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Abstract: The speed profile tracking calculation of high-speed maglev trains is mainly affected by
running resistance. In order to reduce the adverse effects and improve tracking accuracy, this paper
presents a maglev train operation control method based on a fractional-order sliding mode adaptive
and diagonal recurrent neural network (FSMA-DRNN). First, the kinematic resistance equation is
established due to the three types of resistance that occur during the actual operation of a train: air
resistance, guide eddy current resistance, and suspension frame generator coil resistance. Then, the
FSMA-DRNN control law and parameter update law are designed, and a FSMA-DRNN operation
controller is composed of three parts: speed feed forward, fractional-order sliding mode adaptive
equivalent control, and diagonal recurrent neural network resistance compensation. Furthermore,
by using the designed operation controller, it is proven effective by the Lyapunov theory for the
stability of the closed-loop control system. Apart from the proposed theoretical analysis, the proposed
approaches are verified by experiments on the high-speed maglev hardware-in-the-loop simulation
platform Rt-Lab, in line with the 29.86 km test line and a five-car train from the Shanghai maglev,
showing the effectiveness and superiority for operation optimization.

Keywords: high-speed maglev; speed tracking; running resistance; fractional order; diagonal
recurrent neural networks

1. Introduction

A high-speed maglev transportation system adopts non-contact levitation and guid-
ance technology, based on electromagnetic principles, is propelled by linear motors to drive
trains, and is a high-speed green means of transportation [1,2]. High-speed maglev trains
can reach over 300-600 km/h, whereas medium-low-speed maglev trains can only reach
below 300 km/h. Different from wheel-rail transit systems, maglev trains are affected by
various resistance factors such as slope, air resistance, the eddy current effect, and back
electromotive force during operation [3-5]. In the operation control field of maglev trans-
portation, it has become more and more difficult in recent years to reduce the impact of train
running resistance, improve train speed tracking accuracy, and design high-performance
train running controllers.

The operation controller is an important component of the maglev train Operation
Control System (OCS), and the main task is to effectively and precisely track the optimized
speed curve, to ensure operation actions such as automatic departure, acceleration, cruising,
coasting, braking, and precise parking [6,7]. However, during the train running process,
the location and speed states frequently change, and the acceleration and deceleration
actions are contained in the continuous domain, which may result in enormous state
space and dimension errors [8]. Thus, speed curve tracking involves vital steps to ensure
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that the optimal speed curve is energy-saving and provides anti-disturbance tracking
control with high precision [9-11]. High-performance operation control algorithms can
dynamically adjust actual operation curves based on line parameters, reduce the adverse
impact of operation resistance, precisely track the preset speed profile, and improve train
control quality.

In recent years, speed tracking algorithms have tended to mature for wheel rail
transit systems, mainly including the classical control algorithm, parameter adaptive
control algorithm, intelligent control algorithm, and integrated intelligent control algorithm.
In [12,13], a multimodal fuzzy PID (MMFPID) control algorithm was proposed, which
uses traction feed forward and local output limiting methods to improve the dynamic
performance of the controller, achieving the fast tracking of the train speed target profile.
In [14], an adaptive fuzzy sliding mode controller was designed to soften the nonlinear
switching control signal and achieve accurate parking. In [15], the multi-step Kalman filter
control was performed to overcome the control delay time and to realize a precise stop.
In [16], a finite-time double sliding surface guidance (DSSG) algorithm for the subway
speed profile tracking was developed, with the convergence proved by the theories. In [17],
the method was based on the matter-element theory, and the corresponding function of
the performance indices drawn on the speed trajectory was proposed. In [18,19], a model-
free fuzzy PID controller was constructed, which was used to adaptively adjust the PID
gains. In [20], a model free adaptive controller combined with a neural network and PID
algorithm in order to realize adaptive control was designed. In [21-23], for subway train
speed tracking with speed sensor fault and over-speed protection, a model free adaptive
iterative learning control based on a fault-tolerant control (MFAILC-FTC) scheme was put
forward. In [24], for the purpose of solving the speed and position tracking control based
on the multiple-point-mass dynamic model, a radial basis function neural-network-based
adaptive iterative learning fault-tolerant control algorithm (RBFNN-AILFTC) was utilized.
In [25,26], a DRTO method to optimize train operations was proposed according to deep
RL (Reinforcement Learning) techniques, addressing several challenges of the changes in
running states and multiple trains. Q-learning was used in [27,28], and a deep Q-network
(DQN) [29,30] was applied to optimize the set operation strategy, in which neural networks
were applied to conduct the RL process. In [31], two smart train operation (STOD and
STON) algorithms were proposed by integrating expert knowledge with reinforcement
learning algorithms.

The experimental or simulation results of the above methods demonstrated that these
controllers can converge within a certain period of time for a wheel/rail transit system, but
they are not strictly suitable for occasions such as maglev trains being affected by magnetic
operation resistance, for a low/medium-speed maglev train. In [32], a fractional-order
sliding mode adaptive neural network on the basis of operation controller was executed,
estimating and compensating for the running resistance of a medium-speed maglev train to
meet the requirements for train control accuracy and robustness. In [33], a fractional-order
PID-based operation control method was performed, tracking the target speed profile of
the train and reducing the influence of various running resistances on running process.
In [34], a periodic adaptive compensation controller was proposed, consisting of four parts:
a PD module, a speed feed-forward module, a periodic adaptive learning line additional
resistance compensator, and an eddy current resistance and air resistance compensator.

For tackling the problem of high-speed maglev train asymptotic tracking under un-
known time-varying resistance or unknown parameters, such as actuator failures, this
paper proposes the speed profile tracking method based on a fractional-order sliding mode
adaptive and diagonal recurrent neural network (FSMA-DRNN). Fractional-order sliding
mode controllers provide robustness to disturbances and uncertainties [35], and diagonal
recurrent neural networks offer adaptability to system changes [36,37].

The rest of this article is organized as follows. Section 2 describes the dynamic model of
a high-speed maglev train. Section 3 formulates the computation model of a FSMAC-DRNN
operation controller, the design of the control law of this controller, and how the stability
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is proven. Simulations are carried out in Section 4 by using the Shanghai maglev line
scenario to validate the proposed approach. Finally, the conclusion and some discussion
are provided in Section 6.

2. Dynamic Model of High-Speed Maglev Train

On the basis of Newton’s laws of motion, the dynamic equation of a high-speed
maglev train is established:
ma=F,—B—W. @D

Fp is the traction force, generated by a long stator linear synchronous motor; B is the
braking force, produced by the eddy current braking system and the skid; W is the running
resistance of the train, consisting of air resistance and additional resistance; m is the train
mass; and 4 is the train acceleration. If the control output is F(t) = F,, then B(t) and W(t)
represent the electromagnetic and mechanical resistance at time ¢, respectively, and the
kinematic model of the train is as follows [16]:

@

X is the displacement of the maglev train, and v is the velocity. x and v represent the
differentiation of x and v, respectively. The force analysis of a single mass model for the
maglev train is shown in Figure 1.
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Figure 1. Force and structure analysis of maglev train. (a) Force analysis of maglev train single-
particle model. (b) Structure analysis of the guideway and levitation frame [1]. F: the traction force; v:
the running velocity; F;: the levitation force; v: the running velocity; M: the mass of maglev train; g:
the gravity acceleration; a: the slope angle; B.: the conventional braking force; B,: the emergency
braking force; W: the running resistance; W,: the air resistance; W,: the guide eddy current resistance;
W,: the resistance generated by the harmonics of the linear generator.

2.1. Tractive Force Model

The tractive force of the maglev train is provided by the long stator synchronous
linear motor; ¥y, 1y, i4, i are the magnetic linkage and current components of the stator
winding on the d-g axis, respectively; and 7 is the stator pole distance. According to the
rotor magnetic field-oriented control strategy, i; is usually controlled to 0, and the model is
described as follows [11,38]:

3 . ) i7=0 3 .
F:E(ldelq—lquZd) = F:E%PXmq. 3)

2.2. Braking Force Model

The braking force consists of a conventional braking force B, and an emergency
braking force B,. The conventional braking force is created by the long stator linear motor,
that is, the tractive force is reversed. The emergency braking force is generated by the eddy
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current effect between the lateral braking magnetic pole and the guideway and is expressed
by [11,39]

BcZFI%(lPdXiq*quXid)f @

g-1.2m-(1 —e(=0/%)) (v >2.78 m/s)

Be = V'mg-\/m (0<v<278m/s)- (5)

0 (v=0)

where g represents the eddy current braking level, v, is the speed constant, and y is the
friction coefficient.

2.3. Running Resistance Model

The running resistance is mainly composed of air resistance W,, guideway eddy
current resistance W,, and the resistance W, generated by the harmonics of the linear
generator on the suspension frame that hinders the relative movement of the traveling
wave magnetic field. The specific expression is as follows [40-42]:

W, = (Wy-0?)-1073, (6)

W, = n-0.5-[(0/111)%7 4 1.3-(v/111)%7], @)

n-(146/v—02) (v>41.7m/s)
Wy =< n33 (5.56 < v <41.7m/s). 8)
0 (0 <v<556m/s)

where 71 represents the number of wagons, and Wy represents the air resistance coefficient
during the running.

3. FSMA-DRNN Operation Controller Design

In order to minimize the impact of running resistance on the train position and speed
tracking control and improve the running control performance of high-speed maglev
trains, an operation controller based on a fractional-order sliding mode adaptive diagonal
recurrent neural network is developed by combining three algorithms: fractional-order
control, sliding mode adaptive control, and a diagonal recurrent neural network. Under the
premise of ensuring the stability of the controller, the diagonal recurrent neural network is
used to estimate the running resistance and the fractional-order adaptive sliding surface to
ensure that the adaptive algorithm has a larger adjustment interval.

3.1. FSMA-DRNN Control Law

The position and speed error of high-speed maglev train are given as

ex = x — x(t), 9)

ex =X — X, (t) = v — v, (t). (10)

where ey is the actual displacement error, x,(f) is the expected displacement distance, v, (t)
is the expected velocity, and v.(t) is the expected acceleration. It is assumed that the
parameters and disturbances are uncertain, but the system is bounded.

S = ey + cey, (11)
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5 = by + &rex + 6D ey (12)

The design of the adaptive law for sliding mode control is shown in Equation (11),
and the fractional-order error is introduced in Equation (12), where ¢; is the sliding mode
adaptive parameter, ¢; is the fractional-order adaptive parameter, D is a differential operator,
and 6 — 1 is the differential order between 1 and 2.

Considering the ability of neural networks to fit unknown nonlinear functions, this
paper adopts diagonal recurrent neural networks (DRNNs) to estimate and compensate
train running resistance. A DRNN is similar to a feedforward network and consists of three
key parts: an input layer, a hidden layer, and an output layer. The difference lies in that
each neuron in the hidden layer has a self-feedback loop, making it simple in structure and
easy to use for constructing training, as shown in Figure 2. The self-feedback weight W(t)
can be written as

W(t) = wl (@ f(A(1))" +e(A(t)

fAA() = [A(A ().--f( ()]

A(t) = [ex(t), ..., 6 (t)]T : (13)
e(A()] < 60

w € RP, ws € R?, f(A(t)) € RY

where p denotes the number of neurons; w is the weight vector of the neural network; w;
is the diagonal weight vector of hidden layer neurons; A(t) is the input vector; ¢(t) is the
error, which is bounded; and f(A(t)) is the basis function of the neural network. The basis
function of the k-th neuron can be expressed as a Gaussian function:

(A(8) = AT (A(E) = Ap) (k=1,2,.

fME) = exp| ~ o
k

..P). (14)

where Ay is the center of the k-th neuron, and oy is the width. The estimated running
resistance value W is

W= ol (@A) (15)
@ and @; are the estimated values of the forward and diagonal weights, respectively.
According to Equations (13) and (15), the estimation errors of the DRNN parameters are

@] = w! — & (16)
@' =w' —a" (17)
g() = &) — @0. (18)

where @ and w; are the estimated errors of the forward and diagonal weights, and is the
upper bound of the neural network estimated error ¢(A(t)). For reducing the impact of
running resistance on train running control, a fractional-order sliding mode adaptive diag-
onal loop neural network control law is designed. First, take the derivative of Equation (12)
and make kgs = g—; to obtain

ds

a—ks—v De(t) + Eréx + 62177 (19)

0 = kss + 0o (t) — 16x — 2l Ve, (20)

Then, substituting Equation (20) into Equation (2) of motion, it can be obtained that

F(t) = kssm + Do (t)m — érexm — &1 %em + B(t) + W(t). (21)
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By substituting Equation (13) into the above equation, based on the Lyapunov theorem,
the FSMC-DRNN control law is obtained:

F(t) = kst + Do (£)m — éréxm — 51 exm + B(t) + @7 (@7f)" — dosgns.  (22)

where k; is the negative parameter to be designed, and sgns is the symbolic function of s.
The parameters in Equation (22) are updated in real time using adaptive update laws, and
the FSMA-DRNN update laws are

él = —Séx

*2 = —sDe’lex

w=—-Afs . (23)
ws = —IIf's

&y = kessgns

where k; is the positive parameter to be designed, and A and II are the positive definite
matrices to be designed.

Figure 2. The structure of diagonal recurrent neural network.

3.2. Controller Structure Design Process

The designed operation controller structure is described in Figure 3. Six parts form
the controller, which are the optimal speed profile calculated part; the speed feedforward
part v,(t), that is the main basis for the system transient response; the fractional-order
sliding adaptive equivalent control part kss — ¢1¢x — ¢21 %, used to improve operational
control accuracy and robustness; the diagonal recurrent neural network part [@] (d)TﬂT +
gossgns]/m, aiming to estimate the resistance and compensate the acceleration during
running in real time; the gravity acceleration compensation part ag, caused by slope;
the traction control system part, converters CCS1 and CCS2, realizing the long stator
linear motor control and train speed and position detection; and the feedback to the
operation controller.
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Figure 3. FSMA-DRNN operation controller structure and execution block diagram.

3.3. Stability Analysis of the Controller
To prove the stability of the proposed control system, the direct method of Lyapunov

is used. First, the Lyapunov energy function is constructed:
Loy borya 1o g L5
Vzims —i—Ew A w+§ws IT ws—i-z—keso. (24)
Differentiate Equation (24) and obtain

S B
V=mss+@ A'@+ @ T 1@, + - E0d. (25)
€

The definition of the fractional-order integral is

¢
1 f(1)
= / dr. 26
ST 20
a
The definition of the fractional-order differential is
t
p_ 1 / f" ()
«Di = B) = T)ﬁ*"H dr. (27)
a

where I} is a fractional-order integral operator; ,fo is a fractional-order differential
operator; a and f are the upper and lower limits of the integral operator, respectively; «
and f represent the order of the integral and differential operators, respectively; I'(x) is the
Euler Gamma functions; and n is an integer, evenn —1 < 8 < n.

Based on the fractional calculus properties in Equations (26) and (27), the rate of the
sliding surface changes is obtained, replacing kinematic Equations (1) and (2) and sliding
surface Equation (12):

§=¢y+ élex + é1ex + ézDg_lex + 521_9€x
= LIF(t) — B(t) — W(t) — mo,(t)] + é1ex + é1ex + 2D ey + 1 %,

m

(28)
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Substitute Equations (22) and (28) into Equation (25) to obtain the derivative of the
Lyapunov energy function:

V=mss — @A\ — @ "I — £80ég
— S[F(t) — B(t) — W(E) — moe(t)]
+ ms[erex + 16y + D0 ey + &1 %] — @TA T @ — @ T s — LE0ég
= slkesm — 1exm — &1 0e,m + @, T (@TF) — 2gsgns — w! (T — e(A(1))]
+ ms[élex + 816y + 6D ey + ézl_eex] —&TA Yo — @, T 1o, — klg?:‘oéo
= kys2m + séyexm + 56D Leym + sdJST((iJTf)T — swsT(wa)T — sépsgns — se(A(t))
—@TA 1o — (IlsTnila;:)s - k%?oéo

(29)
Due to ségsgns — se(A(t)) < ségsgns, Equation (29) can be simplified as follows:
V < kes2m + sérexm + séa D Leym — s@lfl — s@f + ségsgns
— ~TA_16;AJ — aNJSTI'[‘lés — klggoé(] (30)
V < kes?m + sérexm + sé, D Leym — (Zst(sz + A’ldf)
— @ (sfT + T 1@s) + o (ssgns — kleé)
Substitute Equation (23) into Equation (30) to obtain
V < kes? — s%e2m — (sDG_lex)zm — @ (sfT + A @) . (31)

where k; is a negative parameter, and V < 0. According to the Lyapunov stability theorem,
s, w, ws and &g are bounded when the time tends to infinity, the error converges to 0, and
the system asymptotic stabilizes, indicating that the designed FSMA-DRNN controller can
ensure the operation control of high-speed maglev trains.

4. Experimental Verification

Experimental verification was conducted based on the high-speed maglev hardware-
in-the-loop simulation system platform Rt-Lab, to validate the performance of the designed
FSMA-DRNN controller, and the control performance was compared with that of the PID
operating controller.

4.1. Test Line and Train Parameters
4.1.1. Line Parameter

The main line length is designed to be 29.86 km, in which the number of curves is
6, the number of slopes is 7, the maximum curve radius is 7997 m, the minimum curve
radius is 1292 m, and the maximum slope is —1.076%. The curve accounts for 62% of the
total length of the line, and the average slope section is 14.3%. The specific parameters are
exhibited in Tables 1 and 2.

Table 1. Curve elements of hardware-in-the-loop simulation.

Parameters Value
Total length of main line (km) 29.86
Number of curves 6

Curve line extension (km) 18.51

Curve in the total line (%) 62.0
Maximum curve radius (m) 7997.45
Minimum curve radius (m) 1292.52
Maximum transition curve (m) 2399.32

Minimum transition curve (m) 290.00
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Table 2. Vertical section and slope elements of hardware-in-the-loop simulation.

Parameters Value
Total number of slope sections 7
Average slope section length (km) 4.28
Average slope section length in total line length (%) 14.3
Maximum slope (%) —1.076
Maximum slope length (m) 14,105.55
Minimum slope length (m) 650.55
Maximum vertical curve radius (m) 80,000
Minimum vertical curve radius (m) 45,000
Maximum transition curve (m) 100
Minimum transition curve (m) 20

4.1.2. Train Parameters

The train is a five-car formation, with an empty mass of 52.9 t at the head and tail,
an empty mass of 50.3 t at the middle, and a total mass of 342.5 t. When accelerating, the
maximum acceleration is 1 m/s?, and, when decelerating, the maximum acceleration is
1.25 m/s2. The maximum speed of the train reaches 430 km/h, and the train operation time
is 465 s. The specific parameters of the vehicle are expressed in Table 3.

Table 3. Train elements of hardware-in-the-loop simulation.

Parameters Value
Formation/car 5, (2 head/tail, 3 middle)
Head/tail car—no-load weight (t) 52.9
Middle car—no-load weight (t) 50.3
Head/tail car—maximum allowable gross weight (t) 67.0
Middle car—maximum allowable gross weight (t) 69.5
Total weight of train (t) 342.5
Maximum speed (km/h) 430
Maximum acceleration during acceleration (m/ s?) 1
Maximum acceleration during deceleration (m/s?) 12.5

4.2. Controller Parameter Setting
4.2.1. FSMA-DRNN and PID Control Parameter Setting

For the FSMA-DRNN controller under ideal conditions, based on the characteristics of
the maglev train, the attenuation curve method can be used, which is combined with the
trial-and-error method to tune the parameters. The fractional-order parameters are adjusted
for the purpose of improving the control accuracy and robustness. For the PID operation
controller, considering the rapidity and stability of the system, the critical proportionality
method is applied to tune the proportional, integral, and differential gains. The parameters
after setting are depicted in Table 4.

Table 4. FSMA-DRNN and PID control parameters.

Controller Parameter Values
FSMA-DRNN ks, 0 —397,2.59
PID kp, ki, ka 1200, 1310, 1

4.2.2. Adaptive Control Parameter Setting

Adaptive parameters affect the convergence speed of the system. If the parameters are
too small, the convergence speed becomes slow, but if they are too large, overcorrection
can easily occur, leading to system instability. Therefore, it is necessary to use the empirical
method and the trial-and-error method to tune the adaptive parameters founded on the
above parameter settings, while also taking into account relevant factors such as operating
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Profibus

resistance. As a result, the setting parameters values are k, = 7.12 X 1072, A = 2.2 x 10°E,
and IT = 1.7 x 10°E.

4.3. Experimental Platform

The experimental platform is shown in Figure 4, consisting of four parts: a propulsion
Rt_Lab system, a signal conditioning system, a propulsion control system, and an operation
control simulation system. The Rt_Lab system includes two parts, the target PC realizes
CU, SSS, and LSM simulation, and the host PC realizes managerial control. The signal
conditioning system converts analog into digital. The propulsion control system performs
speed output control, which consists of MCU, CCU1, CCU2, and SSC. The proposed speed
control algorithm is executed in the operation control simulation system [43]. The layout of
the test guideway line is shown in Figure 5.

- Il
&
-
A
Y
A
Y

= Simulation
=)
electro — optical <5 Control
P Host PC

convert units E CU2
J

— | I
B «—>| [ 7| PCIE Switch

. v .
: S A0 P |_sss
: %) :
R =N W - | S— v c—
3 W <«—>»| |Propulsion simulation
Ethernet E LSM \_/ Rt Lab system
000 ' Target PCs
OCS:Simulation calculation PC D L P '

Figure 4. Hardware-in-the-loop simulation experimental platform of maglev operation control. OCS:
operation control system, simulation, and calculation running; MCU: motor control unit; CCU:
converter control unit; SSC: stator switch control; CU: converter unite; SSS: stator switch station; LSM:
long stator linear synchronous motor.

(mm/y)

27335

Deformation Rate

S

Laitudetkm) | 21099

Figure 5. Layout and subsidence rates of test maglev line [44].

5. Comparison of Experimental Results

In accordance with the above experimental parameters, this section mainly compares
and analyzes the control performance of the FSMA-DRNN and PID controllers in terms of
position and speed tracking, tracking error, resistance compensation, and traction control
output. The single-direction simulation running time is 465 s, and the simulation time step
is0.1s.
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5.1. Comparison of Speed and Position Tracking Performance

The position and speed tracking effect of the FSMA-DRNN and PID operation con-
trollers is clearly shown in Figure 6. The blue color is the preset optimal speed profile of
the train, the black color is the PID control output, and the red color is the FSMA-DRNN
control output. (a) refers to the overall speed tracking effect of the test line, (b) refers to
the position tracking effect of the entire line, (c) refers to the tracking effect of the train
accelerating to the maximum speed of 430 km/h, and (d) refers to the speed tracking effect
during braking and deceleration. As shown in Figure 5, due to the FSMA-DRNN prediction
and the compensation for running resistance, the tracking accuracy of FSMA-DRNN is
higher than that of PID controllers, especially on lines with abrupt changes in speed and
running resistance, when the FSMA-DRNN’s tracking control is smoother.

600 : : 30 ; .

—— REFERENCE —— REFERENCE
~  |——FSMA-DRNN ~94 | ——FSMA-DRNN
< 450{—>PID . §24 —PID
é S18¢
23007 S
3 £
g 150 B ;Q 6 |

0 : : ' 0 : , '
0 6 12 18 24 30 0 120 240 360 480
Kilometer (km) Time (s)
(a) (b)
450 - 220 ; :

—— REFERENCE —— REFERENCE
~  |—— FSMA-DRNN —— FSMA-DRNN
E 440{— pp . E 200+ —PID
2430 /\-"‘—\ : 2180}

S420¢ X S160¢
410 : : ' ' 140 : : : '
16.2 16.8 17.4 18.0 18.6 19.2 26.0 264 268 272 27.6 28.0
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(c) (d)

Figure 6. FSMA-DRNN and PID operation controller position and speed tracking effect. (a) Full-
range tracking speed effect. (b) Full-range position tracking effect. (c¢) Maximum speed tracking
effect. (d) Braking speed tracking effect.

5.2. Comparison of Speed and Position Tracking Errors

As shown in Figure 7, the maximum absolute value of the speed tracking error for
the PID controller reaches 8 km/h, and the maximum position tracking error reaches
2.6 m, while the maximum value tracking error for FSM-DRNN is controlled at 2.5 km/h
and 0.35 m. The mean squared error of PID is much greater than that of FSMA-DRNN,
especially for speeds around 150 km /h or positions around 3 km.
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Figure 7. Comparison of position and speed tracking errors between FSMA-DRNN and PID. (a) Full-
range tracking speed error value. (b) Full-range position tracking effect error value. (c) Mean squared
error at different speed internals. (d) Mean squared error at different kilometers.

5.3. Estimated Effect of Running Resistance

In Figure 8, the blue line indicates the planar eddy current effect resistance between
the guide magnetic pole and the longitudinal guideway, with the minimum resistance
value; the orange line represents the air resistance—the main component of train running
resistance, showing the increase in speed; the purple line indicates the electromagnetic
resistance generated by the linear generator on the suspension frame, and, when the speed
is less than 20 km/h, the resistance is zero, but, when the resistance is a constant value of
16.5 kN at 20-150 km/h, the resistance gradually decreases above 150 km/h. The black
curve stands for the running resistance curve of the train during actual operation. The
red curve represents the estimated running resistance of FSMA-DRNN, which is firstly
almost consistent with the actual running resistance curve, and then slightly lower than the
actual resistance during the sudden change part of the resistance, but it can be followed
quickly afterward.

150 - -
Guiding resistance

—_ Air resistance
E 120 —— EMS resistance
~ ——FSMA-DRNN

§ 90 Running resistance
<

< 60F
7

[

e 30r

0

0 100200 300 400 500
Velocity (km/h)

Figure 8. Comparison between FSMA-DRNN estimated running resistance and actual resistance.
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5.4. Comparison of Tractive Force Output Effects

As shown in Figure 9, due to the estimated compensation for operating resistance, the
tractive force output of FSMA-DRNN is slightly higher than that of the PID controller at
the same speed, but the output of FSMA-DRNN is smoother. When the train is running
at 300 km/h, the maximum output is 360 KN; when the train is running at 430 km/h, the
minimum output of the train is 135 kN. For the overall range, the tractive force output
trends of the two controllers are consistent.

——FSMA-DRNN
~360 —PID

20036 222 308 394 480

Velocity (km/h)

Figure 9. Comparison of tractive force output between FSMA-DRNN and PID.

6. Conclusions

This paper studies the optimal speed profile tracking for a high-speed maglev train.
The key conclusions and contributions of this work can be summarized as follows:

1.  Akinematics model for neural network recognition is established based on adopting the
tractive force, braking force, and running resistance. A novel algorithm called DRNN is
presented to predict the resistance for compensating for the output acceleration.

2. Anew fractional-order sliding mode adaptive control algorithm (FSMA) is proposed
to track the optimal speed profile. By using the corresponding traction generated by
FSMA, the speed profile can be tracked more effectively and robustly.

3. The real data sets from the Shanghai maglev line are used on a hardware-in-the-loop
platform for experimental simulations. Comparative studies for different control strate-
gies validate the effectiveness and superiority of the proposed operation controller.

Note that for those maglev lines with unique scenarios and running characteristics,
the tracking controller parameter proposed in the paper should be tuned accordingly. Thus,
more extensive tests should be performed to enhance the universality of the proposed
controller, which is an issue for future work.
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