
Citation: Ang, E.H.W.; Wang, G.; Ng,

B.F. Physics-Informed Neural

Networks for Low Reynolds Number

Flows over Cylinder. Energies 2023,

16, 4558. https://doi.org/10.3390/

en16124558

Academic Editors: Shine Win Naung,

Mohammad Rahmati and Mahdi

Erfanian Nakhchi

Received: 4 May 2023

Revised: 30 May 2023

Accepted: 5 June 2023

Published: 7 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Physics-Informed Neural Networks for Low Reynolds Number
Flows over Cylinder
Elijah Hao Wei Ang, Guangjian Wang and Bing Feng Ng *

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore; elij0001@e.ntu.edu.sg (E.H.W.A.); wanggj@ntu.edu.sg (G.W.)
* Correspondence: bingfeng@ntu.edu.sg

Abstract: Physics-informed neural network (PINN) architectures are recent developments that can
act as surrogate models for fluid dynamics in order to reduce computational costs. PINNs make use
of deep neural networks, where the Navier-Stokes equation and freestream boundary conditions
are used as losses of the neural network; hence, no simulation or experimental data in the training
of the PINN is required. Here, the formulation of PINN for fluid dynamics is demonstrated and
critical factors influencing the PINN design are discussed through a low Reynolds number flow over
a cylinder. The PINN architecture showed the greatest improvement to the accuracy of results from
the increase in the number of layers, followed by the increase in the number of points in the point
cloud. Increasing the number of nodes per hidden layer brings about the smallest improvement in
performance. In general, PINN is much more efficient than computational fluid dynamics (CFD) in
terms of memory resource usage, with PINN requiring 5–10 times less memory. The tradeoff for this
advantage is that it requires longer computational time, with PINN requiring approximately 3 times
more than that of CFD. In essence, this paper demonstrates the direct formulation of PINN without
the need for data, alongside hyperparameter design and comparison of computational requirements.

Keywords: physics-informed neural network; low Reynolds number; fluid dynamics; surrogate
modelling; Navier-Stokes equation; machine learning

1. Introduction

Fluid flows are ubiquitous in many processes, and accurate simulation of fluid flows
is crucial in many applications, such as civil, aerospace, and biomedical engineering. The
investigations of low Reynolds number flows remain critical, where fluid simulation is
crucial in different applications, such as the development of micro air vehicles with flapping
wings [1], as well as investigations into microfluidics [2]. Conventionally, the motion of
viscous fluids can be described by a set of non-linear partial differential equations (PDE)
called the Navier-Stokes equation, which are solved numerically using computational
fluid dynamics (CFD) through the finite volume method [3]. CFD simulations are often
cumbersome processes, especially for flows with complicated geometries. In addition,
the pre-processing step of CFD, which requires the generation of computational mesh,
is an arduous process especially for complicated domains with moving boundaries, and
poor generation of mesh could lead to inaccurate results. Hence, grid independence
study becomes crucial to ensure that the CFD solution is converged, but itself is a time-
consuming process. In spite of the recent rise in computational power, fluid simulations
using CFD continues to be computationally demanding and is especially so for design
processes where multiple iterations have to be performed, for instance, in the optimization
of aircraft geometries. This has prompted researchers to look for cost-effective alternatives
to overcome the computation burden surrounding conventional CFD methods.

One of the most common methods to reduce the computational cost for aerodynamics
simulations is to use a surrogate model. Traditional methods such as proper orthogonal

Energies 2023, 16, 4558. https://doi.org/10.3390/en16124558 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16124558
https://doi.org/10.3390/en16124558
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8112-1151
https://doi.org/10.3390/en16124558
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16124558?type=check_update&version=1


Energies 2023, 16, 4558 2 of 20

decomposition (POD) and kriging interpolation were used to perform dimensional reduc-
tion. Such methods often rely on CFD or experimental data for the formulation of these
surrogate models and are limited to specific applications [4]. Lately, due to advancements
in machine learning and artificial intelligence techniques, artificial neural networks have
shown to be suitable candidates to act as surrogate models for fluid dynamics. Existing
surrogate models using artificial neural networks work by estimating a relationship be-
tween the input features and the desired outputs of the problem, similar to the multiple
regression method. Thuerey et al. [5] used the U-Net algorithm as a nonlinear regression
tool to solve for flow fields around an airfoil, whereas Zhang, Sung, and Mavris [6] devel-
oped a convolutional neural network (CNN) framework to predict the lift coefficient of
an airfoil based on pixel images of the airfoil geometry. Separately, Belbute-Peres et al. [7]
combined CFD solvers with graph neural networks to predict the flow around airfoils and
Han et al. [8] trained a convolutional long short-term memory (ConvLSTM) network to
capture the spatial-temporal features of unsteady flow, using data from high-dimensional
unsteady CFD results. By exploiting the neural network prediction speed, these methods
are effective in aerodynamic predictions. However, the limitation is that the training of the
neural networks requires huge datasets, often generated using CFD or experiments, which
remains computationally expensive. Training the network using CFD or experimental
data also limits the application of the model to very specific problems, and requires a
whole new set of data to train a model for other problems. Additionally, these methods
are considered as “Black Box” methods, which do not take into consideration the physical
definitions of the model [9]. By compromising on physical definitions, the model could
produce non-physical results, which have the tendency to affect the accuracy of the model.

In recent years, a novel concept called physics-informed neural networks (PINN) was
introduced by Raissi et al. [10]. PINN works by solving the governing equations through the
reduction of residuals and errors in the neural network training steps [11]. This new neural
network architecture aims to overcome the shortcomings of surrogate modeling methods
of the past which lack physical definitions. Raissi et al. [10] demonstrated the use of PINN
to solve simple partial differential equations, namely the Schrodinger equation, Allen-Cahn
equation, and Burgers’ equation. Raissi et al. [12] then extended the concept to compute the
lift and drag forces on a bluff body undergoing vortex-induced vibrations. Developments
were made for efficient solutions of fluid dynamic problems using PINN, which, however,
are limited to very simple cases. Sun et al. [13] made use of PINN to solve the Navier-Stokes
equations directly for stenotic flow in blood vessels without the use of any experimental
or simulation data. Mao et al. [14] used PINNs to approximate the Euler equations to
model high-speed aerodynamics involving shockwaves. In recent years, Cai et al. [15] used
PINNs to simulate fluid flows for 3D unsteady cases, turbulent flows, as well as biomedical
flows, which are augmented with data obtained from CFD and experimental measurements.
Arzani et al. [16] augmented PINN with sparse measurement data to model near-wall blood
flow applied to stenosis and aneurysm. Eivazi et al. [17] resolved turbulent boundary layer
flow by incorporating the Reynolds-averaged Navier-Stokes (RANS) equation to the PINN
with large eddy simulation data for the boundaries of the computation domain. Jin et al. [18]
used the velocity–vorticity formulation of the Navier-Stokes equation in PINN to solve for
various fluid flow problems while augmenting the network with experimental data on the
computation boundaries. It was observed that the velocity–vorticity formulation was less
accurate than the primitive variables (velocity–pressure) formulation, which is caused by
the definition of experimental data in primitive variables. There have also been attempts
to model melt pool dynamics from metal additive manufacturing using PINN, where a
simple case of solidification of metal is performed without training data, whereas more
complex simulations require the use of data obtained from high-fidelity simulations [19].

PINN had also been used for the prediction of fluid problems which are not solved
using the Navier-Stokes equations. For instance, Almajid and Abu-Al-Saud [20] developed
a PINN to model the Buckley-Leverett problem for two-phase flows through a porous
medium. Their results showed that the PINN performed better when data is being aug-



Energies 2023, 16, 4558 3 of 20

mented into the framework, and results without data augmentation were sub-optimal.
Bararnia and Esmaeilpour [21] modeled flow problems involving viscous and thermal
boundary layers by solving the Blasius-Polhausen, Falkner-Skan, and free convection
equations. The PINN prediction of the solution to the ordinary differential equations
(ODE) agrees with numerical solutions. Sufficient neurons per layer are required to predict
solutions with acceptable accuracy.

Currently, PINNs have only been used to study simple cases, and more complex
flow problems require augmentation with data obtained from external sources [22–24].
Moreover, the effects of the various hyperparameters in the neural network on the accuracy
of the results have not been reported in detail. Limited studies have also been conducted
on the computational efficiency of PINN as compared to other methods.

As such, the objective of this study is to demonstrate the use of PINN to solve for
low Reynolds number flows, as well as to investigate the critical factors that influence the
design of the PINN architecture. These include varying the number of neural network
layers, nodes, and size of the point cloud. Here, our PINN will incorporate the Navier-
Stokes equation into the training process to predict flow fields across a cylinder without
any use of simulation or experimental data. Freestream conditions are prescribed for the
boundaries of the computation domain and will be used for the training of the PINN. In
Section 2, the methodology involving PINN theory, constraints, setup, and validation will
be discussed. Following this, in Section 3, factors influencing PINN in flow field predictions
will be presented. Discussions on maximum error and resource utilization are subsequently
discussed in Section 4, followed by Conclusions in Section 5.

2. Methodology
2.1. Physics-Informed Neural Network

The PINN is built from fully connected layers where the weights and biases are
adjusted according to physical governing equations and predefined boundary conditions.
For a fully connected neural network, every node in each layer is linked to every node in
the subsequent layer. The first layer is called the input layer, where the number of nodes is
determined by the number of selected features that are to be fed into the network. For fluid
flows, the features are the coordinates and time. The last layer in the neural network is the
output layer, which gives the predicted values for the given input features. The number
of nodes in the output layer is the same as the number of predictions needed. The layers
between the input layer and output layer are known as hidden layers, and each layer can
have any number of nodes.

Figure 1 shows the schematic for the computation of the output value of a single node.
Every connection holds a weight, and each node is assigned a bias, which is utilized in
calculating the output value of each node. Every node in the PINN holds an activation
function, which determines the nodal output based on its input values. The output value
of each node is computed as:

y = ϕ(w1x1 + w2x2 + . . . + wnxn + b) (1)

y = ϕ(w·x + b) (2)

where y denotes the nodal output, ϕ represents the activation function, x ∈ Rn gives the
inputs into the node, w ∈ Rn represents the vector of connection weights, and b represents
the nodal bias. Some of the activation functions that are commonly used in deep neural
networks are the sigmoid function, rectified linear unit (ReLU), and the hyperbolic tangent
function [25]. The activation functions add nonlinearity to the network, which is critical
as many problems in physics exhibit nonlinear characteristics. The activation functions
also allow for the automatic differentiation algorithm to be used in order to compute the
spatial or temporal derivatives found in the governing equations [26]. Once the output
of the node is computed, it will be used as the input into the node of the next layer. This
process repeats all the way to the output node.



Energies 2023, 16, 4558 4 of 20

Energies 2023, 16, x FOR PEER REVIEW 4 of 21 
 

 

critical as many problems in physics exhibit nonlinear characteristics. The activation func-

tions also allow for the automatic differentiation algorithm to be used in order to compute 

the spatial or temporal derivatives found in the governing equations [26]. Once the output 

of the node is computed, it will be used as the input into the node of the next layer. This 

process repeats all the way to the output node. 

 

Figure 1. Schematic for computation of a single node. 

During the training phase, the neural network loss is computed based on the output 

values generated by the network. This requires a loss function to be formulated specifi-

cally for the problem at hand. The neural network initially learns by updating the weights 

and biases through the backpropagation algorithm in order to minimize the loss until it 

reaches a specified tolerance level [27]. Subsequently, the weights and nodal biases are 

corrected by a factor that scales with the gradient of the loss function. A complete iteration 

through the entire set of training points is referred to as an epoch, and the backpropaga-

tion process is repeated for multiple epochs until the loss falls below the tolerance level. 

2.2. Physics Constraints for Fluid Flows 

The physics of fluid flows is governed by the Navier-Stokes equations. In the case of 

incompressible flows, the continuity and momentum equations can be expressed as fol-

lows: 

∇ ∙ 𝒖 = 0,     𝒙, 𝑡 ∈ Ω𝑓 × [0, 𝑇] (3) 

𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ ∇)𝒖 = −

1

𝜌
∇𝑝 + 𝜈∇2𝒖,     𝒙, 𝑡 ∈ Ω𝑓 × [0, 𝑇] (4) 

where t and x are the temporal and spatial coordinates, respectively, 𝒖 is the velocity 

vector, and p is pressure, ρ and 𝜈 are the fluid density and kinematic viscosity, respec-

tively, and Ω𝑓 ⊂ ℝ3 denotes the fluid domain [3]. Additionally, the initial and boundary 

conditions need to be obeyed and are given as: 

𝒖 = 𝐼𝑢(𝒙),     𝒙 ∈ Ω𝑓 , 𝑡 = 0 (5) 

𝑝 = 𝐼𝑝(𝒙),     𝒙 ∈ Ω𝑓 , 𝑡 = 0 (6) 

𝒖 = 𝐵𝑢(𝒙),     𝒙, 𝑡 ∈ ∂Ω𝑓 × [0, 𝑇] (7) 

𝑝 = 𝐵𝑝(𝒙),     𝒙, 𝑡 ∈ ∂Ω𝑓 × [0, 𝑇] (8) 

where 𝜕Ω𝑓 represents the boundaries of the computational domain. The governing equa-

tions and the initial and boundary conditions have to be completely satisfied within the 

Figure 1. Schematic for computation of a single node.

During the training phase, the neural network loss is computed based on the output
values generated by the network. This requires a loss function to be formulated specifically
for the problem at hand. The neural network initially learns by updating the weights and
biases through the backpropagation algorithm in order to minimize the loss until it reaches
a specified tolerance level [27]. Subsequently, the weights and nodal biases are corrected by
a factor that scales with the gradient of the loss function. A complete iteration through the
entire set of training points is referred to as an epoch, and the backpropagation process is
repeated for multiple epochs until the loss falls below the tolerance level.

2.2. Physics Constraints for Fluid Flows

The physics of fluid flows is governed by the Navier-Stokes equations. In the case of
incompressible flows, the continuity and momentum equations can be expressed as follows:

∇·u = 0, x, t ∈ Ω f × [0, T] (3)

∂u
∂t

+ (u·∇)u = −1
ρ
∇p + ν∇2u, x, t ∈ Ω f × [0, T] (4)

where t and x are the temporal and spatial coordinates, respectively, u is the velocity vector,
and p is pressure, ρ and ν are the fluid density and kinematic viscosity, respectively, and
Ω f ⊂ R3 denotes the fluid domain [3]. Additionally, the initial and boundary conditions
need to be obeyed and are given as:

u = Iu(x), x ∈ Ω f , t = 0 (5)

p = Ip(x), x ∈ Ω f , t = 0 (6)

u = Bu(x), x, t ∈ ∂Ω f × [0, T] (7)

p = Bp(x), x, t ∈ ∂Ω f × [0, T] (8)

where ∂Ω f represents the boundaries of the computational domain. The governing equa-
tions and the initial and boundary conditions have to be completely satisfied within the
domain, and any imbalance in the equations indicates errors in the flow fields. Therefore,
Equations (3) and (4) must be integrated into the loss function for fluid flow, given by:

L = LI + LB + Lphy (9)

LI =
∥∥∥∼u(x, 0)− Iu(x)

∥∥∥
Ω f

+
∥∥∥∼p(x, 0)− Ip(x)

∥∥∥
Ω f

(10)



Energies 2023, 16, 4558 5 of 20

LB =
∥∥∥∼u(x, t)− Bu(x)

∥∥∥
∂Ω f×[0,T]

+
∥∥∥∼p(x, t)− Bp(x)

∥∥∥
∂Ω f×[0,T]

(11)

Lphy =
∥∥∥∇·∼u∥∥∥

Ω f×[0,T]
+

∥∥∥∥∥∂
∼
u

∂t
+

(∼
u·∇

)∼
u +

1
ρ
∇∼p − ν∇2∼u

∥∥∥∥∥
Ω f×[0,T]

(12)

Variables denoted with a tilde represents velocities and pressure predicted by the
PINN. LI represents losses due to initial conditions and LB represents losses in the boundary
condition, and they are given by the magnitude of the difference between the PINN
predicted values and the prescribed values. Lphy represents the loss in the physics, where
the first and second terms are the error for the continuity equation and the momentum
equation of the Navier-Stokes equations, respectively. The errors for both equations must
be eliminated to satisfy the Navier-Stokes equations. Thus, any nonzero error values can be
regarded as loss to the PINN. The spatial derivatives for the Navier-Stokes equations are
computed using automatic differentiation [26]. Automatic differentiation is preferred over
numerical differentiation in this case as the latter causes truncation errors from the choice
of finite difference schemes, whereas automatic differentiation provides the analytical
derivative based on the PINN as a continuous function [13]. Since the objective of the PINN
is to solve the governing equations by minimizing the errors across the fluid domain, no
experimental or simulation data is necessary for the training and solution step. Figure 2
summarizes the PINN framework used to predict flow fields using a point cloud as the
input data.

Energies 2023, 16, x FOR PEER REVIEW 5 of 21 
 

 

domain, and any imbalance in the equations indicates errors in the flow fields. Therefore, 

Equations (3) and (4) must be integrated into the loss function for fluid flow, given by: 

𝐿 = 𝐿𝐼 + 𝐿𝐵 + 𝐿𝑝ℎ𝑦 (9) 

𝐿𝐼 = ‖�̃�(𝒙, 0) − 𝐼𝑢(𝒙)‖Ω𝑓
+ ‖�̃�(𝒙, 0) − 𝐼𝑝(𝒙)‖

Ω𝑓
 (10) 

𝐿𝐵 = ‖�̃�(𝒙, 𝑡) − 𝐵𝑢(𝒙)‖𝜕𝛺𝑓×[0,𝑇] + ‖�̃�(𝒙, 𝑡) − 𝐵𝑝(𝒙)‖
𝜕𝛺𝑓×[0,𝑇]

 (11) 

𝐿𝑝ℎ𝑦 = ‖𝛻 ∙ �̃�‖Ω𝑓×[0,𝑇] + ‖
𝜕�̃�

𝜕𝑡
+ (�̃� ∙ 𝛻)�̃� +

1

𝜌
𝛻�̃� − 𝜈𝛻2�̃�‖

Ω𝑓×[0,𝑇]

 (12) 

Variables denoted with a tilde represents velocities and pressure predicted by the 

PINN. 𝐿𝐼  represents losses due to initial conditions and 𝐿𝐵  represents losses in the 

boundary condition, and they are given by the magnitude of the difference between the 

PINN predicted values and the prescribed values. 𝐿𝑝ℎ𝑦 represents the loss in the physics, 

where the first and second terms are the error for the continuity equation and the momen-

tum equation of the Navier-Stokes equations, respectively. The errors for both equations 

must be eliminated to satisfy the Navier-Stokes equations. Thus, any nonzero error values 

can be regarded as loss to the PINN. The spatial derivatives for the Navier-Stokes equa-

tions are computed using automatic differentiation [26]. Automatic differentiation is pre-

ferred over numerical differentiation in this case as the latter causes truncation errors from 

the choice of finite difference schemes, whereas automatic differentiation provides the an-

alytical derivative based on the PINN as a continuous function [13]. Since the objective of 

the PINN is to solve the governing equations by minimizing the errors across the fluid 

domain, no experimental or simulation data is necessary for the training and solution step. 

Figure 2 summarizes the PINN framework used to predict flow fields using a point cloud 

as the input data. 

 

Figure 2. Overall framework for PINN. 

2.3. Implementation of PINN 

Figure 3 shows a flowchart of the training and implementation of a PINN for fluid 

dynamics. The implementation of the PINNs is done in PyTorch v 1.5.1 [28], which is an 

open-source machine learning framework which allows for rapid prototyping and devel-

opment of various neural network architectures. First, a fully connected neural network 

is set up using PyTorch. The number of hidden layers, nodes, and activation function are 

defined in the setting up of the neural network. Secondly, the point cloud for the fluid 

domain and boundaries are generated using Latin hypercube sampling (LHS). In a 2D 

Figure 2. Overall framework for PINN.

2.3. Implementation of PINN

Figure 3 shows a flowchart of the training and implementation of a PINN for fluid
dynamics. The implementation of the PINNs is done in PyTorch v 1.5.1 [28], which is
an open-source machine learning framework which allows for rapid prototyping and
development of various neural network architectures. First, a fully connected neural
network is set up using PyTorch. The number of hidden layers, nodes, and activation
function are defined in the setting up of the neural network. Secondly, the point cloud for
the fluid domain and boundaries are generated using Latin hypercube sampling (LHS).
In a 2D steady case, each point in the point cloud of the fluid domain contains x and y
coordinates, which acts as the input features for training of the fully connected network.
The training process operates in iterations, or epochs, starting with the forward propagation
of the input features to compute the predicted output values of velocities and pressure
at each point. The output values are used to compute the spatial derivatives needed by
the Navier-Stokes equations given in Equations (3) and (4). The derivatives are computed
using automatic differentiation, which is a built-in function in PyTorch which takes the



Energies 2023, 16, 4558 6 of 20

velocities and pressure at a point, and its corresponding spatial coordinates to compute
the derivatives. With these derivatives, a custom physics-based loss function based on
Equations (9) to (12) is computed. In each epoch, an optimizer aims to reduce the loss
function, and hence reduce the residuals and errors from the Navier-Stokes equation to
solve the flow problem with the given boundary conditions.

Energies 2023, 16, x FOR PEER REVIEW 6 of 21 
 

 

steady case, each point in the point cloud of the fluid domain contains 𝑥 and 𝑦 coordi-

nates, which acts as the input features for training of the fully connected network. The 

training process operates in iterations, or epochs, starting with the forward propagation 

of the input features to compute the predicted output values of velocities and pressure at 

each point. The output values are used to compute the spatial derivatives needed by the 

Navier-Stokes equations given in Equations (3) and (4). The derivatives are computed us-

ing automatic differentiation, which is a built-in function in PyTorch which takes the ve-

locities and pressure at a point, and its corresponding spatial coordinates to compute the 

derivatives. With these derivatives, a custom physics-based loss function based on Equa-

tions (9) to (12) is computed. In each epoch, an optimizer aims to reduce the loss function, 

and hence reduce the residuals and errors from the Navier-Stokes equation to solve the 

flow problem with the given boundary conditions. 

 

Figure 3. Flowchart for implementation and training of PINN. 

2.4. PINN Setup 

A flow over cylinder case will be used to demonstrate PINN and investigate the ef-

fects of the density of points, number of layers, and nodes on its accuracy. The input data 

used to train the PINN is represented by a point cloud, as shown in Figure 4, which in-

cludes freestream boundaries, cylinder boundaries, and the collocation points within the 

fluid domain that are used for the computation of errors and imbalance in the Navier-

Stokes equations. The coordinates for the point cloud are randomly generated using LHS. 

Unlike in typical CFD meshes, LHS produces a random but uniform point cloud through-

out the fluid domain rather than having greater density of points around the cylinder. 

Instead of using several neighboring points to compute the derivatives, PINN uses auto-

matic differentiation to enforce the governing equation at each single point. Hence, a suf-

ficiently dense point cloud is required across the entire fluid domain in order to capture 

the flow fields accurately. 180 points are placed along the cylinder surface and 600 points 

for the freestream boundary conditions. Since this case is used to study the effect of vari-

ous critical factors in the PINN, the number of points, layers, and nodes varies according 

to Table 1, and 3000 epochs are used to reach a root-mean-squared error (RMSE) of below 

Figure 3. Flowchart for implementation and training of PINN.

2.4. PINN Setup

A flow over cylinder case will be used to demonstrate PINN and investigate the effects
of the density of points, number of layers, and nodes on its accuracy. The input data used
to train the PINN is represented by a point cloud, as shown in Figure 4, which includes
freestream boundaries, cylinder boundaries, and the collocation points within the fluid
domain that are used for the computation of errors and imbalance in the Navier-Stokes
equations. The coordinates for the point cloud are randomly generated using LHS. Unlike
in typical CFD meshes, LHS produces a random but uniform point cloud throughout the
fluid domain rather than having greater density of points around the cylinder. Instead
of using several neighboring points to compute the derivatives, PINN uses automatic
differentiation to enforce the governing equation at each single point. Hence, a sufficiently
dense point cloud is required across the entire fluid domain in order to capture the flow
fields accurately. 180 points are placed along the cylinder surface and 600 points for the
freestream boundary conditions. Since this case is used to study the effect of various critical
factors in the PINN, the number of points, layers, and nodes varies according to Table 1,
and 3000 epochs are used to reach a root-mean-squared error (RMSE) of below 10−3 [29]
as there is no observable further reduction in the loss as the number of epochs increases
beyond that.



Energies 2023, 16, 4558 7 of 20

Energies 2023, 16, x FOR PEER REVIEW 7 of 21 
 

 

10−3 [29] as there is no observable further reduction in the loss as the number of epochs 

increases beyond that. 

 

Figure 4. Schematic of point cloud for the cylinder case used to train the PINN. The orange points 

enforce the freestream boundary condition of 1 m/s, the blue enforce the no-slip boundary condition 

on the cylinder surface, and the green points are the LHS sampled collocation points where errors 

due to the governing equations are computed and reduced. 

Table 1. Parameters for parametric study on flow over cylinder. 

Study Case 1 Case 2 Case 3 Case 4 

Number of Points 2000 5000 10,000 15,000 

Number of Nodes 30 40 50 60 

Number of Layers 10 15 20 25 

Unless otherwise stated, the PINN is developed using the machine learning frame-

work, PyTorch [28], and trained using the Adam optimizer, which is a gradient descend 

algorithm to find the point of minimal loss, on an RTX 2060 GPU. 

2.5. Validation Setup with Computational Fluid Dynamics 

In order to validate the results obtained from PINN, CFD simulations are performed 

for flow over cylinder. The flow over cylinder case will be used as a simple test case to 

perform parametric study on PINN, and to evaluate PINN’s ability to simulate flow over 

bluff bodies. Steady-state incompressible Navier-Stokes equations are solved using the 

finite volume method. For 2D incompressible steady-state problems, the governing equa-

tions reduces to, 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (13) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) (14) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) (15) 

The open-source software OpenFOAM [30] is used to simulate the following cases 

on an Intel Xeon processor. 

The schematics of the CFD computational domain and a close-up view of the mesh 

for the flow over a cylinder are shown in Figure 5. Here, a computational domain of 40 𝐷 

Figure 4. Schematic of point cloud for the cylinder case used to train the PINN. The orange points
enforce the freestream boundary condition of 1 m/s, the blue enforce the no-slip boundary condition
on the cylinder surface, and the green points are the LHS sampled collocation points where errors
due to the governing equations are computed and reduced.

Table 1. Parameters for parametric study on flow over cylinder.

Study Case 1 Case 2 Case 3 Case 4

Number of Points 2000 5000 10,000 15,000
Number of Nodes 30 40 50 60
Number of Layers 10 15 20 25

Unless otherwise stated, the PINN is developed using the machine learning frame-
work, PyTorch [28], and trained using the Adam optimizer, which is a gradient descend
algorithm to find the point of minimal loss, on an RTX 2060 GPU.

2.5. Validation Setup with Computational Fluid Dynamics

In order to validate the results obtained from PINN, CFD simulations are performed
for flow over cylinder. The flow over cylinder case will be used as a simple test case
to perform parametric study on PINN, and to evaluate PINN’s ability to simulate flow
over bluff bodies. Steady-state incompressible Navier-Stokes equations are solved using
the finite volume method. For 2D incompressible steady-state problems, the governing
equations reduces to,

∂u
∂x

+
∂v
∂y

= 0 (13)

u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂p
∂x

+ ν

(
∂2u
∂x2 +

∂2u
∂y2

)
(14)

u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂p
∂x

+ ν

(
∂2u
∂x2 +

∂2u
∂y2

)
(15)

The open-source software OpenFOAM [30] is used to simulate the following cases on
an Intel Xeon processor.

The schematics of the CFD computational domain and a close-up view of the mesh for
the flow over a cylinder are shown in Figure 5. Here, a computational domain of 40 D by
20 D is defined, where D = 0.1 m is the diameter of the cylinder. The dotted arrow extends
from the upper surface of the cylinder to the top edge of the computational domain and



Energies 2023, 16, 4558 8 of 20

indicates the line in which the various flow fields will be plotted for comparison of results
between CFD and PINN. The CFD mesh is comprised of hexahedra cells, and the near wall
cell thickness are refined to ensure that the boundary layer is well defined. An inlet velocity
of 1 m/s with kinematic viscosity ν = 2× 10−2 m2/s is prescribed 10 D upstream from the
center of the cylinder and to the bottom and top boundaries of the computation domain.
The resulting Reynolds number for this case is 5. A low Reynolds number is selected to
ensure that the flow remains steady, and no vortex shedding happens. The right boundary
of the domain is prescribed as a pressure outlet, and its placed 30 D from the center of the
cylinder. A no-slip boundary condition is applied to the surface of the cylinder.

Energies 2023, 16, x FOR PEER REVIEW 8 of 21 
 

 

by 20 𝐷 is defined, where 𝐷 = 0.1 m is the diameter of the cylinder. The dotted arrow 

extends from the upper surface of the cylinder to the top edge of the computational do-

main and indicates the line in which the various flow fields will be plotted for comparison 

of results between CFD and PINN. The CFD mesh is comprised of hexahedra cells, and 

the near wall cell thickness are refined to ensure that the boundary layer is well defined. 

An inlet velocity of 1 m/s with kinematic viscosity 𝜈 = 2 × 10−2 m2/s is prescribed 10 𝐷 

upstream from the center of the cylinder and to the bottom and top boundaries of the 

computation domain. The resulting Reynolds number for this case is 5. A low Reynolds 

number is selected to ensure that the flow remains steady, and no vortex shedding hap-

pens. The right boundary of the domain is prescribed as a pressure outlet, and its placed 

30 𝐷 from the center of the cylinder. A no-slip boundary condition is applied to the sur-

face of the cylinder. 

  
(a) (b) 

Figure 5. (a) Diagram illustrating the computational domain for cylinder; (b) CFD mesh near the 

cylinder wall. 

The Navier-Stokes equations are solved numerically using simpleFoam, which uses 

the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm to update 

the velocity and pressure iteratively. Spatial discretization is performed using second or-

der upwind schemes. 

Table 2 shows the grid independence study for the flow over cylinder. Based on this 

study, mesh Cylinder-2 is used as the drag difference between Cylinder-2 and Cylinder-1 

is only 0.0045%. Table 3 compares the drag coefficient obtained from the CFD simulations 

with past experiments and numerical studies. The current result of the drag coefficient 

agrees well with experimental results from Tritton [31] and DNS simulation from 

Posdzeich and Grundmann [32] for Reynolds number of 5. 

Table 2. Grid independence study for cylinder case. 

Meshes Number of Cells CD Difference 

Cylinder-1 20,392 4.5028 - 

Cylinder-2 41,772 4.5030 0.0045% 

Table 3. Comparison of current CFD results with experiments and DNS. 

 Method CD 

Tritton [31] Experiment 4.467 

Posdziech et al. [32] DNS 4.1904 

Current CFD 4.503 

3. Results 

The effect of number of point cloud, hidden layers, and nodes per hidden layer on 

the accuracy of PINN is first investigated. First, the point cloud has to be dense enough to 

resolve flow fields near the cylinder. Insufficient points in the point cloud could lead to 

Figure 5. (a) Diagram illustrating the computational domain for cylinder; (b) CFD mesh near the
cylinder wall.

The Navier-Stokes equations are solved numerically using simpleFoam, which uses
the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm to update the
velocity and pressure iteratively. Spatial discretization is performed using second order
upwind schemes.

Table 2 shows the grid independence study for the flow over cylinder. Based on this
study, mesh Cylinder-2 is used as the drag difference between Cylinder-2 and Cylinder-1 is
only 0.0045%. Table 3 compares the drag coefficient obtained from the CFD simulations
with past experiments and numerical studies. The current result of the drag coefficient
agrees well with experimental results from Tritton [31] and DNS simulation from Posdzeich
and Grundmann [32] for Reynolds number of 5.

Table 2. Grid independence study for cylinder case.

Meshes Number of Cells CD Difference

Cylinder-1 20,392 4.5028 -
Cylinder-2 41,772 4.5030 0.0045%

Table 3. Comparison of current CFD results with experiments and DNS.

Method CD

Tritton [31] Experiment 4.467
Posdziech et al. [32] DNS 4.1904

Current CFD 4.503

3. Results

The effect of number of point cloud, hidden layers, and nodes per hidden layer on
the accuracy of PINN is first investigated. First, the point cloud has to be dense enough
to resolve flow fields near the cylinder. Insufficient points in the point cloud could lead
to poorly resolved boundary layer, which leads to unsatisfactory results throughout the
entire domain. The number of hidden layers and number of nodes per hidden layer



Energies 2023, 16, 4558 9 of 20

together affects the expressive power of the PINN. As demonstrated by Cybenko [33] and
Hornik [34], if the number of hidden layers is insufficient, PINN will require large amounts
of nodes to obtain an accurate result that leads to high computational overheads in the
training process. Having an insufficient number of nodes will have to be compensated by
large number of hidden layers. It is, therefore, a delicate process to balance the number of
hidden layers and number of nodes per hidden layer to achieve desired accuracy of results
and minimal computational costs. Table 4 shows the number of points, number of hidden
layers, and number of nodes per hidden layer used in this parametric study.

Table 4. Test cases for the effect of number of points in point cloud, number of hidden layers, and
number of nodes in hidden layer on the accuracy of PINN.

Case No. of Points No. of Layers No. of Nodes per Layer

Effect of number of
points in point cloud

2000, 5000, 10,000,
15,000 20 50

Effects of number of
hidden layers 5000 10, 15, 20, 25 50

Effects of number of
nodes in hidden layer 5000 20 30, 40, 50, 60

3.1. Effect of Number of Points

The density of the point cloud affects the resolution of the solution. Insufficiently
dense point clouds can lead to the failure in properly resolving near wall flow conditions.
Point clouds that are too dense can encounter difficulty in neural network training. In order
to isolate the effects of number of points, the number of layers in the network and number
of nodes per layer were kept as constants. PINN consists of 20 hidden layers, with 50 nodes
per hidden layer. The accuracy of PINN was investigated for 2000 points, 5000 points,
10,000 points, and 15,000 points.

The u velocity component, v velocity component, as well as pressure fields for
2000 points in the point cloud from PINN and CFD are shown in Figure 6(a1–c1) and
Figure 6(a2–c2), respectively. The differences between PINN and CFD are shown in
Figure 6(a3–c3). When using just 2000 points in the fluid domain, it is clear that PINN
was unable to achieve comparable results to CFD. PINN was unable to capture the correct
leading-edge velocity profiles, as well as the correct pressure field and magnitude. This
suggests that 2000 points created a fluid domain is too sparse to accurately capture the
correct velocity and pressure fields for this case.

Increasing from 2000 to 5000 points, the PINN starts to capture the velocity and
pressure fields with greater accuracy. While the velocity profile is similar between PINN and
CFD, the PINN captured lower velocity magnitudes, and smaller area of flow acceleration.

The velocity and pressure fields obtained from both PINN and CFD for 10,000 points
on the point cloud are shown in Figure 7. After increasing the number of points from
5000 to 10,000, no improvements could be observed for the velocity components. The u
velocity components captured the wake profile, but the velocity magnitudes around the
leading-edge, and the accelerated flow region are diminished. Similarly, for the v velocity
profile, the trends are well captured, but regions of higher velocity magnitudes are also
diminished. However, when looking at the pressure profile, the profile captured by PINN
begins to look more symmetrical. Same as before, the pressure magnitudes captured by
PINN is lower than the pressure magnitudes captured by CFD.



Energies 2023, 16, 4558 10 of 20Energies 2023, 16, x FOR PEER REVIEW 10 of 21 
 

 

   
(a1) (a2) (a3) 

   

(b1) (b2) (b3) 

   
(c1) (c2) (c3) 

Figure 6. Flow fields near a cylinder for 2000 points from PINN (left), CFD (middle) and error be-

tween PINN and CFD (right). First row is for u velocity, second row is for v velocity, and third row 

is for P pressure. (a1) 𝑢 velocity field predicted by PINN, (a2) 𝑢 velocity field computed by CFD, 

(a3) error magnitude for 𝑢 velocity, (b1) 𝑣 velocity field predicted by PINN, (b2) 𝑣 velocity field 

computed by CFD, (b3) error magnitude for 𝑣 velocity, (c1) pressure field predicted by PINN, (c2) 
pressure field computed by CFD, (c3) error magnitude for pressure. 

Increasing from 2000 to 5000 points, the PINN starts to capture the velocity and pres-

sure fields with greater accuracy. While the velocity profile is similar between PINN and 

CFD, the PINN captured lower velocity magnitudes, and smaller area of flow acceleration. 

The velocity and pressure fields obtained from both PINN and CFD for 10,000 points 

on the point cloud are shown in Figure 7. After increasing the number of points from 5000 

to 10,000, no improvements could be observed for the velocity components. The u velocity 

components captured the wake profile, but the velocity magnitudes around the leading-

edge, and the accelerated flow region are diminished. Similarly, for the v velocity profile, 

the trends are well captured, but regions of higher velocity magnitudes are also dimin-

ished. However, when looking at the pressure profile, the profile captured by PINN be-

gins to look more symmetrical. Same as before, the pressure magnitudes captured by 

PINN is lower than the pressure magnitudes captured by CFD. 

   
(a1) (a2) (a3) 

   

(b1) (b2) (b3) 

Figure 6. Flow fields near a cylinder for 2000 points from PINN (left), CFD (middle) and error
between PINN and CFD (right). First row is for u velocity, second row is for v velocity, and third
row is for P pressure. (a1) u velocity field predicted by PINN, (a2) u velocity field computed by
CFD, (a3) error magnitude for u velocity, (b1) v velocity field predicted by PINN, (b2) v velocity
field computed by CFD, (b3) error magnitude for v velocity, (c1) pressure field predicted by PINN,
(c2) pressure field computed by CFD, (c3) error magnitude for pressure.

Energies 2023, 16, x FOR PEER REVIEW 10 of 21 
 

 

   
(a1) (a2) (a3) 

   

(b1) (b2) (b3) 

   
(c1) (c2) (c3) 

Figure 6. Flow fields near a cylinder for 2000 points from PINN (left), CFD (middle) and error be-

tween PINN and CFD (right). First row is for u velocity, second row is for v velocity, and third row 

is for P pressure. (a1) 𝑢 velocity field predicted by PINN, (a2) 𝑢 velocity field computed by CFD, 

(a3) error magnitude for 𝑢 velocity, (b1) 𝑣 velocity field predicted by PINN, (b2) 𝑣 velocity field 

computed by CFD, (b3) error magnitude for 𝑣 velocity, (c1) pressure field predicted by PINN, (c2) 
pressure field computed by CFD, (c3) error magnitude for pressure. 

Increasing from 2000 to 5000 points, the PINN starts to capture the velocity and pres-

sure fields with greater accuracy. While the velocity profile is similar between PINN and 

CFD, the PINN captured lower velocity magnitudes, and smaller area of flow acceleration. 

The velocity and pressure fields obtained from both PINN and CFD for 10,000 points 

on the point cloud are shown in Figure 7. After increasing the number of points from 5000 

to 10,000, no improvements could be observed for the velocity components. The u velocity 

components captured the wake profile, but the velocity magnitudes around the leading-

edge, and the accelerated flow region are diminished. Similarly, for the v velocity profile, 

the trends are well captured, but regions of higher velocity magnitudes are also dimin-

ished. However, when looking at the pressure profile, the profile captured by PINN be-

gins to look more symmetrical. Same as before, the pressure magnitudes captured by 

PINN is lower than the pressure magnitudes captured by CFD. 

   
(a1) (a2) (a3) 

   

(b1) (b2) (b3) 

Energies 2023, 16, x FOR PEER REVIEW 11 of 21 
 

 

   
(c1) (c2) (c3) 

Figure 7. Flow fields near a cylinder for 10,000 points from PINN (left), CFD (middle) and error 

between PINN and CFD (right). First row is for u velocity, second row is for v velocity, and third 

row is for P pressure. (a1) 𝑢 velocity field predicted by PINN, (a2) 𝑢 velocity field computed by 

CFD, (a3) error magnitude for 𝑢 velocity, (b1) 𝑣 velocity field predicted by PINN, (b2) 𝑣 velocity 

field computed by CFD, (b3) error magnitude for 𝑣 velocity, (c1) pressure field predicted by PINN, 

(c2) pressure field computed by CFD, (c3) error magnitude for pressure. 

For 15,000 points in the point cloud, increasing the number of points from 10,000 to 

15,000 provided no improvement to the accuracy of the velocity and pressure profiles 

from PINN. The general trend of the wake and profiles are well captured; however the 

magnitudes captured by PINN are generally lower than the magnitudes obtained from 

CFD. 

Figure 8 shows a plot of the 𝑢 and 𝑣 velocity components as well as the pressure of 

the flow field obtained from the top of the cylinder surface to the top edge of the compu-

tational domain for the different number of points in the point cloud. Looking at the plots, 

it is evident that 2000 points is insufficient, as the velocity and pressure values deviate 

from the CFD results to a large extent. For 5000 to 15,000 points, the near field velocities 

and pressure agrees with CFD. In the far field, the 𝑢 velocity components from PINN 

match closely to CFD results; however, significant deviation is observed for the 𝑣 velocity 

component and pressure values. This could be attributed to the relatively small magni-

tudes when compared to the 𝑢 velocities, which results in difficulty in the reduction of 

error for the 𝑣 velocity and pressure. The accuracy of PINN can potentially be improved 

by adding a scaling factor to the errors related to 𝑣 velocity and pressure to facilitate 

training. 

 

Figure 7. Flow fields near a cylinder for 10,000 points from PINN (left), CFD (middle) and error
between PINN and CFD (right). First row is for u velocity, second row is for v velocity, and third
row is for P pressure. (a1) u velocity field predicted by PINN, (a2) u velocity field computed by
CFD, (a3) error magnitude for u velocity, (b1) v velocity field predicted by PINN, (b2) v velocity
field computed by CFD, (b3) error magnitude for v velocity, (c1) pressure field predicted by PINN,
(c2) pressure field computed by CFD, (c3) error magnitude for pressure.



Energies 2023, 16, 4558 11 of 20

For 15,000 points in the point cloud, increasing the number of points from 10,000
to 15,000 provided no improvement to the accuracy of the velocity and pressure profiles
from PINN. The general trend of the wake and profiles are well captured; however the
magnitudes captured by PINN are generally lower than the magnitudes obtained from CFD.

Figure 8 shows a plot of the u and v velocity components as well as the pressure of the
flow field obtained from the top of the cylinder surface to the top edge of the computational
domain for the different number of points in the point cloud. Looking at the plots, it is
evident that 2000 points is insufficient, as the velocity and pressure values deviate from the
CFD results to a large extent. For 5000 to 15,000 points, the near field velocities and pressure
agrees with CFD. In the far field, the u velocity components from PINN match closely
to CFD results; however, significant deviation is observed for the v velocity component
and pressure values. This could be attributed to the relatively small magnitudes when
compared to the u velocities, which results in difficulty in the reduction of error for the
v velocity and pressure. The accuracy of PINN can potentially be improved by adding a
scaling factor to the errors related to v velocity and pressure to facilitate training.

Energies 2023, 16, x FOR PEER REVIEW 11 of 21 
 

 

   
(c1) (c2) (c3) 

Figure 7. Flow fields near a cylinder for 10,000 points from PINN (left), CFD (middle) and error 

between PINN and CFD (right). First row is for u velocity, second row is for v velocity, and third 

row is for P pressure. (a1) 𝑢 velocity field predicted by PINN, (a2) 𝑢 velocity field computed by 

CFD, (a3) error magnitude for 𝑢 velocity, (b1) 𝑣 velocity field predicted by PINN, (b2) 𝑣 velocity 

field computed by CFD, (b3) error magnitude for 𝑣 velocity, (c1) pressure field predicted by PINN, 

(c2) pressure field computed by CFD, (c3) error magnitude for pressure. 

For 15,000 points in the point cloud, increasing the number of points from 10,000 to 

15,000 provided no improvement to the accuracy of the velocity and pressure profiles 

from PINN. The general trend of the wake and profiles are well captured; however the 

magnitudes captured by PINN are generally lower than the magnitudes obtained from 

CFD. 

Figure 8 shows a plot of the 𝑢 and 𝑣 velocity components as well as the pressure of 

the flow field obtained from the top of the cylinder surface to the top edge of the compu-

tational domain for the different number of points in the point cloud. Looking at the plots, 

it is evident that 2000 points is insufficient, as the velocity and pressure values deviate 

from the CFD results to a large extent. For 5000 to 15,000 points, the near field velocities 

and pressure agrees with CFD. In the far field, the 𝑢 velocity components from PINN 

match closely to CFD results; however, significant deviation is observed for the 𝑣 velocity 

component and pressure values. This could be attributed to the relatively small magni-

tudes when compared to the 𝑢 velocities, which results in difficulty in the reduction of 

error for the 𝑣 velocity and pressure. The accuracy of PINN can potentially be improved 

by adding a scaling factor to the errors related to 𝑣 velocity and pressure to facilitate 

training. 

 
Figure 8. Line plots of u velocity, v velocity, and pressure field from top surface of cylinder to edge of
computational domain for varying number of points in the point cloud.

3.2. Effect of Number of Hidden Layers

Another important parameter in the investigation of PINN is to define the number of
hidden layers on the accuracy of the results. Hidden layers essentially create composite
functions. By having a larger number of hidden layers, PINN is able to capture more com-
plex problems such as those with large gradients or discontinuities. Having an insufficient
number of hidden layers will result in simple, smooth solutions, which may compromise
on accuracy. To study the effects, the number of points in the point cloud and number of
nodes per layer are kept at 5000 points and 50 nodes per hidden layer, respectively. The
accuracy of PINN is then investigated for 10, 15, 20, and 25 hidden layers.

First, for 10 hidden layers, the u velocity flow field around the cylinder is shown in
Figure 9 where PINN is unable to produce accurate results. The results for 15 hidden layers
are similar to the result for 10 hidden layers, where PINN is unable to capture the velocity
and pressure fields around the cylinder accurately.



Energies 2023, 16, 4558 12 of 20

Energies 2023, 16, x FOR PEER REVIEW 12 of 21 
 

 

Figure 8. Line plots of 𝑢 velocity, 𝑣 velocity, and pressure field from top surface of cylinder to 

edge of computational domain for varying number of points in the point cloud. 

3.2. Effect of Number of Hidden Layers 

Another important parameter in the investigation of PINN is to define the number 

of hidden layers on the accuracy of the results. Hidden layers essentially create composite 

functions. By having a larger number of hidden layers, PINN is able to capture more com-

plex problems such as those with large gradients or discontinuities. Having an insufficient 

number of hidden layers will result in simple, smooth solutions, which may compromise 

on accuracy. To study the effects, the number of points in the point cloud and number of 

nodes per layer are kept at 5000 points and 50 nodes per hidden layer, respectively. The 

accuracy of PINN is then investigated for 10, 15, 20, and 25 hidden layers. 

First, for 10 hidden layers, the u velocity flow field around the cylinder is shown in 

Figure 9 where PINN is unable to produce accurate results. The results for 15 hidden lay-

ers are similar to the result for 10 hidden layers, where PINN is unable to capture the 

velocity and pressure fields around the cylinder accurately. 

  
(a) (b) 

Figure 9. Velocity flow fields (u) near a cylinder for 10 hidden layers from PINN (a) and CFD (b). 

For 20 hidden layers, PINN started to capture the general trends of the flow field, 

although the magnitudes obtained from PINN for the velocity and pressure fields are 

slightly diminished when compared to the CFD results. 

With 25 hidden layers in Figure 10 and looking at the u velocity component, the lead-

ing-edge and wake profile captured by PINN largely agrees with CFD. However, there is 

a reduction in the magnitude and area of accelerated flow when compared to CFD. Addi-

tionally, the wake velocity magnitudes are also lower for PINN. The PINN is able to cap-

ture the v velocity profile accurately, and the region of negative velocity below the cylin-

der is also well captured. The PINN also managed to predict the small spot of high veloc-

ity in the region above the cylinder. With 25 hidden layers, the stagnation point is found 

on the middle of the leading-edge of the cylinder. Regions of high and low pressure are 

accurately predicted, with the values predicted by PINN being marginally lower than the 

results computed by CFD. 

  

Figure 9. Velocity flow fields (u) near a cylinder for 10 hidden layers from PINN (a) and CFD (b).

For 20 hidden layers, PINN started to capture the general trends of the flow field,
although the magnitudes obtained from PINN for the velocity and pressure fields are
slightly diminished when compared to the CFD results.

With 25 hidden layers in Figure 10 and looking at the u velocity component, the
leading-edge and wake profile captured by PINN largely agrees with CFD. However, there
is a reduction in the magnitude and area of accelerated flow when compared to CFD.
Additionally, the wake velocity magnitudes are also lower for PINN. The PINN is able
to capture the v velocity profile accurately, and the region of negative velocity below the
cylinder is also well captured. The PINN also managed to predict the small spot of high
velocity in the region above the cylinder. With 25 hidden layers, the stagnation point is
found on the middle of the leading-edge of the cylinder. Regions of high and low pressure
are accurately predicted, with the values predicted by PINN being marginally lower than
the results computed by CFD.

Energies 2023, 16, x FOR PEER REVIEW 13 of 21 
 

 

   
(a1) (a2) (a3) 

   

(b1) (b2) (b3) 

   

(c1) (c2) (c3) 

Figure 10. Flow fields near a cylinder for 25 layers from PINN (left), CFD (middle) and error be-

tween PINN and CFD (right). First row is for u velocity, second row is for v velocity, and third row 

is for P pressure. (a1) 𝑢 velocity field predicted by PINN, (a2) 𝑢 velocity field computed by CFD, 

(a3) error magnitude for 𝑢 velocity, (b1) 𝑣 velocity field predicted by PINN, (b2) 𝑣 velocity field 

computed by CFD, (b3) error magnitude for 𝑣 velocity, (c1) pressure field predicted by PINN, (c2) 
pressure field computed by CFD, (c3) error magnitude for pressure. 

The line plots of the velocity components and pressure for varying number of hidden 

layers is shown in Figure 11. The PINN with 10 and 15 layers failed to follow similar trends 

with CFD, suggesting that more hidden layers are needed to better represent the flow 

field. This observation is consistent with the contour plots shown in Figure 9. The PINN 

with 20 and 25 layers managed to capture the trends in the near field region; however, 

slight deviations are observed in the far field for 𝑣 velocity and pressure. Similar to the 

previous case, the small magnitudes of the 𝑣 velocity and pressure resulted in greater 

difficulty in the training of the PINN. 

Figure 10. Flow fields near a cylinder for 25 layers from PINN (left), CFD (middle) and error between
PINN and CFD (right). First row is for u velocity, second row is for v velocity, and third row is for P
pressure. (a1) u velocity field predicted by PINN, (a2) u velocity field computed by CFD, (a3) error
magnitude for u velocity, (b1) v velocity field predicted by PINN, (b2) v velocity field computed by
CFD, (b3) error magnitude for v velocity, (c1) pressure field predicted by PINN, (c2) pressure field
computed by CFD, (c3) error magnitude for pressure.

The line plots of the velocity components and pressure for varying number of hidden
layers is shown in Figure 11. The PINN with 10 and 15 layers failed to follow similar trends
with CFD, suggesting that more hidden layers are needed to better represent the flow field.
This observation is consistent with the contour plots shown in Figure 9. The PINN with



Energies 2023, 16, 4558 13 of 20

20 and 25 layers managed to capture the trends in the near field region; however, slight
deviations are observed in the far field for v velocity and pressure. Similar to the previous
case, the small magnitudes of the v velocity and pressure resulted in greater difficulty in
the training of the PINN.

Energies 2023, 16, x FOR PEER REVIEW 14 of 21 
 

 

 

Figure 11. Line plots of 𝑢 velocity, 𝑣 velocity, and pressure field from top surface of cylinder to 

edge of computational domain for varying number of hidden layers. 

3.3. Effect of Number of Nodes per Hidden Layer 

To evaluate the effect of number of nodes per hidden layer, the number of points in 

the point cloud and number of hidden layers are kept as constants. The number of nodes 

affects the expressive power of PINN to fully resolve all scales of the neural network. 

Similar to how the Fourier series works, the more layers in the network, the more refined 

the small-scale solutions. The PINN made use of a point cloud consisting of 5000 points, 

with 20 hidden layers. The accuracy of PINN is investigated for 30, 40, 50, and 60 nodes 

per hidden layers. 

First, a neural network utilizing only 30 nodes fails to accurately predict the flow 

fields for u velocity component, v velocity component, and pressure. Significant improve-

ment in the accuracy can be seen when the number of nodes per hidden layer is increased 

from 30 to 40. However, some discrepancies between the results from PINN and CFD still 

prevails. For instance, for u velocity component calculated by PINN, the leading-edge 

stagnation point is displaced slightly upwards. The wake and pressure fields showed 

good agreement between PINN and CFD, but the magnitude of u and v velocities are 

lower for PINN. 

For 50 nodes, there is some improvement in the accuracy of the results produced by 

PINN. The wake and leading-edge u velocity components are in good agreement with 

each other, apart from the lower velocity magnitudes around the flow acceleration region 

captured by PINN. Similarly, the v velocity components calculated by PINN follows a 

similar trend when compared the CFD result. The pressure field computed by PINN are 

in good agreement with the CFD results. The regions of high pressure upwind of the cyl-

inder, and regions of low pressure downwind of the cylinder are well captured, the ex-

ception of the stagnation pressure being of a lower magnitude when compared with the 

CFD result. 

When 60 nodes are used for the cylinder in Figure 12(a1,a2), the wake region of the u 

velocity component computed by PINN is longer than the wake computed by CFD. The 

leading-edge region computed by PINN also had a cone shaped extension when 

Figure 11. Line plots of u velocity, v velocity, and pressure field from top surface of cylinder to edge
of computational domain for varying number of hidden layers.

3.3. Effect of Number of Nodes per Hidden Layer

To evaluate the effect of number of nodes per hidden layer, the number of points
in the point cloud and number of hidden layers are kept as constants. The number of
nodes affects the expressive power of PINN to fully resolve all scales of the neural network.
Similar to how the Fourier series works, the more layers in the network, the more refined
the small-scale solutions. The PINN made use of a point cloud consisting of 5000 points,
with 20 hidden layers. The accuracy of PINN is investigated for 30, 40, 50, and 60 nodes
per hidden layers.

First, a neural network utilizing only 30 nodes fails to accurately predict the flow fields
for u velocity component, v velocity component, and pressure. Significant improvement in
the accuracy can be seen when the number of nodes per hidden layer is increased from 30
to 40. However, some discrepancies between the results from PINN and CFD still prevails.
For instance, for u velocity component calculated by PINN, the leading-edge stagnation
point is displaced slightly upwards. The wake and pressure fields showed good agreement
between PINN and CFD, but the magnitude of u and v velocities are lower for PINN.

For 50 nodes, there is some improvement in the accuracy of the results produced by
PINN. The wake and leading-edge u velocity components are in good agreement with
each other, apart from the lower velocity magnitudes around the flow acceleration region
captured by PINN. Similarly, the v velocity components calculated by PINN follows a
similar trend when compared the CFD result. The pressure field computed by PINN are in
good agreement with the CFD results. The regions of high pressure upwind of the cylinder,
and regions of low pressure downwind of the cylinder are well captured, the exception of
the stagnation pressure being of a lower magnitude when compared with the CFD result.



Energies 2023, 16, 4558 14 of 20

When 60 nodes are used for the cylinder in Figure 12(a1,a2), the wake region of the u
velocity component computed by PINN is longer than the wake computed by CFD. The
leading-edge region computed by PINN also had a cone shaped extension when compared
with the CFD result. The flow acceleration region is not well captured by PINN as well.
Looking at Figure 12(b1,b2), PINN is able to capture the leading-edge profile and the wake.
However, the velocity magnitudes in the core of the leading-edge profile are smaller, and
of lower magnitudes than CFD. Some discrepancies are observed in the pressure profile
captured by PINN in Figure 12(c1) when compared to the CFD results in Figure 12(c2). The
PINN failed to adequately capture the high-pressure stagnation point on the leading-edge
of the cylinder. The downwind low-pressure region is also not symmetrical about the x-axis.
In general, increasing from 50 to 60 nodes did not improve the accuracy of PINN.

Energies 2023, 16, x FOR PEER REVIEW 15 of 21 
 

 

compared with the CFD result. The flow acceleration region is not well captured by PINN 

as well. Looking at Figure 12(b1,b2), PINN is able to capture the leading-edge profile and 

the wake. However, the velocity magnitudes in the core of the leading-edge profile are 

smaller, and of lower magnitudes than CFD. Some discrepancies are observed in the pres-

sure profile captured by PINN in Figure 12(c1) when compared to the CFD results in Fig-

ure 12(c2). The PINN failed to adequately capture the high-pressure stagnation point on 

the leading-edge of the cylinder. The downwind low-pressure region is also not symmet-

rical about the x-axis. In general, increasing from 50 to 60 nodes did not improve the ac-

curacy of PINN. 

   

(a1) (a2) (a3) 

   

(b1) (b2) (b3) 

   
(c1) (c2) (c3) 

Figure 12. Flow fields near a cylinder for 60 nodes per layer from PINN (left), CFD (middle) and 

error between PINN and CFD (right). First row is for u velocity, second row is for v velocity, and 

third row is for P pressure. (a1) 𝑢 velocity field predicted by PINN, (a2) 𝑢 velocity field computed 

by CFD, (a3) error magnitude for 𝑢 velocity, (b1) 𝑣 velocity field predicted by PINN, (b2) 𝑣 ve-

locity field computed by CFD, (b3) error magnitude for 𝑣 velocity, (c1) pressure field predicted by 

PINN, (c2) pressure field computed by CFD, (c3) error magnitude for pressure. 

Figure 13 plots the 𝑢 and 𝑣 velocity components and pressure to for both CFD and 

PINN with varying number of nodes per hidden layer. For the 𝑢 velocity component, the 

PINN using 30 nodes had significant deviations from the results obtained from CFD. The 

PINN with 40 and 50 nodes performed much better, with the results matching closely 

with CFD. However, increasing the number of nodes to 60 resulted in a drop of perfor-

mance, consistent with the flow fields observed from Figure 12. The PINN with 50 and 60 

nodes are able to capture the near field 𝑣 velocity with much accuracy, but similar to the 

previous cases, slight deviations can be observed in the far field. 

Figure 12. Flow fields near a cylinder for 60 nodes per layer from PINN (left), CFD (middle) and
error between PINN and CFD (right). First row is for u velocity, second row is for v velocity, and
third row is for P pressure. (a1) u velocity field predicted by PINN, (a2) u velocity field computed
by CFD, (a3) error magnitude for u velocity, (b1) v velocity field predicted by PINN, (b2) v velocity
field computed by CFD, (b3) error magnitude for v velocity, (c1) pressure field predicted by PINN,
(c2) pressure field computed by CFD, (c3) error magnitude for pressure.

Figure 13 plots the u and v velocity components and pressure to for both CFD and
PINN with varying number of nodes per hidden layer. For the u velocity component, the
PINN using 30 nodes had significant deviations from the results obtained from CFD. The
PINN with 40 and 50 nodes performed much better, with the results matching closely with
CFD. However, increasing the number of nodes to 60 resulted in a drop of performance,
consistent with the flow fields observed from Figure 12. The PINN with 50 and 60 nodes
are able to capture the near field v velocity with much accuracy, but similar to the previous
cases, slight deviations can be observed in the far field.



Energies 2023, 16, 4558 15 of 20Energies 2023, 16, x FOR PEER REVIEW 16 of 21 
 

 

 

Figure 13. Line plots of u velocity, v velocity, and pressure field from top surface of cylinder to edge 

of computational domain for varying number of nodes per hidden layer. 

4. Discussions 

In general, the magnitudes computed by the PINN are smaller than the CFD results. 

This slight discrepancy could be due to the difficulty in the computation of pressure. Pres-

sure is not explicitly defined in the momentum equations, and is only indirectly enforced 

by the continuity equation. One possible way to improve the performance of PINN is to 

construct an equation for pressure, for example, the pressure Poisson equation, and incor-

porate it as part of the loss to the neural network. However, the validity and performance 

of this method has yet to be investigated. 

4.1. Maximum Error between PINN and CFD 

The absolute error between PINN and CFD is defined as 

𝜖𝑖(𝒙) = |�̃�𝑖(𝒙) − 𝑦𝑖(𝒙)| (16) 

where �̃�𝑖 represents the pointwise flow variables predicted by PINN, 𝑦𝑖 represents the 

pointwise flow variables computed by CFD, and 𝑖 = 𝑢, 𝑣, 𝑝 are the index which repre-

sents 𝑢 velocity, 𝑣 velocity and pressure, respectively. The maximum absolute error be-

tween PINN and CFD is shown in Figure 14 for u and v velocity components for varying 

number of points, hidden layers, and nodes per hidden layer. Looking at the results for 

number of points, the accuracy stagnates after reaching 5000 points in the point cloud. 

This is an indication that once the minimum number of points required has been used, an 

increase in the number of points does not lead to a more accurate velocity field. For the 

pressure field error in Figure 14, the case with 10,000 points achieved the lowest maximum 

absolute error and increasing the number of points resulted in amplification of the error. 

This is due to difficulty in training the pressure field as pressure is implicitly defined in 

the Navier-Stokes equation. Increasing the number of points led to an increase in difficulty 

in training of the pressure field. 

Figure 13. Line plots of u velocity, v velocity, and pressure field from top surface of cylinder to edge
of computational domain for varying number of nodes per hidden layer.

4. Discussions

In general, the magnitudes computed by the PINN are smaller than the CFD results.
This slight discrepancy could be due to the difficulty in the computation of pressure.
Pressure is not explicitly defined in the momentum equations, and is only indirectly
enforced by the continuity equation. One possible way to improve the performance of
PINN is to construct an equation for pressure, for example, the pressure Poisson equation,
and incorporate it as part of the loss to the neural network. However, the validity and
performance of this method has yet to be investigated.

4.1. Maximum Error between PINN and CFD

The absolute error between PINN and CFD is defined as

εi(x) =
∣∣∣∼y i(x)− yi(x)

∣∣∣ (16)

where
∼
y i represents the pointwise flow variables predicted by PINN, yi represents the

pointwise flow variables computed by CFD, and i = u, v, p are the index which represents
u velocity, v velocity and pressure, respectively. The maximum absolute error between
PINN and CFD is shown in Figure 14 for u and v velocity components for varying number
of points, hidden layers, and nodes per hidden layer. Looking at the results for number
of points, the accuracy stagnates after reaching 5000 points in the point cloud. This is an
indication that once the minimum number of points required has been used, an increase in
the number of points does not lead to a more accurate velocity field. For the pressure field
error in Figure 14, the case with 10,000 points achieved the lowest maximum absolute error
and increasing the number of points resulted in amplification of the error. This is due to
difficulty in training the pressure field as pressure is implicitly defined in the Navier-Stokes
equation. Increasing the number of points led to an increase in difficulty in training of the
pressure field.



Energies 2023, 16, 4558 16 of 20Energies 2023, 16, x FOR PEER REVIEW 17 of 21 
 

 

 

Figure 14. Maximum absolute error of PINN against number of points in point cloud, hidden layers 

and nodes per hidden layer for u velocity component (blue), v velocity component (orange), and 

pressure field (green). 

For the investigations of the effect of number of hidden layers on the accuracy of the 

PINN, the maximum error for all flow fields is high for 10 and 15 hidden layers, which 

suddenly drops when it reaches 20 hidden layers. Having a low number of hidden layers 

prevented PINN from generalizing the solution for the entire domain. There are no sig-

nificant improvements in accuracy when the number of hidden layers increased from 20 

to 25 layers. This suggests that the accuracy for these cases reaches a limit at 20 hidden 

layers, and any additional layers will not improve the results any further. While the max-

imum error did not decrease significantly when increasing the number of hidden layers 

from 20 to 25, the accuracy of the wake produced by PINN decreased significantly. PINN 

is unable to obtain accurate wake velocity magnitudes for the network using 25 hidden 

layers. This could be largely due to an increase in the difficulty of training when the net-

work size gets larger, leading to a less accurate result. 

For different number of nodes per hidden layers in the network, insufficient nodes 

render the PINN unable to fully generalize the solution throughout the entire spatial scale. 

This is akin to the Fourier series, where a larger number of terms are required to capture 

the small-scale changes in the function. It is interesting to observe that as the number of 

nodes per hidden layer increases from 50 to 60, the accuracy of PINN results decreases. In 

other words, when the number of nodes per layer reaches a certain threshold, the perfor-

mance of PINN remains stagnant, or in this case, worsens. Increasing the number of nodes 

per hidden layer increases the dimensions of the training parameters, which makes train-

ing of the PINN harder, resulting in a less accurate result. 

From the study, increasing the number of nodes per hidden layer provided the least 

improvement in performance for the PINN. As observed, there is a saturation point in 

which increasing the number of nodes per layer led to no significant increase in accuracy. 

Going beyond this saturation point only brings about unnecessary waste of memory re-

sources, and potential increase in computational time. Since the simulations are per-

formed on a GPU, increment in the parameter values did not increase the computation 

time significantly. However, as GPU memory is limited, any increase in the number of 

points, number of hidden layers, or number of nodes per hidden layer results in poor 

optimization of GPU memory resource. Hence, finding the optimal network parameters 

is key to the performance of the neural network. Observing the error reduction as the 

parameter changes, increasing the number of hidden layers brings about the largest re-

duction of error. Hence, when optimizing the PINN, adjustment to the number of hidden 

layers should be the priority. The next best option is to increase the number of points in 

Figure 14. Maximum absolute error of PINN against number of points in point cloud, hidden layers
and nodes per hidden layer for u velocity component (blue), v velocity component (orange), and
pressure field (green).

For the investigations of the effect of number of hidden layers on the accuracy of
the PINN, the maximum error for all flow fields is high for 10 and 15 hidden layers,
which suddenly drops when it reaches 20 hidden layers. Having a low number of hidden
layers prevented PINN from generalizing the solution for the entire domain. There are no
significant improvements in accuracy when the number of hidden layers increased from
20 to 25 layers. This suggests that the accuracy for these cases reaches a limit at 20 hidden
layers, and any additional layers will not improve the results any further. While the
maximum error did not decrease significantly when increasing the number of hidden layers
from 20 to 25, the accuracy of the wake produced by PINN decreased significantly. PINN is
unable to obtain accurate wake velocity magnitudes for the network using 25 hidden layers.
This could be largely due to an increase in the difficulty of training when the network size
gets larger, leading to a less accurate result.

For different number of nodes per hidden layers in the network, insufficient nodes
render the PINN unable to fully generalize the solution throughout the entire spatial scale.
This is akin to the Fourier series, where a larger number of terms are required to capture the
small-scale changes in the function. It is interesting to observe that as the number of nodes
per hidden layer increases from 50 to 60, the accuracy of PINN results decreases. In other
words, when the number of nodes per layer reaches a certain threshold, the performance
of PINN remains stagnant, or in this case, worsens. Increasing the number of nodes per
hidden layer increases the dimensions of the training parameters, which makes training of
the PINN harder, resulting in a less accurate result.

From the study, increasing the number of nodes per hidden layer provided the least
improvement in performance for the PINN. As observed, there is a saturation point in which
increasing the number of nodes per layer led to no significant increase in accuracy. Going
beyond this saturation point only brings about unnecessary waste of memory resources,
and potential increase in computational time. Since the simulations are performed on a
GPU, increment in the parameter values did not increase the computation time significantly.
However, as GPU memory is limited, any increase in the number of points, number of
hidden layers, or number of nodes per hidden layer results in poor optimization of GPU
memory resource. Hence, finding the optimal network parameters is key to the performance
of the neural network. Observing the error reduction as the parameter changes, increasing
the number of hidden layers brings about the largest reduction of error. Hence, when
optimizing the PINN, adjustment to the number of hidden layers should be the priority.



Energies 2023, 16, 4558 17 of 20

The next best option is to increase the number of points in the point cloud. Increasing the
number of nodes per hidden layer brings about the smallest improvement in performance.

4.2. Comparison of Resource Utilzation

The comparison of computational resource usage by PINN and CFD against number
of points in the point cloud is shown in Figure 15. As observed, the computation time
for PINN shows a non-linear time complexity, with respect to the number of points in
the point cloud, where the time taken for PINN to solve for flow over cylinder varies
quadratically with the number of points. Thus, having a larger number of points will lead
to a drastic increase in the computation time. Looking at the memory usage, PINN memory
usage increases linearly with the number of points. When comparing the time taken
for PINN with CFD, PINN takes almost 3 times longer to solve when using 5000 points.
However, when comparing the memory usage between PINN and CFD, PINN uses more
than 10 times less memory. While PINN takes more time to solve the problem, it is more
efficient in the computational resource’s aspect.

Energies 2023, 16, x FOR PEER REVIEW 18 of 21 
 

 

the point cloud. Increasing the number of nodes per hidden layer brings about the small-

est improvement in performance. 

4.2. Comparison of Resource Utilzation 

The comparison of computational resource usage by PINN and CFD against number 

of points in the point cloud is shown in Figure 15. As observed, the computation time for 

PINN shows a non-linear time complexity, with respect to the number of points in the 

point cloud, where the time taken for PINN to solve for flow over cylinder varies quad-

ratically with the number of points. Thus, having a larger number of points will lead to a 

drastic increase in the computation time. Looking at the memory usage, PINN memory 

usage increases linearly with the number of points. When comparing the time taken for 

PINN with CFD, PINN takes almost 3 times longer to solve when using 5000 points. How-

ever, when comparing the memory usage between PINN and CFD, PINN uses more than 

10 times less memory. While PINN takes more time to solve the problem, it is more effi-

cient in the computational resource’s aspect. 

 

Figure 15. Computational resources used by PINN and CFD for varying number of points, hidden 

layers, and nodes per hidden layer. (Top) Comparison of computational time between PINN (blue) 

and converged CFD (red). (Bottom) Comparison of memory usage between PINN (blue) and con-

verged CFD (red). 

PINN has a linear time complexity with respect to the number of layers. Comparing 

the time taken by PINN with CFD, PINN took almost 3 times the amount of time to solve 

for flow around cylinder using 20 hidden layers. In terms of computation time, CFD is 

still more efficient. However, PINN is able to make up for that when it comes to memory 

usage. The PINN memory usage varies linearly as the number of hidden layers increases. 

PINN is more than 5 times more efficient in memory usage than CFD, making it less de-

manding on the hardware requirement for solving the problem using PINN. 

For different number of nodes per hidden layer, the time complexity for PINN is 

linear for 30 to 50 nodes; however, there is a larger jump in computational time when the 

number of nodes per hidden layer increases from 50 to 60. When comparing the compu-

tation time with CFD, CFD is more computationally efficient, taking almost 3 times less 

time to solve for the flow around the cylinder. The memory usage of PINN is more than 

Figure 15. Computational resources used by PINN and CFD for varying number of points, hidden
layers, and nodes per hidden layer. (Top) Comparison of computational time between PINN (blue)
and converged CFD (red). (Bottom) Comparison of memory usage between PINN (blue) and
converged CFD (red).

PINN has a linear time complexity with respect to the number of layers. Comparing
the time taken by PINN with CFD, PINN took almost 3 times the amount of time to solve
for flow around cylinder using 20 hidden layers. In terms of computation time, CFD is still
more efficient. However, PINN is able to make up for that when it comes to memory usage.
The PINN memory usage varies linearly as the number of hidden layers increases. PINN is
more than 5 times more efficient in memory usage than CFD, making it less demanding on
the hardware requirement for solving the problem using PINN.

For different number of nodes per hidden layer, the time complexity for PINN is linear
for 30 to 50 nodes; however, there is a larger jump in computational time when the number
of nodes per hidden layer increases from 50 to 60. When comparing the computation time
with CFD, CFD is more computationally efficient, taking almost 3 times less time to solve
for the flow around the cylinder. The memory usage of PINN is more than 5 times less than
the memory usage of CFD, making PINN more efficient on the hardware and resources.



Energies 2023, 16, 4558 18 of 20

In general, the computational time for PINN is at least 3 times longer than CFD. The
automatic differentiation process is the main cause for the long computation time. Auto-
matic differentiation requires an additional backpropagation step, where partial derivatives
of every parameter (nodal weights) have to be computed, and the derivatives with respect
to the spatial coordinates can be obtained via the chain rule. This additional backpropa-
gation step scales with the number of layers and number of nodes, and, hence, resulted
in higher computational cost for large PINN architectures. Another reason CFD is more
efficient in this case is that the CFD mesh is simple, with relatively low number of cells.
With more cells in the mesh, CFD could potentially be less efficient in computation time.
This can be highlighted when compared to a similar study using PINN to solve for low
Reynolds number flow over an airfoil [35]. Table 5 compared the computational time used
by CFD and PINN for two cases with varying number of cells for CFD. It can be seen that
for cases requiring finer CFD mesh, the PINN is 4.5 times more computationally efficient
than CFD. For the airfoil case, a larger number of cells is required, which resulted in a
huge increase in computational time for CFD. However, the computational time for PINN
remains relatively constant. Hence, in more complex cases with finer mesh, PINN can
potentially use significantly less computation time.

However, what PINN lack in time efficiency, it made up in terms of the space efficiency.
In all cases, PINN require about 10 times less memory when compared to CFD. The data
format for PINN are simple tensors which only includes the spatial coordinates, and
weights and bias of the neural network. Unlike PINN, the data which defines the CFD
mesh is more complicated, including the cell vertices, cell faces and cell neighborhood,
which results in larger memory usage for the CFD.

Table 5. Comparison of computational time between CFD and PINN.

Study Number of Cells CFD Time PINN Time

Cylinder 41,772 170 ~500
Airfoil [35] 100,172 1687 ~500

5. Conclusions

Physics-informed neural network (PINN) architecture for fluid flows is demonstrated
for a low Reynolds number flow around a cylinder without the use of experimental or
simulation data. The PINN is able to capture the general trend of the flow field. Velocity
fields produced by PINN are comparable with the results captured by CFD. However,
PINN struggled slightly with the pressure fields as the pressure term is not explicitly
defined in the loss function. Critical factors of designing the PINN architecture have been
investigated and discussed, and showed that increasing the number of layers leads to the
greatest improvement to the accuracy of results, followed by increasing number of points in
the point cloud. Increasing the number of nodes per hidden layer brings about the smallest
improvement in performance.

In terms of computational demands, PINN is more efficient in memory usage than
CFD but not necessary for computation time. In simple cases where the number of cells in
the CFD mesh is low, PINN takes longer than CFD to compute the results. However, in
more complex cases that involves higher number of cells in the CFD mesh, PINN has the
potential to be more time efficient.

Author Contributions: Conceptualization, E.H.W.A. and B.F.N.; formal analysis, E.H.W.A., G.W.
and B.F.N.; investigation, E.H.W.A.; writing—original draft preparation, E.H.W.A.; writing—review
and editing, G.W. and B.F.N.; supervision, B.F.N. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Nanyang Technological University, Singapore under the
Nanyang President’s Graduate Scholarship, and the Singapore Centre for 3D Printing, which is sup-
ported by the National Research Foundation, Prime Minister’s Office, Singapore under its Medium-
Sized Centre funding Scheme.



Energies 2023, 16, 4558 19 of 20

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shyy, W.; Lian, Y.; Tang, J.; Liu, H.; Trizila, P.; Stanford, B.; Bernal, L.; Cesnik, C.; Friedmann, P.; Ifju, P. Computational

aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mech. Sin. 2008,
24, 351–373. [CrossRef]

2. Shanko, E.S.; van de Burgt, Y.; Anderson, P.D.; den Toonder, J.M. Microfluidic magnetic mixing at low Reynolds number and in
stagnant fluids. Micromachines 2019, 10, 731. [CrossRef]

3. Moukalled, F.; Mangani, L.; Darwish, M. The Finite Volume Method in Computational Fluid Dynamics; Springer: Cham, Switzer-
land, 2016.

4. Lindhorst, K.; Haupt, M.C.; Horst, P. Reduced-order modelling of non-linear, transient aerodynamics of the HIRENASD wing.
Aeronaut. J. 2013, 120, 601–626. [CrossRef]

5. Thuerey, N.; Weißenow, K.; Prantl, L.; Hu, X. Deep Learning Methods for Reynolds-Averaged Navier-Stokes Simulations of
Airfoil Flows. AIAA J. 2020, 58, 25–36. [CrossRef]

6. Zhang, Y.; Sung, W.; Mavris, D. Application of Convolutional Neural Network to Predict Airfoil Lift Coefficient. In Proceed-
ings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA,
8–12 January 2018.

7. Belbute-Peres, F.D.A.; Economon, T.; Kolter, Z. Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction. In Proceedings of the 37th International Conference on Machine Learning, Virtual, 13–18 July 2020.

8. Han, R.; Wang, Y.; Zhang, Y.; Chen, G. A novel spatial-temporal prediction method for unsteady wake flows based on hybrid
deep neural network. Phys. Fluids 2019, 31, 127101.

9. Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L.K.; Muller, K.R. Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning; Springer: Cham, Switzerland, 2019.

10. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2018, 378, 686–707. [CrossRef]

11. Chauvin, Y.; Rumelhart, D.E. Backpropagation: Theory, Architectures, and Applications; Lawrence Erlbaum Associates Publishers:
Hillsdale, NJ, USA, 1995.

12. Raissi, M.; Wang, Z.; Triantafyllou, M.S.; Karniadakis, G.E. Deep learning of vortex-induced vibrations. J. Fluid Mech. 2019,
861, 119–137. [CrossRef]

13. Sun, L.; Gao, H.; Pan, S.; Wang, J.X. Surrogate modeling for fluid flows based on physics-constrained deep learning without
simulation data. Comput. Methods Appl. Mech. Eng. 2020, 361, 112732. [CrossRef]

14. Mao, Z.; Jagtap, A.D.; Karniadakis, G.E. Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech.
Eng. 2019, 360, 112789. [CrossRef]

15. Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.R. Physics-informed neural networks (PINNs) for fluid mechanics: A review.
Acta Mech. Sin. 2021, 37, 1727–1738. [CrossRef]

16. Arzani, A.; Wang, J.X.; D’Souza, R.M. Uncovering near-wall blood flow from sparse data with physics-informed neural networks.
Phys. Fluids 2021, 33, 071905. [CrossRef]

17. Eivazi, H.; Tahani, M.; Schlatter, P.; Vinuesa, R. Physics-informed neural networks for solving Reynolds-averaged Navier-Stokes
equations. Phys. Fluids 2021, 34, 075117. [CrossRef]

18. Jin, X.; Cai, S.; Li, H.; Karniadakis, G.E. NSFnets (Navier-Stokes Flow nets): Physics-informed neural networks for the incom-
pressible Navier-Stokes equations. J. Comput. Phys. 2021, 426, 109951. [CrossRef]

19. Zhu, Q.; Liu, Z.; Yan, J. Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics
using physics-informed neural networks. Comput. Mech. 2021, 67, 619–635. [CrossRef]

20. Almajid, M.M.; Abu-Al-Saud, M.O. Prediction of porous media fluid flow using physics informed neural networks. J. Pet. Sci.
Eng. 2022, 208, 109205. [CrossRef]

21. Bararnia, H.; Esmaeilpour, M. On the application of physics informed neural networks (PINN) to solve boundary layer thermal-
fluid problems. Int. Commun. Heat Mass Transf. 2022, 132, 105890. [CrossRef]

22. Aliakbari, M.; Mahmoudi, M.; Vadasz, P.; Arzani, A. Predicting high-fidelity multiphysics data from low-fidelity fluid flow and
transport solvers using physics-informed neural networks. Int. J. Heat Fluid Flow 2022, 96, 109002. [CrossRef]

23. Yang, X.I.A.; Zafar, S.; Wang, J.-X.; Xiao, H. Predictive large-eddy-simulation wall modeling via physics-informed neural networks.
Phys. Rev. Fluids 2019, 4, 034602. [CrossRef]

24. Lucor, D.; Agrawal, A.; Sergent. Simple computational strategies for more effective physics-informed neural networks modeling
of turbulent natural convection. J. Comput. Phys. 2022, 456, 111022. [CrossRef]

25. Haykin, S. Neural Networks: A Comprehensive Foundation; Pearson Education: London, UK, 1999.
26. Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic Differentiation in Machine Learning: A Survey. J. Mach.

Learn. Res. 2018, 18, 1–43.

https://doi.org/10.1007/s10409-008-0164-z
https://doi.org/10.3390/mi10110731
https://doi.org/10.1017/aer.2016.12
https://doi.org/10.2514/1.J058291
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1017/jfm.2018.872
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1063/5.0055600
https://doi.org/10.1063/5.0095270
https://doi.org/10.1016/j.jcp.2020.109951
https://doi.org/10.1007/s00466-020-01952-9
https://doi.org/10.1016/j.petrol.2021.109205
https://doi.org/10.1016/j.icheatmasstransfer.2022.105890
https://doi.org/10.1016/j.ijheatfluidflow.2022.109002
https://doi.org/10.1103/PhysRevFluids.4.034602
https://doi.org/10.1016/j.jcp.2022.111022


Energies 2023, 16, 4558 20 of 20

27. Caudill, M.; Butler, C. Naturally Intelligent Systems; Massachusetts Institute of Technology: Cambridge, MA, USA, 1992.
28. PyTorch. PyTorch Documentation. 2019. Available online: https://pytorch.org/docs/stable/index.html (accessed on 2 June 2021).
29. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning

Representations, San Diego, CA, USA, 7–9 May 2015.
30. OpenFOAM. OpenFOAM Documentation. 22 December 2020. Available online: https://www.openfoam.com/documentation/

overview (accessed on 31 May 2021).
31. Tritton, D.J. Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 1959, 6, 547–567. [CrossRef]
32. Posdziech, O.; Grundmann, R. A systematic approach to the numerical calculation of fundamental quantities of the two-

dimensional flow over a circular cylinder. J. Fluids Struct. 2007, 23, 479–499. [CrossRef]
33. Cybenko, G. Approximation by Superpositions of a Sigmoidal Function. Math. Control Signals Syst. 1989, 2, 303–314. [CrossRef]
34. Hornik, K. Approximation Capabilities of Multilayer Feedforward Networks. Neural Netw. 1991, 4, 251–257. [CrossRef]
35. Ang, E.; Ng, B.F. Physics-Informed Neural Networks for Flow Around Airfoil. In Proceedings of the AIAA SCITECH 2022 Forum,

San Diego, CA, USA, Virtual, 3–7 January 2022. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://pytorch.org/docs/stable/index.html
https://www.openfoam.com/documentation/overview
https://www.openfoam.com/documentation/overview
https://doi.org/10.1017/S0022112059000829
https://doi.org/10.1016/j.jfluidstructs.2006.09.004
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.2514/6.2022-0187

	Introduction 
	Methodology 
	Physics-Informed Neural Network 
	Physics Constraints for Fluid Flows 
	Implementation of PINN 
	PINN Setup 
	Validation Setup with Computational Fluid Dynamics 

	Results 
	Effect of Number of Points 
	Effect of Number of Hidden Layers 
	Effect of Number of Nodes per Hidden Layer 

	Discussions 
	Maximum Error between PINN and CFD 
	Comparison of Resource Utilzation 

	Conclusions 
	References

