analyzed,
−
ε j is the upper bounds for jth ε-constraint, and X is the

feasible region of decision variables, x.

min OFi(x); i ∈ {1, 2, . . . , n};

(34)
s.t
EEOPF constraints

OFj(x) ≤ −ε j; ∀j ∈ {1, 2, . . . , n}, j 6= i;
x ∈ X

Determining appropriate upper bounds for the ε-constraint formulation was a crucial
task to avoid this approach missing a potentially viable solution close to the feasible

region’s boundary [36]. The proposed approach determined some values for
−
ε j through

the difference between the upper and lower bounds in each ε-constraint, as shown in (35).
The lower bound of the jth ε-constraint (OFj) was defined by solving the EEOPF problem
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with consideration given only to the OFj. On the other hand, the upper bound (OFj) was
estimated as being the highest value of the OFj after solving the EEOPF problem with
consideration given to the other OFs, individually. The optimization model (35) was solved
by adopting several values of the continuous parameter ε j and restricted among zero and
one (0 ≤ εj ≤ 1). Figure 4 describes the proposed methodology, where n is the number of
objective functions to be analyzed.

OFj(x) ≤ OFj − ε j

(
OFj −OFj

)
∀j ∈ {1, 2, . . . , n}, j 6= i; 0 ≤ εj ≤ 1 (35)

The EEOPF problem which considered the ε-constraint method and both SOCP models
is presented in (36).

min : Ψi = ∑
(t,ss)∈Ωss

t

(OFi)hrtρ
ss
t

∀i ∈
{

$pg , ploss, GHGC}

(36)
s.t

(7)–(25) SOCP model
or

(7)–(14), (16)–(33) SOCP linearized model
(35) ε-constraint

Table 2 shows a brief comparison between the number of variables and constraints
present in the SOCP models proposed in this work, where |.| is the cardinality of the set.

Table 2. Dimension of the proposed SOCP formulations.

SOCP Linearized

Variables
Continuous 3|ΓN |+6|ΓB|+2|ΓG| Continuous 3|ΓN |+(6 + 2L)|ΓB|+2ΓG

Binary |ΓN | Binary |ΓN |

Constraints

Linear equality 2|ΓN |+2|ΓB| Linear equality 2|ΓN | +(2 + 5L)|ΓB|
Linear inequality 4|ΓN |+4|ΓB|+2ΓG Linear inequality 4|ΓN |+(4 + 3L)|ΓB|+2ΓG

Quadratic
∣∣∣ΓTG

G

∣∣∣+∣∣∣ΓHG
G

∣∣∣+∣∣∣ΓWG
G

∣∣∣ Quadratic
∣∣∣ΓTG

G

∣∣∣+∣∣∣ΓHG
G

∣∣∣+∣∣∣ΓWG
G

∣∣∣
Conic |ΓB|

The first SOCP model presented three continuous (vSQ
k , θk, and qsh

k ) and one binary
(σsh) variables per bus, six variables (iSQ

km , pkm, qkm, pmk, qmk, and δkm) per branch, and
two variables (pg, qg) per generation unit. In addition, the SOCP model must respect six
constraints (7)–(12) per bus (two equality and four inequality); six constraints (13)–(16) and (21)
per branch (two equality, one quadratic, and two inequality); three constraints (22)–(24)
for TG, HG, and WG (two inequality and one quadratic); and two constraints (25) per
PV unit (two inequality). On the other hand, the SOCP linearized model presented two
more variables (∆pkm and ∆qkm) per bus, and eight constraints (26)–(33) (five equality
and three inequality) per branch, in addition to L blocks of piecewise linearization
adopted in the modeling. However, when the stochastic approach was applied to the
EEEOPF problem, each scenario analyzed in the model represented a single problem;
the number of variables/constraints were then multiplied by all scenarios adopted.
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3. Tests and Results

The proposed models were implemented in AMPL [37] and solved using the com-
mercial optimization solver CPLEX 20.1 with default settings. A 118-bus system from
PGLib–OPF v19.05 [38] was used to validate the proposed models and the ε-constraint
method. Numerical experiments were carried out on a computer with an Intel i7 processor
of 3.2 GHz and 16 GB of RAM.

The generation costs can be found in [14,15,24,38,39], and the linear coefficients of WG
and PV units were selected through the energy auctions [40]. The minimum and maximum
voltage limits were 0.95 and 1.05 p.u, respectively. The voltage regulation of all OLTCs of
the system was ∆km = 10%.

Two different energy matrices case in the EPS were analyzed:

(i) Case E1: only TG present.
(ii) Case E2: TG, HG, WG, and PV present.

In this study, the WG VESTAS v80 2 MW and the PV panel GCL-P6/72 330 were used to
provide a maximum power of 1 GW. The cploss and cGHG were equal to 120.00 US$/MWh [41]
and 45.00 US$/ton [42], respectively. The stochastic nature of the electrical demand was
modeled on the weekly demand curve of the Midwestern region of the United States in
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2021 [43]. It was assumed, for the sake of simplicity, that all load buses exhibit identical
consumption patterns.

The historical data of wind speed and solar radiation during 2021 in Illinois (Midwest-
ern United States) were obtained from [44], with a time resolution of 8760 h. RES data were
divided into four blocks, while power demand, wind speed, and solar irradiation were
divided into three load levels each (light, nominal, and heavy).

Table 3 displays the environmental conditions that were adopted in the simulations.
In addition, uniform meteorological and seasonal conditions were adopted for locations
with RES units; based on previous experiments, we concluded that this would demonstrate
acceptable system behavior for one year. The ε-constraint method employs ε values ranging
from 0 to 0.9 in increments of 0.1, to construct Pareto curves. Step 1.0 was dismissed in the
ε-constraint method because it cannot find OF values lower than the minimal OF.

Table 3. Illinois wind speed and solar irradiation levels.

t[h] Scenarios πW
t [m/s] ρW

t πI
t
[
W/m2] ρI

t Tamb[
◦C]

1 [850]
Heavy 5.34 0.30 243.61 0.30 4.70

Nominal 3.20 0.40 25.80 0.11 0.37
Light 1.64 0.30 0.00 0.59 −4.34

2 [3000]
Heavy 5.63 0.30 564.14 0.30 25.95

Nominal 3.19 0.40 93.35 0.24 15.46
Light 1.47 0.30 0.00 0.46 −0.68

3 [4150]
Heavy 4.25 0.30 570.03 0.30 29.99

Nominal 2.26 0.40 96.90 0.24 24.07
Light 1.08 0.30 0.00 0.46 11.23

4 [760]
Heavy 5.99 0.30 236.93 0.30 15.86

Nominal 3.22 0.40 15.32 0.12 8.52
Light 1.48 0.30 0.00 0.58 0.07

In Case E2, HG units were located at buses 4, 24, 26, 31, 40, 42, and 69; WG units were
located at buses 1, 15, 19, and 56; PV units were located at buses 73, 91, 99, and 107; and TG
units were in the remaining buses.

Table 4 presents the average values and the probabilities of demand scenarios adopted.
Complete results are available in [45].

Table 4. IEEE 118-bus: π and ρ demand levels.

Scenarios
Time Blocks t [h]

1 [850] 2 [3000] 3 [4150] 4 [760]

πD
t

Heavy 1.17 1.02 0.88 0.70
Nominal 1.09 0.96 0.82 0.67

Light 1.06 0.92 0.75 0.60

ρD
t

Heavy 0.30 0.30 0.30 0.30
Nominal 0.40 0.40 0.40 0.40

Light 0.30 0.30 0.30 0.30

3.1. Results: SOCP Model

Table 5 presents the bound values obtained using individual OFj minimizations, which
were then used in the ε-constraint method for the SOCP method. By analyzing the OFs
bounds results, it is possible to verify that the RES introduction in the EPS reduced almost
all bounds except in OFploss, which rose 12.00% in Case E1. This increase was because the
installation of RES units in the EPS did not adopt an optimal allocation strategy.
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Table 5. Bound values for the SOCP model.

Cases
Upper Bound [US$] Lower Bound [US$]

OF$pg OFploss OFGHGC OF$pg OFploss OFGHGC

E1 9.03 × 108 1.15 × 108 3.56 × 1010 7.36 × 108 7.75 × 107 2.17 × 1010

E2 8.50 × 108 1.29 × 108 1.79 × 1010 5.87 × 108 7.29 × 107 7.87 × 109

Figures 5 and 6 show the Pareto curves obtained by optimizing the OFs for Cases E1
and E2, respectively.
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The horizontal axis represents the upper limits of each OF according to the values of
ε. The solution of the SOCP model cannot determine a feasible solution for some values
of ε, for OFploss (b) and OFGHGC. This is expected, since the search space is affected by
modifying the OFs boundaries, according to the ε-constraint method.

By analyzing the Pareto curves presented in Figure 5a for Case E1, it was possible
to verify that εploss- or εGHGC-constraints significantly impact OF$pg when εploss = 0.7,
increasing the OF$pg value more that 5.73%. By contrast, the value of εEGHG = 0.7 rose
more than 4.50% of OF$pg value. The largest increase observed for the value of εploss in
OF$pg was 16.55%, while for εEGHG, it was 8.63%.

The Pareto curves presented in Figure 5b highlighted that the εGHGC-constraint did
not modify the OFploss values, with the highest increase in values equal to 0.6%. The
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ε$pg -constraint increased in 5.06% the OFploss values when ε$pg = 0.4, and presented largest
increase, equal to 24.57%.

The Pareto curves shown in Figure 5c revealed that εploss-constraint does have a
significative impact on OFGHGC values, where the largest increase obtained was 0.66%. On
the other hand, the ε$pg -constraint increased the OFGHGC values in 4.89% of cases when
ε$pg = 0.5, presenting the largest increase, equal to 35.64%.

The introduction of RES in the EPS (Case E2), shown in Figure 6a–c, highlighted
that the OFs values were better distributed compared to curves presented in Figure 5. In
addition, the RES generations reduced the fuel costs by 17.69%, 12.46%, and 18.54% in
higher ε-constraint steps for minimizing the power generation costs, active power losses,
and GHG emissions, respectively.

By analyzing the Pareto curves of Figure 6a, the OF$pg value increased in 5.25% of
cases when εploss = 0.5, with its largest increment equal to 26.11%. The OF$pg value
presented a rise of 3.33% when εGHGC-constraint was equal to 0.7, whereas its maximum
increment in OF$pg value was 7.92%. The Pareto curves presented in Figure 6b indicated
that εGHGC-constraint rose in 4.57% the OFploss values wherein εGHGC = 0.5, with the
highest increase in values equal to 23.96%. The ε$pg -constraint resulted in an increase in
7.13% of the OFploss values when ε$pg = 0.4, whereas the largest increase was 40.86%. The
Pareto curves shown in Figure 6c highlighted that the εploss-constraint rose in 4.40% the
OFGHGC values when εploss = 0.5, with the largest increase obtained as 52.08%. On the
other hand, the ε$pg -constraint increased the OFGHGC values in 4.65% when ε$pg = 0.7, and
presented their largest increase as being 33.79%.

Table 6 shows the modification in the OF values regarding the lower bound of each
OF analyzed.

Table 6. Summary of increments of SOCP results in relation to OF J .

Cases ε-Constraint
OF$pg Increment (ε Step) OFploss Increment (ε Step) OFGHGC Increment (ε Step)

Significative Largest Significative Largest Significative Largest

E1

ε$pg − − 5.73% (0.7) 16.55% (0.9) 4.50% (0.7) 8.63% (0.9)

εploss 5.06% (0.4) 24.57% (0.9) − − X 0.6% (0.9)

εGHGC 4.89% (0.5) 35.64% (0.9) X 0.66% (0.9) − −

E2

ε$pg − − 5.25% (0.5) 26.11% (0.9) 3.33% (0.7) 7.92% (0.9)

εploss 7.13% (0.4) 40.86% (0.9) − − 4.57% (0.5) 23.96% (0.9)

εGHGC 4.65% (0.7) 33.79% (0.9) 4.40% (0.5) 52.08% (0.9) − −
−: result did not present an increment because the OF analyzed was the same as the ε-constraint. X: the increment
observed did not present a significative impact in the OF value.

The CPU times consumed by optimizing OFs (power generation costs, active power
losses, and GHG emissions) were about 32, 16, and 27 s, respectively, for Case E1. On the
other hand, the CPU times were less than 44, 17, and 35 s, for the same OFs, for Case E2.

3.2. Results: SOCP Linearized Model

The SOCP linearized model (7)–(14), (16)–(33) was solved using L = 10 blocks for
piecewise linearization. The number of blocks was chosen through empirical means to
achieve a favorable balance between the computational effort required and the quality
of the solution obtained. The voltage magnitude estimated and the ∆Skm used in the
simulations were based on the operational points present in PGLib–OPF v19.05 [38].

Table 7 presents the boundary values used in the ε-constraint method for the SOCP
linearized method. Similar to the SOCP model, the upper bound for OFploss rose 10.46%
when RES generations are factored into the EPS. The other bounds for OFs likewise reduced
their values when the RES are allocated in the EPS.



Energies 2023, 16, 4651 16 of 21

Table 7. Bound values for the SOCP linearized model.

Cases
Upper Bound [US$] Lower Bound [US$]

OF$pg OFploss OFGHGC OF$pg OFploss OFGHGC

E1 9.05 × 108 1.24 × 108 3.58 × 1010 7.38 × 108 8.51 × 107 2.18 × 1010

E2 8.50 × 108 1.37 × 108 1.78 × 1010 5.89 × 108 8.02 × 107 8.25 × 109

Figures 7 and 8 show the Pareto curves by optimizing the OF$pg (a), OFploss (b), and
OFGHGC (c). Horizontal lines represent the OFs values considering the ε-constraint method
for both Cases.
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The linearized model presented similar behaviors to those results obtained using the
SOCP model by optimizing the OF$pg (a), OFploss (b), and OFGHGC (c).

Similarly, this model could not determine a feasible solution for some ε values due to
the reduction in the ε-constraints boundaries. The Pareto curves shown in Figures 7 and 8
were equivalent to those in Figures 5 and 6, respectively. The RES penetration reduced the
TG costs by 17.72%, 12.59%, and 18.57% in the worst ε-constraint steps for the minimization
of the OF$pg , OFploss, and OFGHGC, respectively.

The CPU times consumed for the SOCP linearized model for OF$pg , OFploss, and
OFGHGC were about 190, 78, and 144 s, respectively, for Case E1. On the other hand, for
Case E2, the CPU times were about 207, 64, and 221 s, respectively. These CPU times are
sensitive to the number of linearization blocks in the piecewise linearization. Note that each
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block increased the number of constraints of the problem. As a result, fewer linearization
blocks could compromise the quality of the solutions obtained.

The developed conic models showed practically identical results, but significantly
differed in regard to computational times. Therefore, the feasibility of reactive powers
from the generating units was investigated. The MATPOWER Software [46] was utilized
to apply nodal voltage levels, active power from generating units, and control variable
values, such as transformer taps and compensating shunts [24]. The results indicated that
the SOCP linearized model significantly reduced the infeasibility of reactive power supply
for cases E1 and E2 by 76.07% and 64.48%, respectively, compared to the SOCP model.

4. Conclusions

This work presented a multiobjective second-order conic programming (SOCP) model
to resolve the economic/environmental optimal power flow (EEOPF) problem in the
EPS. Both of the SOCP models we developed were capable of efficiently solving the
stochastic EEOPF problem while considering the objectives of minimizing OF$pg , OFploss,
and OFGHGC, and could do so with satisfactory computational time. It should be noted
that the SOCP model outperformed the SOCP linearized approach in all analyzed cases in
terms of speed. Furthermore, the ε-constraint method efficiently determined Pareto fronts
for each OF. Finally, for comparative purposes, a linearized model of constraint (15) was
also proposed utilizing the reference, which used first-order Taylor expansion [20].

The results indicated that modifying a system’s energy matrix by installing renewable
energy sources (RES) reduced pollutant emissions and system generation costs. However,
the values of active power losses in the network increased due to RES allocation issues and
dependence on climatic conditions. This outcome was due to the lack of a prior study of the
optimal allocation of RES in the system. Conducting a prior analysis to determine optimal
RES allocation in the EPS would result in only a few instances of increased active power
loss values. In addition, the results confirmed that conventional and linearized SOCP
models can determine feasible Pareto sets of solutions for the EEOPF problem, whether
or not they considered RES in the EPS with tight OF values, and they can do so with
respect to all operational and control constraints. However, the linearized model presented
higher computational times than the SOCP model due to the piecewise linearization.
This drawback can be overcome by reducing the number of linearization blocks, but it
will impact the accuracy and the computational time consumed by the computational
implementation of the model.

The authors recommend that in future research, a decentralized modeling approach
should be incorporated, and energy storage devices associated with RES should be consid-
ered to address the EEOPF problem.
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Nomenclature
The following symbols used in the indices, sets, parameters, and variables are used in this research:

Indices and sets:
D, W, I Index for demand, wind speed, and solar irradiation
g Index for all generation units installed in the system
k Index for buses
km Index for branches
sh Index for the shunt compensator
ss Index for stochastic scenarios
t Index for time blocks
ΓB Set of branches
ΓG Set of generation buses

ΓnR, ΓR
Set of buses with fossil-fuel-based/RES generation
units installed, respectively

ΓN Set of buses
Ω Set of all stochastic scenarios
Parameters:
bsh

k , gsh
k Shunt susceptance/conductance in the bus k [Ω]

bkm, gkm Series susceptance/conductance in the branch km [Ω]

bsh
km, gsh

km Shunt susceptance/conductance in the branch km [Ω]

c2, c1, c0
Quadratic/linear/constant cost coefficients of power
generation

[
US$/W2, US$/W, US$

]
cploss, cGHGC Active power loss and greenhouse gas emission cost [US$/W, US$/ton]
h Duration of each time block in hours [h]
L Quantity of blocks of piecewise linearization
mS

km,l Slope of linearization power flow in lth block
PD, QD Active/reactive power demand in the buses [W, VAr]
P, Q Lower active/reactive power injected limit [W, VAr]
P,Q Upper active/reactive power injected limit [W, VAr]
PW

RW , PI
RI Rated active power of the WG and PV [W]

Skm Upper apparent power flow limit in the branch [VA]
Sg Apparent power limit of a generation unit [VA]
tg
(
θCAP),

Capacitive/Inductive reactive power injection factors
tg
(
θ IND)

V, V, Lower/Upper voltage magnitude limit [V]
v̌k Voltage magnitude estimated in the node k [V]
γ, β, α, Emission coefficients for thermal power generation

[
ton/W2, ton/W, ton

]
ρ, π Probability and average values of random variables
λI

R Nominal solar irradiation level
[
W/m2]

λW , λW , λW
R Lower, upper, and nominal wind speed limits [m/s]

∆km Regulation percentage of OLTC in the branch km
ε Epsilon-constraint step
Continuous Variables:
iSQ
km Square of the current magnitude in the branch km [A]

pg
k , qg

k
Active/reactive power injected by the generation technology
g installed in bus k [W, VAr]

pkm, qkm Active/reactive power flow in the branch km [W, VAr]

qsh
k

Reactive power injection by the shunt compensator installed
in bus k [VAr]

vk, θk Voltage magnitude and angle in the bus k [V, rad]
vSQ

k Square of the voltage magnitude in the bus k [V]
δkm Auxiliary variable for the OLTC model
∆pkm,l , Value of active/reactive power flow in lth block [W, VAr]
∆qkm,l
Binaries Variables:
σsh Status of the shunt compensator
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