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Abstract: This paper presents an analysis of selected acoustic properties of gear pumps. For this
purpose, the characteristics of selected types of displacement pumps—gear pumps—are discussed, as
well as discrete methods of identification and classification of acoustic signals. The basic assumptions
of noise analysis in reverberation chambers are discussed, and an analysis of the distribution of mea-
surement points using decision trees and statistical analysis of measured noise levels was conducted.
The object for the conducted research was a gear pump with a undercut tooth profile developed
by Wytwórnia Pomp Zębatych Sp. z o.o. in Wrocław. Our own research indicates that the acoustic
performance of gear units depends on a number of factors, including, in particular, the technology
and quality of manufacture and the geometric parameters of the toothing. The aim of the analyses
presented in this paper was to determine which of the microphones has the most important impact
on the level of determined measured noise generated in the acoustic chamber. The paper presents an
analysis aimed at ranking the importance of eight measurement points in which the microphones are
located. To this end, induction trees were developed, and a statistical analysis of the measurement
results obtained for selected frequency and sound pressure ranges was prepared. The analysis made
it possible to optimize the arrangement of microphones in the chamber without unnecessary analysis
of each of the microphones separately.

Keywords: gear pump; acoustic properties; induction decision trees; optimization

1. Introduction—Theoretical Framework

Excessive noise in the workplace is currently the factor that poses the greatest threat
to the life and health of employees. Not only does it cause significant discomfort but it
also affects the team’s productivity and contributes to errors in tasks performed. Therefore,
underestimating acoustic insulation is detrimental to both staff and company performance.
Employees in production plants are particularly vulnerable to the harmful effects of noise.
Loud machines, open spaces, noise, and frequent movement of workers, vehicles, and
materials make halls places where unwanted sounds are difficult to control. However, by
using appropriate acoustic solutions, it is possible to significantly reduce reverberation
time, separate quieter zones, or properly isolate administrative areas. The basis for all
implementation is detailed measurement and determining the standards established by the
State Labor Inspectorate to be met. The results of studies presented in, for example [1–3],
showed that the use of computer simulation tools to simulate acoustic phenomena in
industrial halls is currently the basic and indispensable solution for the effective design
of antinoise protection at workstations. The use of simulation methods aims to determine
the impact of individual sound sources on the total noise observed at a given workstation,
thus identifying the sources responsible for the observed acoustic state. In particular, a
very important element is the acoustic diagnosis of machines. In order to analyze the
current technical condition of machines, a diagnosis based on measuring the intensity of
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the vibroacoustic system signal is carried out. In this way, it is possible to observe the
appearance of signals indicating a malfunction, such as a drive failure, which can lead to
mechanical damage. Another method is the instantaneous sound pressure value [4,5]. The
accumulated knowledge thus far indicates certain difficulties in extracting useful signals
from the background of the acoustic characteristics of the machine due to the significant
contribution of environmental frequency components and the low amplitude values of
diagnostic harmonics caused by a given type of damage [6–8].

Machines and devices with hydrostatic drive are widely used in various branches of
industry and economy, being found in both stationary and mobile systems. Development of
transport would not be possible without hydrostatic systems. Hydraulic systems are used
in motor vehicles as well as in water transport and aviation. At the heart of any hydraulic
system is the fluid stream energy generator, commonly referred to as a pump [9–12]. It is
estimated that more than half (approx. 60%) of the positive displacement pumps produced
are external gear pumps [10,13]. These pumps in particular are installed in systems where
the energy generator of the fluid stream is characterized by constant efficiency. Gear pumps
have numerous operational advantages and low manufacturing costs. The main operating
advantages include high durability, high efficiency, operational reliability, resistance to
contamination of the working medium, small dimensions due to a simple and compact
design, high operating pressures. and a wide range of outputs. Gear pumps have many
advantages but generally give way to other pumps from the group of positive displacement
pumps [14].

The placement of microphones in a reverberation chamber can be subject to innovation
in acoustic measurements. Traditionally, microphone placement in a reverberation chamber
is based on evenly spacing the microphones around the source point or along the chamber
walls. One innovation in this area is the utilization of advanced microphone placement
techniques, which can bring benefits in terms of measurement accuracy and error reduction.
Some of these innovative methods are as follows:

Adaptive microphone placement method: This method involves dynamically ad-
justing the microphone placement based on the measurement characteristics. Adaptive
algorithms can optimize the microphone positions in real time, with factors such as the
source location, background noise level, and other factors being considered to achieve the
best measurement quality.

Nonuniform microphone placement method: In contrast to the traditional uniform
microphone placement, the nonuniform placement method introduces intentional irregular-
ities in the microphone array configuration. This can include uneven spacing or variations
in distances between microphones. Such nonuniform placement can help reduce interfer-
ence effects and other disturbances, improving the quality and accuracy of measurements.

Utilization of spatial microphones: Spatial microphones, such as directional micro-
phones or microphone arrays, can be employed as innovative solutions in reverberation
chambers. With their ability to selectively capture sound from specific directions, spatial
microphones can provide more precise acoustic measurements in specific areas, which is
particularly useful for field analysis.

Noisy operation of any device can be reduced by using one of the two methods listed
below:

(a) The active method—this method involves interfering with the source and cause of
sound-forming vibrations;

(b) The passive method—this method is based on the scattering or absorption of an
acoustic wave emitted by a source.

The active method provides the best results (of the two methods mentioned). It is the
most costly and time-consuming method, but the most effective. In praxis, the best results
are obtained by using two methods simultaneously, both active and passive. Our own
research [12,14] and studies from the literature [15] indicate two basic sources of sound-
forming vibrations. These are sources that originate from the occurrence of hydraulic
and mechanical phenomena. Hydraulic sources include noise caused by the flow of the



Energies 2023, 16, 4460 3 of 28

working medium (fluid-borne noise). On the other hand, mechanical noise is caused
by the vibration of structural elements and depends on the quality of manufacture and
installation (e.g., unbalanced rotating elements). The leading sources of noise in gear
pumps are the pulsation of discharge pressure and the sealing of hydraulic oil during
the two-pair meshing of mating gear wheels [15]. These sources contribute the most to
the global sound pressure emission level. In order to avoid the formation of obstructed
space, relief grooves are made in the slide bearing body, or dampers are mounted on the
discharge port to reduce the amplitude of pressure pulsations (the passive method). Passive
methods are a kind of half-measure because they focus on the effects of the phenomenon
rather than on the cause. A more effective way to reduce the emitted noise is to analyze
the cause and employ a method that eliminates the unfavorable phenomenon directly at
the source of its formation (the active method). The application of simulation methods
aims to determine the influence of individual sound sources on the total noise observed
at a given location and thus identify the sources responsible for the observed state. The
present paper focuses on the analysis of the acoustic field of a gear pump with an undercut
tooth, determining directions and possibilities for improving the pump’s operation. In
particular, better measurement concepts have been developed as a result of implementing
the proposed optimization solutions.

Our basic research indicates that the noise emitted by gear pumps depends on the
geometry of the tooth outline, as well as on the technology and class of accuracy of their
manufacture [12–14]. It is the geometry of the gear that determines the formation of the
obturation space, while the adopted technology and class of manufacturing accuracy affect,
among other things, the formation of possible radial run-outs or the formation of backlash.
The present study was limited to the analysis of the acoustic parameters of a gear pump
prototype with tooth root relief, in particular with the use of game graphs and statistical
analysis. The purpose of the analysis was to determine which of the microphones has the
greatest impact on the noise level measured (or determined) in the acoustic chamber. Then,
it will be possible to develop test guidelines based only on measurement in a reduced
number of microphones (optimally in one). First, an induction tree was generated for each
of the microphones for the indicated frequencies and sound pressure. On this basis, the
importance of individual microphones was determined. In the next stage, a statistical
analysis of the collected data was carried out in order to verify the obtained results.

The aim of the current study was to optimize the acoustic properties of a selected
gear pump. As part of the research, an analysis of the pump’s design parameters was
conducted based on measurements of the generated noise. The measurement of noise was
considered a key point which depended on the appropriate microphone placement in the
chamber. The placement of measurement points is crucial for measurement errors, which
can lead to unnecessary design changes. Determining key measurement points allowed
for a focus on the so-called narrow necks of the reverberation chamber and, thus, enabled
efficient engineering calculations instead as opposed to an analysis of each point separately.
For this purpose, two independent analyses were conducted (measured noise level with
eight independent measurement points) using decision trees and statistical analysis. The
aim of the analysis was to indicate which microphones recorded the most constant noise
measurements. The optimized method of considering the microphone signal is expected
to yield better measurements of power level Lp and corrected sound power level LpA as a
function of discharge pressure pt and pump shaft speed n.

2. Research Object

The prototype pump was made based on early design documentation [12,16,17].
The pump has a three-plate structure. This structure is schematically shown in Figure 1.
Mounting holes are made in the faceplate (1) for fixing on the drive unit. The gears, plain
bearing housings, and discharge and suction holes are located in the center plate (2). The
back plate (3) encloses the entire construction.
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Figure 1. Gear pump with external gearing and a three-plate construction. 1—front (mounting) plate;
2—middle (rest) plate; 3—rear plate; 4—driving shaft.

The prototype pump was designed as part of the company’s own research work. The
unit was made at the Wytwórnia Pomp Zębatych Sp. z o.o. in Wroclaw. The design of the
prototype pump took into account the company’s machinery and technological capabilities.
The company designed an innovative tooth outline with controlled undercutting of the
tooth foot [12,16,17]. The tooth profile of the gear pumps is an involute curve from the un-
dercut point to the tip of the tooth. Below the undercut point, the tooth profile corresponds
to an elongated involute curve. The main parameters are summarized in the Table 1 below.
The pump hasa unit capacity of q = 40 cm3.

Table 1. Meshing parameters.

Parameter Symbol Unit Value

Number of teeth z - 9
Modulus m0 [mm] 4.5

Pressure angle α0 [◦] 20
Gear wheel width b [mm] 32.2

2.1. Measuring Rig

The gear pump along with the capacitive microphones was placed inside an acoustic
chamber. The remaining part of the control and measurement equipment was located in
a separate room. The isolated room was acoustically separated from the reverberation
chamber and was directly adjacent to it. The sound insulation of the partition separating
the reverberation chamber from the room containing the measuring equipment was 50 dB.

Acoustic tests were carried out in a reverberation chamber that meets the standards
of ANSI S1.21-1972 [18] and standard PN-85/N-01334 [19]. The chamber is used for
certification in the area of vibration and noise of machinery and equipment. Isolation from
airborne sounds of the chamber is 50 dB in the entire range of audible sounds, i.e., from
20 to 20 kHz. High acoustic insulation from airborne sounds ensures the elimination
of interference generated by the propulsion system and by the supercharging hydraulic
system. The supercharging system is responsible for ensuring the proper inflow of working
fluid to the unit under test [12].

A schematic of the station for measuring vibroacoustic quantities is shown in Figure 2.
The pump with the condenser microphones is located inside the reverberation chamber.
The rest of the control and measurement apparatus are located in a separate room. Prior
to the measurements, the entire measurement path was over-tuned. A reference sound
pressure source (pitophone) was used for this purpose.
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Figure 2. Block diagram of the gear pump noisiness-measuring rig. KA—calibrator; MC—eight
free sound field microphones; MU—multiplexer; WP—instrumentation amplifier; AF—two-channel
frequency analyzer; PC—computer; PZ—gear pump; KO—chamber.

The reverberant acoustic chamber (Figure 3) consists of two irregular polyhedrons
separated by mineral wool. Each of the walls of the polyhedron is made of solid brick,
while its internal plasters are made of cement mortar. Having opposite walls at different
angles eliminates the formation of standing waves (no pair of opposite walls is parallel
to each other). The uniformity of the reverberation field distribution inside the chamber
meets the normative requirements, starting from the octave with the center frequency of
125 Hz. Eight fixed measurement points were designated based on the admittance tests.
As recommended by the auditor, microphones were placed at each point at the height of
the propeller shaft, i.e., 1.3 m above the surface of the floating floor. A multiplexer with
a sound level meter was used to read the measured sound pressure level values, and the
spectral characteristics were recorded in the storage memory of a two-channel analyzer
(Figure 2). The sound pressure levels recorded at the measurement points were averaged.
A PC with B&K Type 5306 software was used to analyze the data. Figure 4 shows a gear
pump in an acoustic chamber with the attached flow hoses.

Figure 5 shows the test stand for hydraulic testing. Figure 6 shows the microphone in
the voice chamber.

Noise generation in gear pumps mainly depends on the manufacturing technology,
as well as on parameters such as drive motor speed, suction and discharge pressure, oil
viscosity, etc. The frequency and level of oscillatory force in bearings are mainly influenced
by the rotational speed and discharge pressure. This results in sound vibrations radiated
through the housing to the environment. The working medium supply conditions are
determined by the suction pressure. If the suction pressure is too low, a discontinuity in the
flow may appear as a result of cavitation causing an increase in the noise level in the mid-
and high-frequency bands, i.e., the band in which, from the point of view of human sound
perception, noise is perceived as more annoying and troublesome.
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For the repeatability of measurement results, the measurement of noise was considered
a key point, which depended on appropriate microphone placement in the chamber. The
placement of measurement points is crucial for measurement errors, which can lead to
unnecessary design changes. Determining key measurement points allowed for focusing
on the so-called narrow necks of the reverberation chamber and, thus, enabled efficient
engineering calculations as opposed to the analysis of each point separately. For this
purpose, two independent analyses were conducted (measured noise level with eight
independent measurement points) using decision trees and statistical analysis. The aim
of the analysis was to indicate which microphones recorded the most constant noise
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measurements. The optimized method of considering the microphone signal is expected
to yield better measurements of power level Lp and corrected sound power level LpA as a
function of discharge pressure pt and pump shaft speed n.

2.2. Acoustic Research

Initially, the study measured sound pressure level Lm, adjusted sound pressure level
LA, sound power Lp, and adjusted sound power level LpA. The average value of the
sound pressure level Lm for the measured points was calculated according to the following
formula:

Lm = 10lg

(
1
n

n

∑
i=1

100.1Lmi

)
(1)

where Lmi is the sound pressure level at i-th measurement point, and n is the total number
of measurement points.

The average value of the corrected A sound level was specified in the same manner:

LA = 10lg

(
1
n

n

∑
i=1

100.1LAi

)
(2)

where LAi is the sound pressure level at i-th measurement point, and n is total number of
measurement points.

The value of the corrected sound level A was specified from the measured sound
pressure level Lj

m in the j-th band and after introducing KAj the correction resulting from
the weighted curve characteristics:

Lj
A = Lj

m + KAj (3)

where Lj
m is the sound pressure level in the j-th frequency band,Lj

A is the corrected sound
pressure level in the j-th frequency band, and KAj is the correction according to characteristic
A for the j-th frequency band.

Withthe sound power level Lp, the sound power level Lp and the corrected sound
power level LpA were determined as follows:

Lj
p = Lj

m + 10lg
Aj

A0
+ 10lg

1 + Svλ
8V

1− Aj

Sv

− 6 + C (4)

where Lj
m is the average value of the sound pressure level in the j-th frequency band, Lj

p is
the average value of acoustic power in the j-th frequency band, Aj is the acoustic absorption
in m2 calculated in the j-th frequency band for the most important microphone, A0 is
1 m2,Sv is the area of the chamber with floor, V is the volume of the chamber [m3], V0 is
1 m3, λ is the wavelength including the most important microphone, and C is the correction
depending on climatic conditions (for atmospheric pressure of 100 kPa and temperature of
20 ◦C, C = 0).

The corrected sound power level Lj
p in the j-th frequency band was determined based

on the following formula:
Lj

pA = Lj
pA + KAj (5)

where Lj
pA is the corrected sound power level in the j-th frequency band, and n is thetotal

number of frequency bands.
Acoustic tests were performed for predetermined operating pressures ranging from 0

to 30 MPa. Readings were taken every 2 MPa. The frequency range included thirds with
center frequencies from 25 to 20k Hz. Table 2 presents a summary of exemplary acoustic
measurements of a gear pump after tooth root undercutting for pt = 12 MPa [12,16].
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Table 2. Acoustic measurements of a gear pump after tooth root undercutting for pt = 12 MPa [12,16].

f [Hz] Number of Microphones Tercje Oktawy

1 2 3 4 5 6 7 8 Lmj Smj KAj LAj Lmj LAj

−1.48 −0.15 −0.20 0.33 0.16 −0.10 0.26 0.42

25 84.1 81.8 62.5 46.8 65.4 83.8 82.4 78.1 80.1 15.4 −44.7 35.4

31.5 62.3 60.0 54.9 40.0 56.8 63.7 60.3 62.0 60.1 8.0 −39.3 20.8 80.2 40.9

40 58.9 49.4 58.5 55.7 52.9 51.8 46.4 53.7 54.7 4.3 −34.6 20.1

50 70.8 67.8 74.2 74.9 73.0 66.0 65.3 62.2 71.1 5.0 −30.2 40.9

63 71.7 76.4 76.1 75.2 71.9 66.0 78.4 59.6 74.4 6.8 −26.2 48.2 77.1 50.9

80 75.4 73.0 67.1 69.8 64.9 63.8 68.7 69.0 70.1 3.8 −22.5 47.6

100 69.9 64.8 60.9 61.9 65.4 65.1 60.8 62.8 64.6 2.7 −19.1 45.5

125 74.6 73.3 75.1 66.6 71.0 66.2 68.5 70.0 71.5 3.3 −16.1 55.4 75.0 58.9

160 69.8 69.1 70.5 69.5 68.6 74.1 71.9 75.1 71.8 2.8 −13.4 58.4

200 81.8 71.1 76.8 74.0 69.4 78.2 76.5 74.0 76.3 3.8 −10.9 65.4

250 83.0 72.6 79.8 76.3 73.0 80.2 79.5 75.9 78.4 3.5 −8.6 69.8 81.2 72.6

315 77.1 68.8 73.4 70.6 75.0 72.6 74.0 65.7 73.0 3.5 −6.6 66.4

400 83.4 80.6 80.2 69.9 69.7 79.6 73.2 74.2 78.2 5.2 −4.8 73.4

500 84.2 81.3 80.5 71.4 70.8 80.6 74.4 75.1 79.0 4.9 −3.2 75.8 81.9 78.7

630 65.4 67.1 69.4 71.3 73.8 68.2 70.4 71.8 70.5 3.4 −1.9 68.6

800 60.7 60.9 63.9 62.5 64.1 63.1 69.5 63.8 64.6 3.3 −0.8 63.8

1k 61.8 63.4 65.9 63.5 63.1 63.4 71.7 65.7 66.2 3.8 0 66.2 71.4 71.4

1.25k 68.8 68.8 71.2 69.7 67.8 66.5 65.8 66.6 68.4 1.8 0.6 69.0

1.6k 72.5 69.3 68.9 68.1 70.8 70.8 67.1 65.4 69.3 1.9 1 70.3

2k 72.3 72.0 72.2 70.4 69.6 72.9 71.1 71.3 71.5 0.9 1.2 72.7 74.8 76.0

2.5k 70.2 69.2 70.3 69.2 67.1 68.3 69.3 67.3 68.9 1.0 1.3 70.2

3.15k 66.2 68.5 67.4 65.9 65.9 66.9 65.0 66.0 66.5 1.1 1.2 67.7

4k 69.4 69.8 69.7 68.2 66.0 68.9 67.7 67.4 68.4 1.1 1 69.4 71.6 72.6

5k 67.5 65.1 65.2 65.4 62.5 63.5 64.3 63.0 64.6 1.2 0.5 65.1

6.3k 67.7 64.0 63.1 64.9 63.5 62.5 66.1 63.8 64.6 1.5 −0.1 64.5

8k 68.6 65.5 65.2 64.3 63.2 65.2 64.2 64.4 65.1 1.1 −1.1 64.0 69.3 68.2

10k 65.5 65.6 63.5 63.1 64.3 63.8 62.9 61.9 63.8 0.9 −2.5 61.3

12.5k 66.1 63.0 63.2 62.4 61.7 61.9 60.8 62.7 62.8 1.1 −4.3 58.5

16k 59.6 57.7 56.3 58.3 56.3 54.9 55.0 55.2 56.8 1.4 −6.6 50.2 63.9 57.3

20k 53.2 51.4 49.8 49.3 49.0 47.3 47.7 47.6 49.6 1.6 −9.3 40.3

All acoustic measurement results for all microphones are presented in Supplementary
Materials.

Figure 7 presents a summary of the values of the acoustic power level Lp and corrected
acoustic power level LpA as well as acoustic pressure level Lm and corrected acoustic
pressure level LA in the function of discharge pressure pt at a constant rotational speed of a
pump shaft n=1500 rpm.
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Figures 8 and 9 present a tertian and an octave spectrum of the gear pump after tooth
root undercutting for nominal discharge pressure and nominal rotational speed.
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Figure 9. The octave spectrum of an experimental gear unit for nominal pressure and rotational
speed [12,16].

Figure 10 compares a corrected level of the acoustic pressure LA and the corrected
level of the acoustic power LpA of an experimental unit with undercut tooth root and pump
PZ4-32 TKs 186 with a conventional tooth profile.
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Figure 10. The octave spectrum of an experimental gear unit and pump PZ4-32 TKs 186 [12,16].

In both tested units the teeth of wheels grinding has been made before and after
nitriding. In the determined spectrum, the dominant component is an octave with a center
frequency of 2k Hz.

A full summary of the obtained data for the experimental pump and PZ4-32 TKs 186
is provided in Table 3. The presented data allow us to assess the effect of modifying the
toothed wheels on reducing noise emissions as a function of discharge pressure.
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Table 3. Comparison of octaves of the center frequency equal to 2k Hz for an experimental pump
and PZ4 TKs 186.

pt [MPa]
Test Pump

L2000
A(1)

PZ4-32 TKs 186
L2000

A(2)
∆L2000

A 10log(100.1L2000
A(2)−100.1L2000

A(1) )

6 74.7 [dB] 79.5 [dB] 4.8 [dB] 77.8 [dB]

12 74.8 [dB] 79.5 [dB] 4.7 [dB] 77.7 [dB]

18 78.2 [dB] 83.6 [dB] 5.4 [dB] 82.1 [dB]

24 81.0 [dB] 83.0 [dB] 2.0 [dB] 78.7 [dB]

28 82.9[dB] 83.6 [dB] 0.7 [dB] 75.3 [dB]

3. Discrete Methods of Identification and Classification of Acoustic Signal

Classification has a very important role in the analysis of acoustic properties. Ac-
cording to statistical theory, the propagation of sound energy in a room from the point
of view of sound source analysis is of an exponential nature, and its parameter is a con-
stant quantity for a given room—the reverberation time. On the basis of this theory, valid
formulas were derived that allow for the calculation of the reverberation time for a given
room with a given volume and acoustic absorption—for the analyzed pump. To ensure
the high efficiency of the method of classification and identification of objects such as gear
pumps based on acoustic signal analysis, it is necessary to take into account as much as
possible all the phenomena that affect directly or indirectly the reliable extraction of the
correct feature (parameter); that is, the correct (accurate) classification and identification of
the object with the highest possible probability. Often, the recognition of acoustic signals
is carried out using, for example, the following: [20–25]: HMM (hidden Markov models
(vector quantization), LVQ (learning vector quantization), SOM (self-organizing maps),
ANN (artificial neural network), GMM (Gaussian mixture model), and SVM (support
vector machine) [26,27].

However, in the case of our acoustic pump research, the application of this method for
classification will have the following disadvantages:

− Estimating the model can take a long time with a large amount of data.
− Estimating the correct model requires some knowledge.

All machine learning models that use distances (such as the Euclidean metric) or
similarities (computed as dot products) between feature vectors require the prior stan-
dardization of variables. Methods of neural networks and classification using decision
trees are very similar in this regard. However, we decided to use the methodology of
decision trees because its fundamental feature is the ability to represent arbitrarily complex
concepts. Additionally, compared to other hypothesis representations, decision trees have
low memory complexity. Moreover, the computational complexity (assuming that one
attribute is tested in one test) is linearly limited by the number of attributes.

In particular, classifications with inductive decision trees or HMMs methods can be
used. Hidden Markov models (HMMs) have become a common tool in the last decade
for modeling sequences of dependent random variables that can be included in signal
classification.

In the first stage of classification analysis, the knowledge base and knowledge source
are built. For this purpose, testing and learning files are made. Then, the distribution
of proportions between the learning and testing data set is studied, which is needed to
determine the classification quality index [28–31].

Figure 11 shows a general acoustic data classification scheme. The sequence of samples
as well as the meta record allows for assigning the appropriate classification feature.
An important step is also the appropriately correct recording of the resource occupancy
management. For this purpose, the algorithm for obtaining the sound intensity must be
properly programmed to be used on the computer whose task is to acquire the signal [24,32].
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Figure 11. A sample query “query by example” to the decision-making system.

The processof signal analysis using a computerized decision support system can be
described in three main steps:

− Time analysis. A special feature of this approach is the departure from the concept of
matched filtration and the use of time signal detection;

− Spectral analysis. In particular, the analysis of signals using higher-order cumulants
and their spectra enables the study of statistical relationships between the frequency
components of the signal, the detection and identification of components resulting
from the occurrence of nonlinear phenomena and additional feedbacks, and the
reduction of noise in signals.

− Parameterization of the speech signal. This is applied where pattern classification
requires a decision as a result of observation of the current feature vector and acquired
knowledge (based on the learning set in the learning process).

4. Analysis of Measurement Points

In this section, we describe the application of a decision tree induction algorithm that
served as a classifier of acoustic signals. In the first stage of the analysis, data were extracted
from previously collected measurements from the real operation of the gear pump. The
adopted methodology included the following steps:

1. Data selection—selection of relationships that will be explored and the definition of
the method of combining relationships;

2. Data transformation—conversion of attribute types and discretization of continuous
values;

3. Knowledge extraction from data—generation of rules and decision trees;
4. Interpretation of results—selection of the most interesting knowledge, logical, and

graphical visualization of the results.

The phases of classification and knowledge discovery are schematically presented in
Figure 12.
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The initial operation consists of mapping the data into a set of predefined classes.
Based on the contents of the database, a model is built (decision tree, logical rules) that
serves to classify new objects in the database or to gain a deeper understanding of existing
classes. All data relate to acoustic measurements of the examined pump and are listed in
their entirety in Supplementary Materials.

4.1. Tree Induction as Classifiers of Acoustic Signals

For this purpose, so-called supervised learning is used. In supervised learning, the
learning process concerns the search for hypotheses that describe the so-called concepts.
The term concept is understood as “a general term denoting a set (class) of objects having
certain common properties that distinguish them from other concepts” [32]. The clus-
tering problem is described as a finite set of k-dimensional vectors: X = {xi}, where
i = 1, 2, . . . , m.

The clustering operation involves replacing a set of vectors X with a set of classes

Ω = {ωi}, i = 1, 2, . . . , n < m (6)

in such a way that a vector yi (called prototype) representative of all vectors belonging to
the class can be associated with each of ωi.

If the criterion for the distribution of classes is a certain scalar function F, then the
assignment of a xi vector to a certain class reduces to finding such a distribution of classes
that

F
(
ωopt, xi

)
= minF(ωi, xi) (7)

The goal is to extract homogeneous clusters of data; that is, to divide the set X into
subsets that meet the conditions of separability and completeness as follows:

ωi ∩ωj = 0 for i 6= j and ω1 ∪ω2 ∪ . . . ∪ωn

After grouping, the next step is classification using the induction algorithm.
The teacher (supervisor) provides examples and counterexamples of the selected

concept (also referred to as positive and negative examples). Some authors use the term
“category” or “class” instead of “concept”. By hypothesis, this is understood as a function
that assigns examples to their categories. The result of supervised learning of concepts
is the selection of a certain hypothesis from the space of possible hypotheses, which is
deemed to best describe the concepts on the basis of the provided learning examples.
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In the case of knowledge discovery from data, historical information representing
experience in a certain field is stored in a database, and classification of objects acting as
examples is often known. In this case, a real teacher pointing to examples is not necessary. If
knowledge of the domain is limited and if a known classification of objects is not available,
it is it is possible to use data analysis methods, e.g., cluster analysis.

In particular, an inductive knowledge acquisition system based on the concept of
entropy can be used [33–35]. They can be divided into three basic categories:

1. Algorithms for minimum rule set induction;
2. Algorithms for the induction of an exhaustive set of rules;
3. Algorithms for the induction of a satisfactory set of rules.

The search for the optimal minimum set of rules is an NP-complete problem [36]. The
search for an exhaustive set of all rules is an exponential complexity problem. Creating a
satisfactory set of rules requires specifying the constraints that must satisfy the rules. They
refer to the user’s acceptability of the values of the selected rule evaluation measures. Such
a set of rules can be generated from a set of all rules and then filtered to find interesting
rules.

Decision Rules in the Classification of New Objects

Rule induction is performed on a training dataset DT = (U, A ∪ {d}) in which U is
a finite set of objects (records) characterized by a set of features (conditional attributes) A
and a decision attribute d. In our analysis, the objects are microphones, while the attributes
are acoustic parameters.

Each attribute ak ∈ A is treated as a function a : U → Da , where Da is the range of the
attribute.

That is, ultimately, we have {a1, . . . , ak} ⊆ A, Vai ⊆ Dai and vd ∈ Dd. There is a ∈ A
then a so-called directional descriptor. A set of objects with identical values of a decision
attribute is called a decision class. Induction of rules on the basis of the data contained in
the training table can be performed using various algorithms that generate both so-called
minimum decision rules and using the sequential overlap method.

All algorithms use certain measures that determine either the form of the rule to be
determined or which of the rules already determined can be removed or combined.

In the prediction perspective, decision rules generated from learning examples are
used to classify new objects, which are objects that were not used for induction. Their
description by means of attribute values is known while the purpose of their classification
is to determine the assignment of such an object to a decision class. In addition, if the
actual classification of classified object is known, then it is called a test case because
it is then possible to compare the prorated classification decision with the actual one.
Object classification is based on matching the description of the object to the parts of the
conditional decision rules. We distinguish between complete and partial matching. The
complete matching of an object to the conditional part of a rule is described by Formulas
(6)–(9)

If any attribute is not specified, it is most often assumed that an object can take any
value from the domain of that attribute when matching a rule. Complete matching of object
e to the conditional part of rule r, occurs with the following:

∀ai ∈ Cr( f (ai, e) ∝ term(ai)) (8)

In the case of rule syntax consistent with (2):

( f (d, x) = jvd) (9)
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where the conditional part P is the conjunction of the conditions (f (ai,x) = vai), and the
decision attribute d takes values from the domain Vd. In generalizations of approximate
sets, the notation is simplified to the following:

( f (ai, e) = vai) (10)

where the conditional part P is the conjunction of the conditions(f (ai,x) = vai), and the
decision attribute d takes values from the Vd domain. Partial matching of object e to the
conditional part of rule r occurs when there is at least one attribute aj ∈ Cr, for which the
following condition is not satisfied:

( f (aj, e) ∝ term(aj) (11)

The matching of decision rules to the description of the classified example is imple-
mented differently depending on whether the decision rules are ordered in the form of a
decision list or form an unordered set of rules. In the case of a decision list, the matching of
an object to subsequent rules in the list is performed [36,37].

The suitability of a set of rules for classifying new objects is evaluated by estimating
the classification error or classification accuracy with respect to a set of test examples whose
class membership is determined. The distribution of examples is assumed to be random and
representative. Many decision rule induction algorithms are used in knowledge discovery.

4.2. Classification Based on Conditional Entropy Minimization

This is a method that uses a measure of entropy. For the considered set of examples S
and attribute a, entropy is defined as

Ent(S) = −
r

∑
i=1

pi · lg2 pi (12)

where pi is the probability of a given class.
Any boundary point ca divides the binary set S into two disjoint subsets S1 and S2 (S

= S1∪S2). For such a division, the conditional entropy is defined as follows:

|S1|
|S| · Ent(S1) +

|S2|
|S| · Ent(S2) (13)

For a given attribute a, the boundary point is selected that minimizes the value of the
conditional entropy. Attribute a values should be sorted before analysis.

The work implements a decision tree induction algorithm that uses entropy gain to
evaluate potential splits of nodes while simplifying the tree during its construction.

The inductive decision tree consists of the following:

− A root containing all training samples;
− Nodes having a single feature or a set of features from the training samples;
− Leaves—the data from the training samples ultimately ranked according to certain

features.

Creating a tree starts with deciding what will be a leaf and what will be a node and
choosing a category or test label for it. If a node has been created, then the individual
results correspond to branches leading from this node to subtrees constructed according to
the same scheme. The creation of a tree begins with deciding what will be a leaf and what
will be a node and selecting a category or test label for it.
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The expected value of information after the division of the set of examples E into
subsets E(m), m = 1, . . . , |Va|, for which the attribute a has the value Vm, is determined as

I(E, a) = ∑
m=1,K,|Va |,E(m)=∅

∣∣∣E(m)
∣∣∣

|E| · I
(

E(m)
)

(14)

where
∣∣∣E(m)

∣∣∣ is the number of examples after the division of the set E in relation to the
value m of a given attribute, and |E| is the number of examples in the training set E.

I(E) = −
|E|

∑
i=1

|Ei|
|E| · log2

(
|Ei|
|E|

)
(15)

Then, classification is carried out using trees separately for sound pressure Lm, fre-
quency kHz, and discharge pressure MPa as output attributes (wy): Lm(wy), kHz (wy),
and MPa (wy).

Input attributes (we) are the values of acoustic measurements registered from eight
microphones: microphone 1 (we), microphone 2 (we), microphone 3 (we), microphone 4 (we),
microphone 5 (we), microphone 6 (we), microphone 7 (we), and microphone 8 (we).

The basic characteristic that characterizes the efficiency of decision algorithms is the
ability to generate decision trees. The generated trees allow for rule induction, which leads
to the creation of a training table.

Calculation steps:
1. Calculate the entropy for each attribute;
2. Select attribute A with the lowest entropy;
3. Divide the set of learning examples due to the value of attribute A into disjoint

subsets;
4. Add edges to the tree with the following conditions:
If A=a1 then . . . (subtree 1);
If A=a2 then . . . (subtree 2).
. . .

5. For each subtree, perform the steps from 1;
6. In each iteration, one attribute is removed, and the algorithm stops, when there

is no attribute left to consider or all examples in a given subtree have the same decision
attribute value.

As a result of the analysis, induction trees were generated for each parameter Lmj, pt
[MPa], and f [Hz] (Figures 13 and 14).
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number of examples forming tree graph-4, and tree trimming 25%.
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Figure 14. A simplified induction tree for the frequency f [Hz] for microphone 7, the number of
examples forming the tree graph4, and tree trimming 40%.

The induction tree ranks the degree of importance of an attribute from the most
important one located at the root.

The most important acoustic signal generated by the outlet pressure value occurs at
microphone 4 according to the tree in Figure 13, while the most important acoustic signal
influenced by the frequency change is generated at microphone 7 according to the tree in
Figure 14. The most important signal influencing the acoustic pressure value is the one
recorded at microphone 7.

Depending on how the input array (data from measurements) is divided into a training
and test array, different classification accuracy values can be obtained. Therefore, we
applied statistical analysis, which allowed us to determine a reliable estimator of the
classification accuracy coefficient. This enables us to analyze the rank of importance of
microphones.

5. Initial Statistical Analysis

The statistical analysis described in this section function as an additional selection
of possible solutions [38–40]. A possible solution is understood as that which determines
which of the measuring points has the greatest impact on the measured sound pressure
values. The analysis was conducted for each microphone separately. The aim of the analysis
was to indicate which microphones recorded the most constant noise measurements.

First, a preliminary statistical analysis of registered noise levels for each of the preset
frequencies was performed. As part of the preliminary analysis of descriptive statistics,
the mean X, the standard deviation S, and the coefficient of variation V were compared
for each variable represented by the particular frequency bands applied in the study.
The investigated cases (15 cases) were based on the measurement values obtained for
subsequent pressure values 0, 2, 4, . . . , 30 [MPa].

The obtained results for the indicated characteristics are presented in Tables 4 and 5.
The green frames in Figure 15 represent, for each of the microphones, the hierarchy

resulting from the analysis of the minimum mean value of registered noise (for all analyzed
instances). The hierarchy resulting from the analysis of the maximum recorded noise
value is presented in the red boxes. The analysis shows that the minimum average noise
value of 42.11 dB was recorded on microphone 4. The lowest average value from the
maximum recorded noise is 76, which was recorded by microphone 5. We can also mention
microphone 7, which was found to be exactly seventh in the hierarchy of minimum and
maximum noise levels.

The following parameter applied in the analysis involved the coefficient of variation.
The interpretation of the resulting coefficients of variation indicated that the most constant
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measurements were recorded using microphone 6, where Vmin1 = 0.92 and microphone
1, for which case Vmax1 = 8.97. In turn, microphones 3 and 8 were characterized by the
biggest values in terms of the obtained coefficient of variation, respectively.

Table 4. Summary of mean values, standard deviation, and variability coefficient for microphones
1–4 for the examined frequencies.

Number of Microphones 1–4

1 2 3 4

f [Hz] X S V X S V X S V X S V

25 81.16 4.97 6.12 82.22 4.49 5.46 66.62 2.72 4.09 59.37 3.27 5.50

31.5 62.46 2.35 3.76 60.62 3.74 6.16 58.61 2.67 4.56 42.11 1.12 2.66

40 59.59 1.82 3.05 49.93 0.78 1.56 56.38 1.49 2.64 53.75 1.65 3.06

50 66.23 4.07 6.15 66.38 1.69 2.55 70.84 1.68 2.37 71.51 1.94 2.72

63 73.61 1.75 2.37 74.99 1.82 2.42 75.24 1.74 2.32 75.77 1.19 1.57

80 70.72 2.77 3.91 71.03 2.48 3.49 67.48 1.83 2.71 70.33 1.90 2.71

100 67.66 2.23 3.30 62.87 1.51 2.40 61.38 1.60 2.61 63.39 1.67 2.63

125 70.98 4.16 5.86 68.86 2.79 4.04 72.53 2.82 3.89 65.84 1.88 2.86

160 67.89 1.66 2.44 69.52 2.62 3.77 70.93 1.58 2.22 69.57 1.49 2.15

200 80.12 4.87 6.08 74.86 4.20 5.61 76.98 3.62 4.70 77.73 5.04 6.49

250 82.01 4.34 5.29 76.17 4.24 5.57 80.13 3.10 3.88 79.41 5.35 6.73

315 73.78 2.83 3.84 67.81 1.44 2.13 71.97 1.90 2.64 70.20 2.03 2.89

400 80.11 2.95 3.69 79.41 4.35 5.48 76.84 4.78 6.23 73.95 3.27 4.43

500 81.31 3.04 3.74 80.24 4.32 5.38 77.76 4.57 5.88 75.34 3.29 4.37

630 69.56 4.03 5.79 67.79 3.61 5.33 66.93 3.30 4.93 68.40 3.73 5.46

800 65.34 3.07 4.69 63.88 4.79 7.50 64.03 2.42 3.78 64.55 3.94 6.10

1k 66.74 3.49 5.23 65.86 5.91 8.97 66.66 2.81 4.21 66.60 4.54 6.81

1.25k 70.30 2.06 2.93 68.85 1.99 2.89 70.28 2.67 3.80 69.33 1.81 2.60

1.6k 74.98 3.73 4.97 73.24 3.62 4.94 71.40 3.77 5.29 73.59 4.51 6.13

2k 74.27 2.93 3.95 73.26 3.47 4.74 73.13 2.86 3.91 72.07 2.69 3.73

2.5k 72.44 4.58 6.33 71.50 5.57 7.80 70.75 4.45 6.29 70.88 4.68 6.60

3.15k 70.34 5.11 7.27 70.03 5.13 7.33 68.64 4.65 6.77 69.99 5.13 7.33

4k 70.25 2.75 3.92 69.83 2.65 3.80 69.36 2.32 3.34 68.86 2.41 3.50

5k 67.28 1.45 2.16 66.21 2.30 3.47 65.27 1.77 2.71 65.55 1.51 2.30

6.3k 64.71 2.15 3.32 63.89 2.58 4.04 62.36 2.18 3.50 62.32 2.17 3.48

8k 68.16 1.98 2.91 65.74 2.01 3.05 64.88 2.22 3.42 64.06 2.10 3.28

10k 66.06 4.01 6.08 65.50 3.12 4.76 63.41 3.63 5.72 63.56 4.34 6.82

12.5k 66.66 5.98 8.97 63.94 5.30 8.29 63.37 6.11 9.64 62.89 6.13 9.75

16k 60.07 4.95 8.25 58.69 5.20 8.86 56.94 5.36 9.42 57.84 4.80 8.30

20k 52.81 3.67 6.94 52.59 3.63 6.90 49.39 4.09 8.29 50.54 3.47 6.86

NR 1 1 1 2 2 2 3 3 3 4 4 4

Min 52.81 1.45 2.16 49.93 0.78 1.56 49.39 1.49 2.22 42.11 1.12 1.57

Max 82.01 5.98 8.97 82.22 5.91 8.97 80.13 6.11 9.64 79.41 6.13 9.75
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Table 5. Summary of mean values, standard deviation, and variability coefficient for microphones
5–8 for the examined frequencies.

Number of Microphones 5–8

5 6 7 8

f [Hz] X S V X S V X S V X S V

25 68.41 3.72 5.44 82.01 4.15 5.06 79.28 4.22 5.33 75.85 5.91 7.80

31.5 58.03 2.67 4.60 62.36 2.27 3.64 57.63 3.49 6.05 62.03 2.16 3.49

40 52.85 1.19 2.25 51.68 1.01 1.95 42.84 2.92 6.81 51.92 1.03 1.98

50 73.34 1.30 1.77 61.04 3.63 5.94 62.30 2.31 3.72 61.29 1.73 2.82

63 71.39 1.94 2.71 66.06 0.61 0.92 78.21 2.21 2.82 58.88 0.74 1.26

80 65.14 1.38 2.12 64.51 2.03 3.15 67.44 1.76 2.61 67.24 1.62 2.42

100 65.03 2.00 3.08 63.06 2.26 3.58 61.91 1.52 2.45 61.11 1.40 2.30

125 70.35 3.64 5.18 68.14 3.32 4.87 66.08 1.87 2.83 68.56 2.60 3.79

160 70.10 1.61 2.30 71.53 1.77 2.47 71.57 1.56 2.17 70.61 2.36 3.34

200 73.71 5.18 7.02 80.11 5.67 7.07 76.93 3.51 4.56 74.24 4.95 6.66

250 76.27 4.05 5.31 82.66 4.71 5.69 80.56 2.44 3.03 77.23 4.37 5.65

315 75.03 3.20 4.26 71.58 2.32 3.25 74.91 2.99 3.99 68.43 3.70 5.40

400 72.09 6.20 8.60 79.24 3.50 4.42 72.39 4.29 5.93 76.61 3.54 4.63

500 73.54 6.41 8.72 80.23 3.01 3.75 73.48 4.97 6.76 77.83 4.04 5.19

630 71.31 5.20 7.29 69.24 4.11 5.93 67.73 4.91 7.25 67.98 3.36 4.95

800 65.16 2.79 4.28 65.49 2.86 4.37 66.28 2.48 3.74 64.04 2.72 4.25

1k 64.84 3.84 5.92 66.84 3.66 5.48 68.28 2.54 3.72 65.21 3.62 5.55

1.25k 68.07 2.11 3.10 68.35 2.24 3.28 67.71 2.45 3.62 67.72 2.53 3.73

1.6k 73.06 2.84 3.89 73.11 2.94 4.02 72.80 4.27 5.87 72.01 4.25 5.90

2k 72.54 3.43 4.74 74.78 3.45 4.61 74.23 3.54 4.77 73.98 3.17 4.28

2.5k 70.84 5.27 7.44 70.62 5.10 7.22 70.54 4.77 6.76 70.29 5.20 7.39

3.15k 69.31 5.08 7.33 69.79 4.73 6.78 68.26 5.17 7.58 69.09 4.91 7.10

4k 68.33 2.03 2.98 67.93 2.81 4.14 67.99 2.38 3.51 67.89 2.56 3.77

5k 64.38 1.69 2.62 63.43 1.66 2.62 64.79 2.50 3.86 63.18 1.33 2.10

6.3k 62.58 2.32 3.71 61.55 2.25 3.66 61.95 2.35 3.80 61.61 2.41 3.91

8k 64.36 1.93 2.99 64.26 1.91 2.98 63.87 1.81 2.83 64.39 1.64 2.55

10k 64.03 3.77 5.88 62.62 3.62 5.78 62.54 3.92 6.27 62.12 4.13 6.66

12.5k 62.76 5.80 9.25 60.99 5.38 8.83 61.54 5.85 9.51 62.54 6.25 10.00

16k 56.56 5.11 9.04 55.40 5.35 9.66 56.41 5.63 9.98 55.86 5.54 9.92

20k 49.07 4.31 8.78 47.76 4.55 9.54 48.76 4.07 8.35 48.43 4.54 9.38

NR 5 5 5 6 6 6 7 7 7 8 8 8

Min 49.07 1.19 1.77 47.76 0.61 0.92 42.84 1.52 2.17 48.43 0.74 1.26

Max 76.27 6.41 9.25 82.66 5.67 9.66 80.56 5.85 9.98 77.83 6.25 10.00
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The source values of the measured noise levels for individual ranges relative to cases
are shown for the indicated microphones in Figures 16–19.
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Figure 19. Source values of noise measurements for microphone 8.

Analysis of their profiles offers the visualization of the variability of individual noise
values. The summary of the analysis performed is presented in Table 6.

Table 6. Analysis of the coefficient of variability.

No. Min No. Max

1 6 0.92 1 8.97 1

2 8 1.26 2 8.97 2

3 2 1.56 5 9.25 3

4 4 1.57 3 9.64 4

5 5 1.77 6 9.66 5

6 1 2.16 4 9.75 6

7 7 2.17 7 9.98 7

8 3 2.22 8 10.00 8

When we look at the value of the standard deviation, the measurements around the
average are focused on microphone 6 (Smin6 = 0.61, Smax6 =5.67). On the other hand, the
values recorded with microphone 7 were found to the nearly constant: Smin7 = 1.52 and 5
Smin5 = 6.41. Moreover, we should emphasize that larger deviations are suitable for the
analysis of maximum standard deviations (Table 7).
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Table 7. Analysis of standard deviation.

No. Min Max No.

6 0.61 5.67 6

8 0.74 5.85 7

2 0.78 5.91 2

4 1.12 5.98 1

5 1.19 6.11 3

1 1.45 6.13 4

3 1.49 6.25 8

7 1.52 6.41 5

6. Discussion

Acoustic measurements were made in a reverberation chamber in the Laboratory of
Hydraulic Drives and Vibroacoustics of Machines at the Wrocław University of Technology
(web site: www.lhiw.pwr.edu.pl). In chambers of this type, a perfectly diffuse field is
generated. This field is characterized by the fact that all acoustic energy reflected from the
walls returns in the direction of the source. This implies that the sound intensity at each
point of this field is the same [41]. Based on the study of the sound field distribution, eight
fixed measurement points were established in the chamber. The microphones were placed
in accordance with the recommendations of the above-mentioned standards at a height of
1.3 m from the floor. The choice of the height of the microphones is related to the position
of the axis of the drive shaft.

Noise generation in gear pumps has many causes and depends not only on the type of
design and manufacturing technology but also on operating parameters such as the speed
of the drive motor, suction and discharge pressure, oil viscosity, etc. Rotational speed and
discharge pressure affect the frequency and level of oscillating force in the bearings, which
creates sound-forming vibrations radiated through the housing to the environment. The
suction pressure, in turn, determines the inflow conditions of the working medium. If it is
too low, it can lead to the appearance of discontinuities in the jet as a result of cavitation
causing an increase in the noise level in the mid- and high-frequency bands, i.e., the band
in which, from the point of view of human sound perception, noise is perceived as more
annoying and troublesome.

Our own research has shown the advantage of chipped wheels over ground wheels as
presented in papers [42,43], among others. Additionally, an important factor is the correct
selection of manufacturing tolerances and clearances. An example of this is the design with
so-called zero side play, which is characterized by a 75% lower pressure pulsation. This
results in a reduction of the emitted noise level by nearly 3 dB. Design parameters related
to tooth geometry have a decisive influence on performance pulsation. Another important
aspect is the technique of performing acoustic measurements.

The Table 8 shows an example of the results of measurements of the sound power
level Lp and the corrected sound power level LpA as a function of the discharge pressure pt
and the pump shaft speed n for the analyzed experimental version of the gear pump [44].

www.lhiw.pwr.edu.pl
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Table 8. Sound power level Lp determined for a prototype pump with circumferential backlash
compensation with wrap angle ϕc = 130◦ [42].

Pt
[MPa]

n [obr/min]

500 1000 1600 2000

0 67.4 79.5 81.8 84.7

5 71.2 75.9 84.6 84.3

10 71.6 76.9 84.8 87.4

15 71.8 79.0 85.1 88.0

20 73.6 79.9 85.5 87.5

25 75.7 80.1 86.8 87.2

30 77.4 82.5 89.2 88.1

The paper [41] presents the waveforms of the sound value level La = f (pt) of gear
pump 2PW-SEW-08-28-2-776. Figure 20 shows a comparison of the sound level La = f (pt)
of gear pump 2PW-SE-08-2-77 no. 7 without side clearance, with the measurement of the
hierarchic microphone being taken into account.
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with ground wheels and zero lateral clearance.

The optimized method of considering the microphone signal is expected to yield better
measurements of power level Lp and corrected sound power level LpA as a function of
discharge pressure pt and pump shaft speed n.

This is of great importance in the case of turbulent flow. As the rotational velocity
increases, and in turn the flow rate, the noise of the turbulent flow increases due to the
greater impact of turbulence. The sound pressure level in the mid-frequency band increases
by an average of 1 dB/100 rpm. The effect of turbulent flow on the increase in noise
is related to the separation of the jet from the surface of the streamlined element. This
phenomenon is accompanied by the appearance of varying hydrodynamic forces, which
induce sound-forming vibrations of the affected surface in a direction perpendicular to the
direction of flow of the working medium. In addition, the above-described phenomenon is
superimposed on the effect of the noise generated inside the fluid due to mixing of fluid
streams of different velocities (fluid-borne noise).

An equally important parameter affecting the characteristics of the noise emitted to
the environment and associated with pressure pulsation is frequency. Due to the subjective
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sensation of sound impressions by humans, a reduction in speed has a beneficial effect on
reducing the value of the sound level A, LA [dB(A)]. In the modified method presented by
the authors, acoustic measurement is more accurate.

7. Conclusions

The investigation conducted using induction trees reveals that the primary acoustic
signal associated with the discharge pressure was detected with microphone 4. The key
signal influencing the average acoustic pressure corresponded to the recording from mi-
crophone 7. The analysis demonstrates that the lowest average noise level, measuring
42.11 dB, was captured with microphone 4. As per the statistical analysis, microphone 7
held significance in the induction trees and ranked seventh in the hierarchy of minimum
and maximum noise levels. This outcome suggests that the placement of microphone 7
should also undergo a comprehensive examination. To summarize the analysis, it follows
that the most important element in the arrangement of microphones is the appropriate
placement of microphone 4 and 7. Through the exact placement of these two measuring
points, it is possible to achieve satisfactory results as if we were considering the placement
of each of the microphones separately Therefore, the results of the analysis allow for one to
focus on the weakest link in a set of eight microphones, which significantly reduces the
research team’s working time. The obtained results allowed for optimization of the number
of channels in the measurement system; therefore, it is assumed that the purpose of this
study has been fully achieved.

In a decision tree, tests are conducted on attribute values of examples, and the results
are stored in nodes, while categories are assigned to leaves. Each possible test outcome leads
to a branch connecting a node to a subtree. This enables the representation of permissible
attribute values for a given set. All operations were performed in real-time during the
normal operation of the gear pump. By analyzing the results obtained from the inference
mechanism, which were derived from correlating continuously measured acoustic signals
with model signals stored in the daB base, we identify the impact of specific microphone
signals on selected parameters of the gear pump after tooth undercutting. Gear pumps
belong to the family of positive displacement pumps, which are mainly used in hydrostatic
drive systems. Despite many operational and utility advantages, gear pumps give way to
other displacement pumps in terms of pressure pulsation and the resulting high level of
emitted noise. Therefore, in order to increase the competitiveness of gear pumps, research
and development work is being undertaken to reduce the noise emitted. The results of the
conducted analyses indicated that the most important in the set of eight microphones is the
arrangement of microphones 4 and 7. Limiting the number of measuring points will allow
for the development of a data acquisition methodology based on data registration only in
the indicated microphones (channels).

The conclusion of this manuscript entails the investigation of effective methods for
estimating noise in gear pumps. This study contributes significantly to the field of acoustic
measurements, particularly regarding the measurement of noise generated by gear pumps.
The research aimed to understand the acoustic characteristics of gear pumps and identify
effective measurement strategies. By employing innovative sound analysis techniques,
such as time-frequency analysis and noise and vibration assessment, a better understanding
of the sound characteristics produced by gear pumps and the identification of potential
abnormalities in their operation were achieved. The presented results and conclusions
indicate the need for further research and development of innovative measurement meth-
ods that can contribute to improving the efficiency and quality of gear pump operation.
Advancements in acoustic measurements for gear pumps are crucial for optimizing design,
reducing noise, and ensuring safe and efficient operation of these devices.

The result of the conducted analysis was an innovative determination of measurement
points which incorporated the hierarchy of individual microphones, resulting from the
classification of decision trees and statistical analysis. The obtained results allow for the
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optimization of the number of channels in the measurement system; therefore, it is assumed
that the purpose of this study has been fully achieved.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/en16114460/s1, All Acoustic Measurement Results for All Microphones.
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16. Osiński, P.; Deptuła, A.; Partyka, M.A. Discrete optimization of a gear pump after tooth root undercutting by means of multi-

valued logic trees. Arch. Civ. Mech. Eng. 2013, 13, 422–431. [CrossRef]
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