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Abstract: In this study, to ensure stable operation of multi-parallel PCSs, a damping control strategy
is adopted to restrain resonance characteristics of a parallel system, and the stability of the system is
analyzed. First, the mathematical model of a single PCS is built, the capacitive current feedback-type
active damping control strategy is introduced, and the effect of the damping control strategy on a
single PCS under proportional-integral (PI) control is analyzed. Then, under the presence of grid
impedance, a single PCS model is established and extended to multi-parallel PCSs, where a single
PCS is replaced by a Norton’s equivalent circuit. The active damping method is developed, and Bode
diagrams are utilized to verify that it can effectively suppress the resonance spikes of a parallel system.
Finally, a simulation model of four PCSs in parallel operation is built on the Simulink platform, and
the results support the correctness of the theoretical analysis.

Keywords: power converter system (PCS); LCL filter; PI control; parallel stability; active damping

1. Introduction

Energy storage technology that has the ability to smooth out fluctuations in wind
power output and solar energy generation and to improve the grid’s ability to consume
new energy has become a current research hotspot. With the spread of renewable energy
and distributed generation, an energy storage system generally adopts the structure of
multiple power converter systems (PCSs) connected in parallel to the grid; however, as the
number of PCSs in parallel increases, various stability problems can arise [1]. The presence
in the line of grid impedance leads to the coupling effect as well as interactions between
multiple PCSs and between PCSs and the grid, which cause the resonance characteristics of
the system to become more complicated [2] under grid-connected conditions.

An energy storage PCS is generally composed of an inverter and an LCL filter. Much
research has focused on the stability of LCL-type parallel inverters [2–11]. A control
strategy with active damping has been proposed to suppress resonance [2]. This strategy is
based on the Norton equivalent theorem, which considers each inverter to be a controlled
current source and an output impedance connected in parallel. Under the assumption
that all inverters are the same, using the superposition theorem, parallel inverters can
be simplified to a single inverter whose grid-side impedance increases with the number
of parallel inverters [3]. In [4], a small-signal model of multi-parallel inverters including
current control, voltage feedforward, and pulse width modulation harmonic characteristics
was established, and the basic resonance characteristics of the parallel system under the
influence of grid impedance were analyzed. In [5], the interaction relationship of parallel
inverters with an LCL filter in a weak grid were studied by analyzing the grid-connected
current. In order to represent this interaction relationship, the total current was divided
into the interactive and common current. In [6], a control strategy of introducing virtual
impedance and adding output voltage feedforward in the current loop was proposed;
by utilizing a Bode diagram of the inverter’s equivalent output impedance, the stability
of the parallel inverters under voltage source control was analyzed. In [7], a stability
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analysis of grid-connected inverters based on passivity was conducted, and a new point of
common coupling (PCC) voltage feedforward method was designed to eliminate the causes
of instability for grid-connected inverters. In [8], based on the separation scheme of [5],
an analysis was developed in the discrete z domain, and two stability limitations were
determined to clarify the causes of the resonant current. In [10], from a passive viewpoint,
by utilizing an impedance-based stability analysis method, the instability problem of
inverters with the presence of grid impedance was studied, and the harmonic interaction
was analyzed. A study by [12] simplified the multi-parallel operation of PCSs to a single-
unit operation and used the impedance intersection method to determine the stability of
multiple inverters operating in parallel. However, for energy storage systems, each PCS
often has different power outputs, making this simplified model unsuitable.

Currently, active damping and passive damping [11,13] are the two main damping
methods for solving the PCS parallel resonance problem. The passive damping method
involves connecting the filter inductor or the filter capacitor in series or in parallel with
a resistor, which has the advantages of simple implementation and not being limited by
the switching frequency, but it will produce extra power and reduce the efficiency of the
system [8]. The passive damping method involves adding extra damping resistors to a
circuit, resulting in additional power loss, which can be avoided by using a virtual resistor
to replace the actual resistor to achieve damping of the LCL filter resonance spike [14–16].
This type of damping method through a control strategy is called an active damping
control method. In addition to utilizing a virtual resistor, control strategies such as lead
network, notch filter, and bi-quad filter can achieve active damping of resonance spikes in
a system [17]. Although the active damping control method avoids the use of additional
devices and no extra losses are generated, the system is more complex to calculate and
design. If the capacitive voltage feedback control strategy is adopted, sampling noise has a
significant impact on system control due to the existence of differential links, and therefore,
it can be transformed into the capacitive current feedback control strategy [14]. In [18],
an active damping control method was applied, but there was a lack of comprehensive
analysis regarding the specific magnitude of active damping. Therefore, in this paper, we
further investigate this aspect based on the existing research.

Here, we analyze the resonance problem of multi-parallel PCSs, we adopt a capacitive
current feedback-type active damping control strategy to improve the frequency character-
istics and to compensate for the resonance peaks, and we study the stability of multiple
parallel PCSs with the active damping control method. This paper is organized as follows:
In Section 2, the mathematical model of a single PCS with an LCL filter is built, the design
method of the LCL filter is studied, and the stability of a single PCS under the capacitive
current feedback-type active damping control strategy is analyzed, and then the single PCS
mathematical model is extended to a multiple PCS parallel system mathematical model
with grid impedance. The PCS parallel system model with active damping based on the
current source equivalent is established, and equivalent models are applied to a small
signal analysis at the same time and yield the same conclusions about system stability.
The range of values for active damping that can make the system stable is derived, and
Bode diagrams are utilized to verify the effectiveness of active damping in suppressing
resonance spikes. In Section 3, a simulation model of four parallel 500 kW PCSs is created
to demonstrate the correctness of the theoretical analysis.

2. Materials and Methods
2.1. Modeling and Control of a Single PCS
2.1.1. System Modeling

The PCS consisted of a voltage source three-phase full bridge inverter and an LCL
filter; its grid-connected topology is shown in Figure 1. In Figure 1, L1, L2, and C are the
filter inductors and filter capacitor, respectively; i1 and i2 are the inductor currents flowing
through inductor L1 and L2, respectively; ic is the filter capacitor current. The output
voltage of the three-phase full bridge circuit is ui; ua, ub, and uc are the grid voltages.
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In this paper, the symbols, meanings, and values of various parameters in the PCS
system are presented in Table 1.

Table 1. Simulation parameters.

Symbols Meanings Values

P Power rating 500 kW
Ug RMS of grid phase voltage 220 V
Udc DC side voltage 780 V
L1 PCS side filter inductor 0.25 mH
L2 Grid side filter inductor 0.08 mH
C Filter capacitor 220 uF
Lg Grid-connected inductor 0.003 mH
Hi Capacitor current feedback coefficient 5
fsw PCS switching frequency 10 kHz
kp Current controller proportional coefficient 10
ki Current controller integral coefficient 1000

According to the topology of the grid-connected PCS shown in Figure 1, it can be
inferred that, when the three-phase grid voltage is balanced, the three-phase circuit is
mutually decoupled, and each phase is an independent circuit, as presented in Figure 2.
Based on Figure 2, the transfer function of the LCL filter GLCL(s), namely the transfer
function between the input voltage ui and the output current i2, is:

GLCL(s) =
i2
ui

=
1

L1L2Cs3 + (L1 + L2)s
(1)
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Accordingly, the Bode diagram of GLCL(s) is depicted in Figure 3, and compared with
an L filter. As the figure shows, in the case of the same inductance, the low-frequency gain
of the two filters is the same. However, in the high-frequency part, the gain of the LCL filter
decays rapidly, which means that the suppression effect of the LCL filter on high-frequency
harmonics [17] is far better than that of the L filter. Unfortunately, the gain of the LCL filter
has a resonant spike at the resonant frequency, which causes its phase to suddenly decrease
by 180◦. If this resonance spike is not effectively suppressed, the output current of the
grid-connected PCS will oscillate, and the system will even become unstable. Actually, the
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resonance characteristic of the LCL filter is caused by the lower system damping; therefore,
the damping method can effectively handle this type of problem.
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2.1.2. LCL Filter Design

An LCL filter has better filtering effect than an L filter, but the design of an LCL
filter needs to consider many factors. A reasonable value of an LCL filter can effectively
suppress the high-order harmonics of grid-connected current, and can reduce damage,
due to electromagnetic interference, to the grid equipment. Meanwhile, the stability of the
grid-connected system should be considered in the parameter design [19]. After referring
to various filter designs, the parameter selection steps for the LCL filter of the three-phase
grid-connected PCS are as follows:

A. Inverter-side inductor L1

The current flowing through the switch tubes is the current flowing through the inductor
L1. In order to reduce the current stress of the switch tubes, the current ripple of the inductor
L1 must be limited. Define the ripple factor of the inductor as λL1. According to [20], when
the grid frequency is 50 Hz, the minimum value of the inductor L1 should be:

L1_min =

√
3

4
·

MrUdcUg

λL1 fswP
(2)

where Mr is the modulation ratio, Udc is the DC bus voltage, fsw is the carrier frequency of
the switching tubes, Ug is the effective value of the grid phase voltages, and P is the total
power of the PCS.

B. Filter capacitor C

In an LCL filter, the value of the filter capacitor C decides the amount of reactive power
introduced and determines the size of the current flowing through the inductor L1 and
the switch tubes, and therefore, has an impact on the switching tube conduction loss [21].
When designing capacitor C, the ratio of active power to output-rated active power λc is
usually introduced, and the maximum value of the filter capacitor C is [22]:

C =
λcP

3ωnU2
g

(3)

where λc ≤ 5%, ωn is the grid angular frequency.

C. Grid-side inductor L2

The value of the inductance L2 should be moderate, because, if it is too large, the
inductance will reduce the dynamic response speed of the system, and if it is too small, the
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inductance will increase the system loss. Considering, comprehensively, that the grid-side
inductance L2 and the inverter-side inductance L1 satisfy the following relationship:

L1 = kL2 (4)

when k is between 4 and 6, the effect of inductance distribution and capacitance matching
is best.

Considering the characteristics of the LCL filter to eliminate switching frequency
harmonics, the switching frequency is greater than the resonant frequency. In addition, the
purpose of an LCL filter is to filter out all the harmonics above the fundamental. If the
resonant frequency is close to the fundamental wave frequency, it will increase the quantity
of filter elements, which does not reflect the advantage of the third-order control system of
an LCL filter. Combining the above two factors, the resonant frequency of the LCL filter is
designed to satisfy [23]:

10 fn ≤ fres =
1

2π

√
L1 + L2

L1L2C
≤ 0.5 fsw (5)

where fn is the grid frequency, fres is the resonant frequency of the LCL filter, and fsw is the
PCS switching frequency.

2.1.3. Control Strategy

A PI control strategy based on current feedforward decoupling is adopted for the
grid-connected PCS [24,25], and the control structure diagram is shown in Figure 4.
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In Figure 4, i2abc represents the three-phase grid-connected current, uabc is the three-
phase grid voltage, and inductor L = L1 + L2. The grid-side voltage uabc gained by sampling
is locked through a three-phase phase-locked loop (PLL) to obtain the grid voltage phase.
The instantaneous active current component id and the reactive current component iq of
the grid-side current i2abc can be acquired by transforming the coordinate system from
abc to dq for the grid-side current i2abc. The errors between the active current reference
id*, the reactive current reference iq*, and the actual values id and iq are adjusted by the PI
controller. Then, through decoupling feedback, the reference voltages urd and urq in the dq
coordinate system are output.

As mentioned above, an LCL filter has a resonance problem. If the resonance is not
suppressed, the current closed-loop system may not be stable. The traditional method is
the passive damping method, that is, filter resistors connected with the inductor in series
(parallel) or the capacitor in series (parallel) are added to the filter. However, the addition of
a filter resistor increases the cost of a system; meanwhile, due to active power loss through
the filter resistor, the efficiency of the system is reduced. The heating problem of a filter
resistor is also another adverse factor limiting its practical application. Compared with the
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passive damping method, although the introduction of sensors leads to control complexity
and higher cost of the system, the active damping method has attracted more attention
because of no additional power loss [27]. In this paper, a capacitive current feedback-type
active damping control strategy is adopted.

Figure 5 is the control block diagram of the grid-connected PCS current loop when
capacitive current feedback control is introduced [8], where i2_ref represents the reference
of grid-connected current i2; GPI(s) is the PI controller, and its transfer function expression
is kp + ki/s; KPWM represents the gain of the PCS, and its value is set to 1 in this paper; Hi is
the feedback coefficient of capacitor current. The current reference values idref and iqref can
be obtained from the power reference values.
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The equivalent transformation of the control block diagram shown in Figure 5 can
result in a simplified control block diagram, as shown in Figure 6, where:

Gk1(s) =
KpwmGPI(s)

s2L1C + sCKpwmHi + 1

Gk2(s) =
s2L1C + sCKpwmHi + 1

s3L1L2C + s2L2CKpwmHi + s(L1 + L2)

(6)

The loop gain of the above closed loop system is:

TA(s) = Gk1(s)Gk2(s) =
KpwmGPI(s)

s3L1L2C + s2L2CKpwmHi + s(L1 + L2)
(7)

The current on the grid side is:

I2(s) =
TA(s)

1 + TA(s)
I2ref(s)−

Gk2(s)
1 + TA(s)

Ug(s) (8)
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According to Equation (7), the Bode diagram of the system loop gain before and after
adopting active damping control can be obtained, as shown in Figure 7. It can be observed
from Figure 7 that Hi has little effect on the amplitude-frequency characteristics of the low-
frequency and high-frequency system, but the amplitude-frequency and phase-frequency
characteristics of the system near the resonant frequency f r are significantly improved, and
the resonant amplitude at f r is significantly suppressed, which can prove that utilization
of the active damping control method can help the LCL filter to effectively restrain the
resonance spike, and therefore, improve the stability of the system.
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Based on Equation (8), a single PCS can be replaced by a Norton’s equivalent circuit in
the admittance form [2], as shown in Figure 8, where I*(s) is the equivalent current source,
Teq(s) is the equivalent admittance, and

I∗(s) =
TA(s)

1 + TA(s)
I2ref(s)

Teq(s) =
Gk2(s)

1 + TA(s)

(9)
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2.2. Modeling and Stability Analysis of Multi-Parallel PCSs
2.2.1. System Modeling

Compared with the ideal grid-connection situation of the single PCS in Section 2, the
grid-connection voltage of each PCS in parallel operation is no longer the ideal voltage,
but upcc. The equivalent circuit of multiple PCSs connected to the grid in parallel is shown
in Figure 9. In the figure, Z1i, Z2i, and Z3i (i = 1, . . . , n) represent the impedances of the
LCL filter of the i-th PCS. Subscripts 1, 2, and 3 represent the inductors and capacitor,
respectively; Zg is the grid impedance; uii are PCS output voltages; ug is the grid voltage; ii
are the grid-side currents; ig is the grid-connected current.

Based on the equivalent circuit shown in Figure 9, the relationship between the grid-
side current ii of each PCS and the PCS output voltages uii and the grid voltage ug can be
expressed by a matrix [3]:

i1
i2
. . .
in

 =


G11 G12 · · · G1n
G21 G22 · · · G2n
· · · · · · Gij · · ·
Gn1 Gn2 · · · Gnn

 ·


ui1
ui2
. . .
uin

+


H1
H2
. . .
Hn

 · ug (10)
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In the given context, Gij and Hi are equivalent admittance parameters. Gij represents
the equivalent admittance parameters of the PCS output voltage uij when it acts alone and
generates the grid-side current ii. Hi represents grid voltage ug acting alone on the current ii.

In practice, energy storage power stations are often designed modularly; therefore, it
can be reasonably assumed that all the parameters of each PCS in the parallel system are
the same [3], including their hardware and software parameters. Then, the impedances of
the LCL filters can be expressed as:

Z11 = Z12 = · · · = Z1n = Z1
Z21 = Z22 = · · · = Z2n = Z2
Z31 = Z32 = · · · = Z3n = Z3

⇒


Z1 = L1 · s
Z2 = L2 · s
Z3 = 1/Cs

(11)

According to the above assumption, all diagonal elements are uniform, denoted as
G1, and all non-diagonal elements of the matrix are also uniform, denoted as G2. Likewise,
Hi can be denoted as H1. Through the superposition principle and circuit simplification,
elements G1, G, and H1 can be derived, as given in Equation (12):

G1 =
i1
ui1

=
Z3Z+(n−1)Z3Zg(Z1+Z3)

Z·(Z+nZg(Z1+Z3))

G2 =
i1
ui2

= − Z3Zg(Z1+Z3)

Z·(Z+nZg(Z1+Z3))

H1 =
i1
ug

= − Z1+Z3
Z+nZg(Z1+Z3)

Z = Z1Z2 + Z1Z3 + Z2Z3

(12)

For the first PCS, G1, G2, and H1, respectively, represent the transfer function between
the grid-side current i1 and the excitation sources ui1, ui2 ~ uin, and ug when these excitation
sources act alone, which is similar to other PCS.

Figure 10 shows the Bode diagram of G1(s), G2(s), and H1(s) when the number of
parallel PCSs is three. The parameters required for the figure are selected according to
Table 1. The Bode diagram reveals that without introducing an active damping strategy,
when the excitation sources ui1 and ui2 ~ uin act separately, three resonance spikes appear
in the circuit. Moreover, when the excitation source ug acts alone, the frequency response
curve of the system contains two resonance spikes. The existence of these resonance spikes
can destabilize the circuit. Based on the above Bode diagram, the resonance characteristics
of the PCS parallel system can be obtained and used to analyze the stability of the system,
and therefore, adopt corresponding control strategies to suppress the resonance peaks and
to ensure stable operation of the system.
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2.2.2. Small Signal Model Analysis

An LCL filter grid-connected inverter is a complex system, characterized by high-order,
strong coupling, and nonlinearity. To simplify its analysis, a small signal model is used
to linearize the system around its steady-state operating point. Figure 11 [28] shows the
small-signal model of the three-phase LCL-type PCS, where the inverter and filtering system
can be represented as a Norton circuit, and the grid side can be represented as a Thevenin
circuit consisting of an ideal voltage source ug(s) and grid impedance Zgrid(s) in series. The
inverter is equivalent to the parallel form of an ideal current source iref(s) and the output
impedance Zin(s). The voltage at the common coupling point is denoted as uPCC(s).
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According to Figure 11, the grid-connected current ig(s) expression can be obtained as:

ig(s) =
Zinv (s)

Zinv (s) + Zgrid (s)
iref (s)−

1
Zinv (s) + Zgrid (s)

ug(s) (13)

In the PCS, the grid voltage ug(s) is typically considered to be constant and does
not vary with the system. The equivalent current source is set to a reference value at the
steady-state operating point and remains constant thereafter. Additionally, the equivalent
impedance Zin(s) of the inverter is typically assumed to be constant and not affected by
changes in the grid impedance. This assumption is made to simplify the calculations and is
often used in practice.

Therefore, a change in current ig(s) is only related to a change in the expression
1/(1 + Zgrid(s)/Zinv(s)), as F(s),

ig(s) =
[

iref(s)−
ug(s)

Zinv(s)

]
· 1
1 + Zgrid(s)/Zinv(s)

=

[
iref(s)−

ug(s)
Zinv(s)

]
·F(s) (14)
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The simplified control block diagram of the two current control structures is illustrated
in Figure 12 after simplifying the control system diagram.
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The transfer function without active damping (i = 1) can be obtained:

Gx1(s) =
KpwmGPI(s)
s2L1C + 1

Gy1(s) =
s2L1C + 1

s3L1L2C + s(L1 + L2)

T1(s) = 1

(15)

The transfer function with active damping (i = 2) can be obtained as follows:

Gx2(s) =
KpwmGPI(s)

s2L1C + sCKpwmHi + 1

Gy2(s) =
s2L1C + sKpwmCHi + 1

s3L1L2C + s2L2CKpwmHi + s(L1 + L2)

T2(s) = 1

(16)

Based on Figure 12, the current loop control block diagram is simplified without
utilizing the small-signal model and Equation (15). As a result, the transfer function of the
current ig(s) can be expressed as follows:

ig =
Gx1Gy1

1 + Gx1Gy1T1
iref −

Gy1

1 + Gx1Gy1T1
ug

=
KpwmGPI(s)

s3L1L2C + s(L1 + L2) + KpwmGPI(s)
iref

− s2L1C + 1
s3L1L2C + s(L1 + L2) + KpwmGPI(s)

ug

(17)

Based on Figure 12, the current loop control block diagram is simplified by incorporat-
ing the small-signal model and Equation (16). This allows us to derive the transfer function
of the current ig(s) as follows:

ig =
Gx2Gy2

1 + Gx2Gy2T2
iref −

Gy2

1 + Gx2Gy2T2
ug

=
KpwmGPI(s)

s3L1L2C + s2L2CKpwmHi + s(L1 + L2) + KpwmGPI(s)
iref

−
s2L1C + sCKpwmGPI(s) + 1

s3L1L2C + s2L2CKpwmHi + s(L1 + L2) + KpwmGPI(s)
ug

(18)
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Thus, the ratio of the grid impedance to the equivalent output impedance of the
inverter under closed-loop current control with and without capacitive current feedback
can be expressed as:

f1(s) =
s3L1L2C + s(L1 + L2)

KpwmGPI(s)
(19)

f2(s) =
s3L1L2C + s2L2CKpwmHi + s(L1 + L2)g

KpwmGPI(s)
(20)

Judging the stable state of Equation (14) is equivalent to judging whether F(s) is stable.
F(s) can be seen as a negative feedback loop with a forward path gain of 1 and a feedback
loop gain of f (s) = Zgrid (s)/Zinv (s). Thus, we can conclude that:

(1) If the grid is strong (high independence), f (s) is close to 0 and F(s) is close to 1, meaning
the system is always stable.

(2) If the grid is weak (low independence), the system is only stable if certain conditions
are met by f (s).

Given the above, the analysis of the stability of the grid-connected inverter can be
simplified as the analysis of the stability of f (s). However, F(s) = 1/(1+ Zgrid (s)/Zinv (s))
can be regarded to be the unit negative of the forward path gain of 1/ f (s).

In the feedback system, according to the principle of open-loop analysis and a closed-
loop system, by analyzing 1/ f (s), the stability of F(s) can be obtained, and then the stability
of the grid-connected inverter system can be observed.

After analyzing the above, it is evident that the stability of f (s) is primarily determined
by the value of Hi when the PCS structure remains unchanged. By comparing (8) and
Equation (18), it can be observed that the current expression derived from the small signal
modeling method is entirely consistent. Therefore, it can be concluded that the stability
analysis results obtained from both methods are identical.

2.2.3. Stability Analysis

According to the above, after introducing the capacitive current feedback-type active
damping control strategy, a single PCS can be replaced by a Norton’s equivalent circuit in
admittance form. Based on this, each PCS in a parallel system can be replaced by a circuit
where a current source is connected in parallel with the output impedance, and then all the
PCSs in parallel are connected to the grid through the grid equivalent impedance [2]. The
equivalent topology is shown in Figure 13.

In Figure 13, Ii*(s) (i = 1, . . . , n) represents the equivalent current source of the i-th
PCS, Teq(s) is the equivalent admittance. It is assumed that all PCSs are the same; therefore,
the equivalent admittance is the same. According to the superposition theorem, taking the
first PCS as an example, the grid-side current can be obtained as follows:

I1(s) = I∗1 (s)
(

1−
Zg(s)Teq(s)

nZg(s)Teq(s) + 1

)
−

n
∑

i=2
I∗i (s)

Zg(s)Teq(s)
nZg(s)Teq(s) + 1

−Ug(s)
Teq(s)

nZg(s)Teq(s) + 1

(21)

It is clear that Equation (21) has three independent terms. For the first PCS, these three
terms, respectively, represent the transfer function between the grid-side current I1(s) and
the excitation sources I1*(s), I2*(s)~In*(s), and Ug(s) when these excitation sources act alone,
which is similar to other PCSs.

From (9), the mathematical relationship between the equivalent current source and
the current reference value is given in Equation (22), and then through Equation (21), the
mathematical relationship between the grid-side current I1(s) and the current reference
values I1ref(s) and I2ref(s) can be obtained. On this basis, the Bode diagram of the transfer
function between the grid-side current I1(s) and the current reference values I1ref(s) and



Energies 2023, 16, 4633 12 of 17

I2ref(s) and the voltage source Ug(s) can be depicted, as presented in Figure 14. The
parameters required for the figure are selected according to Table 1.
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I∗i (s) =
TA(s)

1 + TA(s)
Iiref(s) (22)

According to the method of judging the stability of the system by using the Bode
diagram, if the phase margin and amplitude margin are greater than 0 at the same time, the
system is stable; otherwise, the system is unstable. As Figure 14 shows, by utilizing the
active damping method, the resonances of PCS1 are effectively suppressed. The ability of
active damping control to suppress the resonant spikes of the parallel systems is proven,
and this method can significantly improve the operation stability of a parallel system.

In Equation (21), let ∑n
i=2 I∗i = mI∗1 , the grid connection current can be expressed as:

I1(s) = I∗1 (s)
(n− 1−m)Zg(s)Teq(s) + 1

nZg(s)Teq(s) + 1
−Ug(s)

Teq(s)
nZg(s)Teq(s) + 1

(23)

Substituting Equation (9) into Equation (23), it can be concluded that system’s stability
depends on the pole distribution of GK2(s), 1

1+TA(s)
, and 1/

(
nZg(s)GK2(s) + 1 + TA(s)

)
.

The presence of GK2(s) does not impact the system’s stability, while the polar distribution of
1/(1 + TA(s)) is solely determined by the internal parameters of an individual PCS [2]. The
pole distribution of 1/

(
nZg(s)GK2(s) + 1 + TA(s)

)
is associated with the grid impedance

and the number of parallel PCSs, and now, the stability of the system is only related to
the distribution of its poles. The presence of a resistor increases the system damping, and
in order to conduct the study in the worst case of zero passive damping, the parasitic
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resistance of the net-side inductor is neglected, and therefore, Zg(s) = sLg. By substituting
GK2(s) and TA(s) into 1/

(
nZg(s)GK2(s) + 1 + TA(s)

)
, it yields:

1
nZg(s)Gk2(s) + 1 + TA(s)

=

s4L1L2C + s3CHiL2 + s2(L1 + L2)

s4L1
(

L2 + nLg
)
C + s3CHi

(
L2 + nLg

)
+ s2

(
L1 + L2 + nLg

)
+ skp + ki

(24)

Therefore, the constraints of Hi can be derived to ensure the stability of the system by
using the Routh criterion [29]:

Hi <
2kpL1(

L1 + L2 + nLg
)
−
√(

L1 + L2 + nLg
)2 − 4kiL1

(
L2 + nLg

)
C

Hi >
2kpL1(

L1 + L2 + nLg
)
+
√(

L1 + L2 + nLg
)2 − 4kiL1

(
L2 + nLg

)
C

(25)

3. Results and Discussion

To validate the correctness of the above theoretical analysis, simulations were con-
ducted on the MATLAB/Simulink platform. A simulation system model with four PCSs in
parallel was built. The simulation parameters of each PCS are presented in Table 1.

Figure 15 presents the waveform of the grid-connected current of a single PCS without
adopting active damping control. It can be clearly observed from Figure 15 that when
no active damping is introduced, the grid-connected current distortion is severe due to
the resonance problem of the parallel circuit. In Figure 16, as the active damping control
strategy is adopted to the parallel system, the waveform of the grid-connected current
has no significant distortion, and it presents a sinusoidal waveform and maintains the
same phase with the grid voltage. Figure 17 shows the THD analysis of the grid-connected
current. It can be concluded that the current is highly sinusoidal, the distortion rate remains
at about 0.19%, and the control effect is significant.
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Figure 17. Grid-connected current harmonic distortion rate of a single PCS with active damping.

Then, the simulation model was extended to four PCSs connected in parallel and
capacitive current proportional feedback control was adopted. The waveforms of the
grid-connected current and voltage are recorded in Figure 18, and the THD analysis of the
current is presented in Figure 19. As shown in Figure 19, the current is highly sinusoidal,
and the distortion rate remains at about 1.35%. It proves that the application of an active
damping control strategy can effectively strengthen the stability of the system by increasing
the damping of the parallel circuit.
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Utilization of the capacitive current feedback-type active damping control strategy
improves the frequency characteristics and compensates for the resonance peaks, which
improves the stability of the system. From the above simulation results, when the capacitor
current feedback coefficient Hi is 5, the harmonics of the grid-connected current can be
effectively suppressed, and the stability of the parallel system is significantly improved.
However, when active damping control is applied, it is necessary to select an appropriate
value of Hi to obtain a better harmonic suppression effect. The Bode diagram of the transfer
function for PCS1 when the value of Hi is 2 is presented in Figure 20. It can be observed from
the Bode diagram that the system is in an unstable operating state at this time. Meanwhile,
the grid-connected current of four PCSs is depicted in Figure 21. It can be concluded that the
waveform of the grid-connected current oscillates and has large harmonics. Consequently,
the results of the Bode diagram of the transfer function are consistent with the simulation
results. According to the results obtained above, Bode diagrams of the system can be drawn
when Hi takes different values, and then the influence of Hi on system stability can be
evaluated to obtain the appropriate value of Hi in practical application.

Energies 2023, 16, x FOR PEER REVIEW 16 of 18 
 

 

effectively suppressed, and the stability of the parallel system is significantly improved. 

However, when active damping control is applied, it is necessary to select an appropriate 

value of Hi to obtain a better harmonic suppression effect. The Bode diagram of the trans-

fer function for PCS1 when the value of Hi is 2 is presented in Figure 20. It can be observed 

from the Bode diagram that the system is in an unstable operating state at this time. Mean-

while, the grid-connected current of four PCSs is depicted in Figure 21. It can be concluded 

that the waveform of the grid-connected current oscillates and has large harmonics. Con-

sequently, the results of the Bode diagram of the transfer function are consistent with the 

simulation results. According to the results obtained above, Bode diagrams of the system 

can be drawn when Hi takes different values, and then the influence of Hi on system sta-

bility can be evaluated to obtain the appropriate value of Hi in practical application. 

 

Figure 20. Bode diagram of the transfer function for PCS1 when the value of Hi is 2. 

 

Figure 21. Grid-connected current for four PCSs when the value of Hi is 2. 

4. Conclusions 

In this paper, we analyze the resonance problem of multi-parallel PCSs, and adopt 

on active damping control strategy of capacitive current proportional feedback to improve 

the frequency characteristics and to compensate for the resonance peaks. Theoretically, 

first, we established a single PCS mathematical model from the perspective of a single PCS, 

analyzed the design method of the LCL filter, and introduced the active damping control 

strategy of capacitor current feedback to improve its amplitude-frequency characteristics. 

Then, the model was extended to multiple parallel PCSs and connected to the grid through 

the grid impedance. The parallel system of multiple PCSs was established based on Nor-

ton’s equivalent circuit. The stability of the system was verified by using Bode diagrams. 

After introducing the active damping control strategy, we found that the resonant peaks 

Figure 20. Bode diagram of the transfer function for PCS1 when the value of Hi is 2.



Energies 2023, 16, 4633 16 of 17

Energies 2023, 16, x FOR PEER REVIEW 16 of 18 
 

 

effectively suppressed, and the stability of the parallel system is significantly improved. 

However, when active damping control is applied, it is necessary to select an appropriate 

value of Hi to obtain a better harmonic suppression effect. The Bode diagram of the trans-

fer function for PCS1 when the value of Hi is 2 is presented in Figure 20. It can be observed 

from the Bode diagram that the system is in an unstable operating state at this time. Mean-

while, the grid-connected current of four PCSs is depicted in Figure 21. It can be concluded 

that the waveform of the grid-connected current oscillates and has large harmonics. Con-

sequently, the results of the Bode diagram of the transfer function are consistent with the 

simulation results. According to the results obtained above, Bode diagrams of the system 

can be drawn when Hi takes different values, and then the influence of Hi on system sta-

bility can be evaluated to obtain the appropriate value of Hi in practical application. 

 

Figure 20. Bode diagram of the transfer function for PCS1 when the value of Hi is 2. 

 

Figure 21. Grid-connected current for four PCSs when the value of Hi is 2. 

4. Conclusions 

In this paper, we analyze the resonance problem of multi-parallel PCSs, and adopt 

on active damping control strategy of capacitive current proportional feedback to improve 

the frequency characteristics and to compensate for the resonance peaks. Theoretically, 

first, we established a single PCS mathematical model from the perspective of a single PCS, 

analyzed the design method of the LCL filter, and introduced the active damping control 

strategy of capacitor current feedback to improve its amplitude-frequency characteristics. 

Then, the model was extended to multiple parallel PCSs and connected to the grid through 

the grid impedance. The parallel system of multiple PCSs was established based on Nor-

ton’s equivalent circuit. The stability of the system was verified by using Bode diagrams. 

After introducing the active damping control strategy, we found that the resonant peaks 

Figure 21. Grid-connected current for four PCSs when the value of Hi is 2.

4. Conclusions

In this paper, we analyze the resonance problem of multi-parallel PCSs, and adopt on
active damping control strategy of capacitive current proportional feedback to improve the
frequency characteristics and to compensate for the resonance peaks. Theoretically, first, we
established a single PCS mathematical model from the perspective of a single PCS, analyzed
the design method of the LCL filter, and introduced the active damping control strategy
of capacitor current feedback to improve its amplitude-frequency characteristics. Then,
the model was extended to multiple parallel PCSs and connected to the grid through the
grid impedance. The parallel system of multiple PCSs was established based on Norton’s
equivalent circuit. The stability of the system was verified by using Bode diagrams. After
introducing the active damping control strategy, we found that the resonant peaks of the
multi-parallel PCSs were effectively suppressed. Furthermore, the same conclusion was
reached by analyzing small signal models. Finally, the effectiveness of the proposed method
was verified by using a simulation model. A circuit model consisting of four PCSs in parallel
was built, and the results revealed that the active damping method could compensate for the
resonance peaks and improve the stability of the system, and could also effectively reduce
the grid-connected current distortion rate and improve the power quality.
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