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Abstract: Cu2ZnSnS4 (CZTS) is a promising absorber material to produce thin film solar cells thanks
to its high absorption coefficient, low cost and low toxicity. CdS is commonly used as a buffer layer for
CZTS solar cells but, beyond its toxicity, it has a nonoptimal band alignment with CZTS. ZnxSn1−xO
(ZTO), based on earth-abundant and nontoxic elements and with a large and tunable band gap,
is a suitable alternative buffer layer. In this paper, the atomic layer deposition (ALD) of ZTO was
employed by testing different compositions and thicknesses. ALD not only leads to very compact and
homogenous ZTO layers (enabling tuning the stoichiometry of the ZTO so prepared) but also makes
the i-ZnO layer (usually sandwiched between the buffer layer and the transparent contact) redundant
and detrimental. Through SCAPS simulation and impedance measurements, the ZnSnO/AZO
interface impact on the Cd-free kesterite solar cells’ performances has been investigated, highlighting
its leading role in achieving an effective charge extraction and the detrimental effect of the i-ZnO
layer. With this approach, a solar cell based on an architecture simpler and more eco-friendly than
the conventional one has been produced with comparable efficiencies.

Keywords: ZTO; buffer layer; atomic layer deposition; kesterite; Cd-free; charge extraction

1. Introduction

Kesterite absorber materials such as Cu2ZnSnS4 (CZTS), Cu2ZnSn(S,Se)4 (CZTSSe)
and Cu2ZnSnSe4 (CZTSe) are particularly promising for the development and large-scale
production of thin-film solar cells, mainly due to their similarity to the already commercially
available copper indium gallium diselenide CuInGaSe2 (CIGS) solar cell technologies, while
consisting of earth-abundant, low-cost and low-toxicity elements [1]. Kesterite attracted
the attention of photovoltaic (PV) research as a p-type semiconductor thanks to its high
absorption coefficient (over 104 cm−1) and its tunable bandgap energy between 1.0 and
1.6 eV, depending on the [S]/([S] + [Se]) composition and the cation disordering level [2,3].
These optoelectronic properties make kesterite a good candidate for tandem device struc-
tures and high-efficiency solar cells [4]. The current record efficiency for the low bandgap
(1.1 eV) selenized kesterite (CZTSSe) is at 13.6%, while the highest efficiency for the pure
sulfide kesterite (CZTS), with wide bandgap (1.5 eV), is at 11% [5]. Several ongoing studies
reported in the literature aim to increase the record efficiency of kesterite-based solar cells,
which is required for industrial implementation. Among these, many studies are directed
toward the design of a buffer layer that can improve charge extraction and, thus, all PV
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parameters [6]. To date, CdS is commonly used as a buffer layer for kesterite thin film solar
cells. In addition to being toxic, hazardous and not ideal for environment-friendly process-
ing, CdS introduces unwanted light absorption and has a nonoptimal band alignment with
CZTS, which results in an open circuit voltage (Voc) deficit [7–12]. To reduce charge carrier
recombination and to increase the current density (Jsc) and the Voc, the optimal n-type
partner for kesterite should have a wider band gap compared to CdS [7]. The use of an
alternative material to CdS, such as ZnSnO (ZTO) [13], Zn(O,S) [14] and TiO2 [15], would,
therefore, improve charge transport and make the devices cadmium-free [2]. Especially
ZnxSn1−xO (ZTO) is an interesting alternative: it is appealing for scale production as it
contains only earth-abundant and nontoxic constituents, [16] and it has a large and tunable
band gap, controllable by varying the Zn to Sn ratio [17]. Already in 2012, several research
groups successfully used ZTO as a buffer layer for CIGS-based solar cells, matching and
exceeding the performance achieved with CdS [18,19]. Since 2016, experimental results
comparable to CdS have been obtained by depositing ZTO on CZTS with different thick-
nesses and compositions [20–22]. Sputter deposition and atomic layer deposition (ALD)
have already been successfully employed in the ZTO synthesis [20,21,23–26]. ALD is a de-
position technique compatible with the requirements of the kesterite solar cells production
and, compared to sputtering, allows for very compact and homogenous ZTO layers with
precise control of stoichiometry [20]. Li et al. first reported the use of ZTO as a buffer layer
in a CZTSSe solar cell, achieving maximum efficiency of 8.60%, with Sn/(Sn + Zn) = 0.167
and with a thickness of ~50 nm [21]. However, since selenium-based kesterite yields better
device performance, less research has been focused on the effect of the ZTO layer in pure
sulfide (CZTS) devices. Cui et al. obtained an efficiency of 9.3% using a 10 nm Zn0.77Sn0.23O
buffer layer but with an expensive ITO top contact and with 110 nm of MgF2 as antireflec-
tion coating [20]. The highest efficiency of 10.2% has been obtained for pure-phase CZTS
devices with ALD-ZTO buffer layers. However, these results were reached by using a
complex and expensive device structure (Mo/CZTS/Al2O3/ZnSnO/i-ZnO/ITO/MgF2)
with an Al2O3 passivation layer, which reduces interface recombination when sandwiched
by CZTS and ZTO, and with an antireflection coating [25].

In this work, the deposition via ALD of ZTO buffer layers was developed by testing
different Zn/Sn ratios to improve the performance of the final devices. Devices with the
simplest and cheapest possible cell architectures (Mo/CZTS/ZTO/i-ZnO/AZO/Al and
Mo/CZTS/ZTO/AZO/Al) are reported. The optical properties of ZTO thin films with
different compositions and thicknesses were analyzed. The charge extraction of the PV
cells has been investigated through SCAPS simulation and impedance spectroscopy (IS)
measurements, and it has been related to the device architecture. Therefore, the optimal
solar cell architecture was identified in the simplest one (Mo/CZTS/ZTO/AZO/Al), where
we demonstrated the detrimental role of i-ZnO when coupled with ZTO. Thanks to this,
it was possible to produce CZTS/ZTO devices with PV parameters comparable to the
CZTS/CdS control devices, proving that not only ZTO is a good CdS replacement but also
that it works better removing the i-ZnO layer.

2. Materials and Methods

For substrates preparation, commercially available soda-lime glasses (SLG) were
cleaned in Mucasol® solution (15′), deionized water (4 × 15′), acetone (15′), and ethanol
(15′) via an ultrasonic bath and then dried in vacuum. A Mo thin film with a thickness of
1.1 µm was deposited by magnetron DC sputtering on the so-cleaned substrates.

CZTS absorber was grown on the SLG/Mo substrate described above by a two-step
process, as already reported elsewhere [27]. Firstly, a co-sputtering deposition of a 900 nm
thick quaternary precursor layer from three targets of Cu, ZnS, and SnS at a working
pressure of 5 × 10−3 mbar was carried out. Subsequently, thermal treatment at 580 ◦C for
1 h in sulfur atmosphere (sulfurization) was performed to introduce the correct amount of
sulfur into the absorber and to promote grain growth. The sputtering power applied to
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each target was properly tuned to confine the final metal ratios close to the optimal range
for PV application (Cu/Sn ratio within 1.7–1.8 and Zn/Sn ~1.2) [28].

ZTO thin films, employed to complete the p-n junction, were prepared by thermal ALD
using a PICOSUN® R-200 Advanced ALD system (PICOSUN, Espoo, Finland) equipped
with a remote inductively coupled plasma source, operating at 3.2 MHz. The deposi-
tion temperature was 150 ◦C. Diethylzinc [Zn(C2H5)2, DEZ, Strem Chemicals, Bischheim,
France] and tetrakis-(diethylamino)tin(IV) [Sn(N(CH3)2)4, TDMASn, Strem Chemicals]
were contained in two stainless steel cylinders and employed, respectively, as Zn and Sn
precursors. Deionized water was used as co-reactant, and N2 (99.9999%) as gas carrier.
Deionized water and DEZ were maintained at 22 ◦C during deposition via Peltier cell,
while TDMASn was heated to 75 ◦C, and the gas line from the precursor to the reaction
chamber was heated to 100 ◦C.

The employed ALD process was based on the cyclic dosing of DEZ/TDMASn:
N2:H2O:N2 with pulse lengths of 0.12/0.30:10:0.12:10 s, respectively. The super-cycle
scheme of the ZTO synthesis is composed of alternated cycles of ZnO and SnOx with
different ratios according to the desired composition. Figure 1 shows a schematic repre-
sentation of the ALD super-cycle recipes used. The ZTO layers investigated in this work
have a ZnO/SnOx (Zn/Sn) cycle ratio of 2:1, 3:1, and 4:1, with nominal growth per cycle of
0.76 ± 0.02 Å, 0.81 ± 0.03 Å, and 0.80 ± 0.04 Å, respectively.
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A first series of ALD growth was performed focusing mainly on the composition of the
layers prepared, according to the three abovementioned cycle ratios, while in the second
series, the deposition recipes were adjusted to achieve thicknesses of about 10 nm. The
thickness of the ZTO so prepared was determined ex situ by spectroscopic ellipsometry
(SE) using a Film Sense FS-1™ ellipsometer system.

Control devices with standard architecture Mo/CZTS/CdS/i-ZnO/AZO/Al (as shown
in Figure 2a) were also fabricated using a CdS layer of ~70 nm thickness deposited by
chemical bath deposition. CdS was grown from cadmium acetate (Cd(CH3COO)2), thiourea
(SC(NH2)2), ammonium chloride (NH4Cl) and ammonia (NH3) at a bath temperature of
75 ◦C.
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solar cell structures presented in this work.

A first set of CZTS/ZTO devices together with CZTS/CdS control devices were
completed both with a thin layer (70 nm) of i-ZnO (to prevent shunts) deposited by RF
sputtering and a layer of Al-doped ZnO (AZO) as top contact, deposited via DC pulsed
(2 kHz) sputtering, with a total thickness of 350 nm (see Figure 2b). Another set of ZTO
buffer devices was completed with only the AZO layer (as shown in Figure 2c), avoiding
i-ZnO deposition, to investigate the impact of the top contact architecture on the overall
charge extraction. Finally, all the devices were completed by evaporation of an Al grid with
a thickness of ~500 nm, and the PV cells were manually scribed into isolated and small
areas of 0.16 cm2 devices.

The structural and morphological properties of the samples were studied to verify the
quality of the deposited materials. Surface morphology and stoichiometric ratios of ZTO
layers were investigated by a Tescan VEGA TS5136XM (TESCAN ORSAY HOLDING, a.s.
Brno—Kohoutovice, Czech Republic) scanning electron microscope (SEM) equipped for
energy-dispersive spectroscopy (EDS) or by a Gemini 500 Zeiss (Carl Zeiss Microscopy,
Oberkochen, Germany) equipped with QUANTAX EDS 4000, EBSD, STEM (Bruker, Biller-
ica, MA, USA).

Optical transmission measurements were recorded in the 300–2700 nm spectral region
using a Jasco V-570 UV-VIS-NIR spectrophotometer (JASCO Corporation, Tokyo, Japan) to
estimate the band gap by Tauc’s plot [29]. The CZTS PV devices were characterized both
by current density–voltage (J–V) and External Quantum Efficiency measurements (EQE).
A Thermo Oriel, Stratford, CT, USA, solar simulator took the measure of the J–V curves
under 1 Sun illumination in Air Mass 1.5 G conditions. External Quantum Efficiency (EQE)
data were collected via a SpeQuest (LOT ORIEL, Leatherhead North Ward, UK) quantum
efficiency system, as a function of excitation wavelength by using a monochromator (Omni
300 LOT ORIEL, Leatherhead North Ward, UK) with a single grating in Czerny−Turner
optical design, in AC mode with a chopping frequency of 89 Hz. Impedance spectra were
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acquired using a Keithley 4200A-SCS Parameter Analyzer (Keithley, Cleveland, OH, USA).
The frequency range was spanned from 1 MHz to 100 mHz, with a logarithmic step. The
imposed DC bias was varied between −0.2 V and 1 V in steps of 0.2 V.

3. Results and Discussion

Based on the recent works reported in the literature, where different compositions
of ZnxSn1−xO were tested, the ideal ZTO thin film presents an excess of zinc over the
tin. In particular, the most promising Zn/Sn ratios are Zn0.66Sn0.33O, Zn0.75Sn0.25O, and
Zn0.8Sn0.2O [19–21]. However, the recommended thickness is not unique and varies be-
tween 10 and 40 nm. Based on the data in previous reports [17,20], our deposition procedure
was optimized, and the precursors to be used were chosen as reported in the previous
section. The chemical composition of the ZTO buffer layer was modified by modulating
the ratio between ZnO and SnOx cycles.

The optical properties of the top contacts (i-ZnO and AZO) of the CdS and the ZTO
buffer layers were characterized by UV-Vis spectroscopy. As shown in Figure 3, CdS,
used in the control device (with CZTS/CdS p-n junction), is the material with the highest
absorption in the visible range, confirming how replacing this layer with a more transparent
material would allow solar radiation to be collected more efficiently.
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Figure 3. Transmittance spectra of thin films commonly deposited on the absorber layer (CdS,
Thickness = 80 nm; intrinsic ZnO, i-ZnO, Thickness = 70 nm; aluminum-doped zinc oxide, AZO,
Thickness = 350 nm) for the standard CZTS device fabrication.

The same measurements were made on the ZTO films with the three Zn/Sn cycles
ratio mentioned above, and then, also ZnO and SnOx binary metal oxides were measured
for comparison purposes: the results are shown in Figure 4a. All these samples have
greater transparency than CdS in the visible region. Transmittance measurements were
also collected to calculate the absorption coefficient and, by applying the Tauc relation, to
evaluate the optical band gap [30]. Tauc’s plot of the three ZTO layers and ZnO and SnOx
are reported in Figure 4b, with a band gap ranging between 3.2 and 3.4 eV for ZTO. As
expected, the band gap shows a non-monotonic variation as a function of the Zn/Sn ratios
in agreement with the data reported in the literature [20,21,31,32].
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ZTO deposition was performed on the CZTS absorber layer and simultaneously on
silicon substrates to assess the ZTO thickness by spectroscopic ellipsometry (SE) and the
composition of the so-deposited ZnxSn1−xO films via EDX measurements. Table 1 reports
the evaluated compositions of the ZTO thin films with Zn/Sn 2:1, 3:1, and 4:1, showing
thicknesses of 34 nm, 29 nm, and 20 nm, respectively.

Table 1. Growth parameters, relative compositions determined via EDX, and actual thicknesses
obtained via spectroscopic ellipsometry (SE) of the ZTO thin films.

Zn/Sn ALD
Cycle Ratios

Zn Content
Measured

Sn Content
Measured

Thickness by
SE

Nominal
Growth

per Cycle (Å)

2:1 0.66 ± 0.02 0.34 ± 0.02 34 ± 1 nm 0.76 ± 0.02

3:1 0.70 ± 0.02 0.30 ± 0.02 29 ± 1 nm 0.81 ± 0.03

4:1 0.81 ± 0.02 0.19 ± 0.02 20 ± 1 nm 0.80 ± 0.04

To evaluate the impact of ZTO thickness on CZTS solar cells performances, it was
performed a second sample series to obtain ZTO thicknesses of ~10 nm. A set of CZTS solar
cells was then produced to evaluate the performance of the ZTO buffer layer deposited via
ALD with different thicknesses (from 10 to ~30 nm). These devices were compared to the
ones with the standard architecture Mo/CZTS/CdS/i-ZnO/AZO used as reference. The
average device efficiency of the so obtained CZTS/CdS solar cells is around η ≈ 3.9%, with
Voc ≈ 560 mV, Jsc ≈ 12 mA/cm2, and FF ≈ 58%.

Regarding ZTO buffer devices, both Mo/CZTS/ZTO/i-ZnO/AZO/Al and Mo/CZTS/
ZTO/AZO/Al architectures have been developed to investigate charge extraction. In both
structures, layers of ZnxSn1-xO with three different compositions (Zn/Sn = 2:1, 3:1, 4:1) and
with two different thicknesses (~30 nm and 10 nm) were analyzed. Table 2 summarizes the
characteristics of the as-deposited ALD-ZTO buffer layers together with the PV parameters
of the champion devices.

Figure 5 depicts the average values of the PV parameters of all the devices and
both architectures and thicknesses. Taking into consideration the open circuit voltage,
a dependence of the Voc on the buffer layer composition is observed. Regarding ZTO
composition, the best Voc values correspond to Zn/Sn ratio 2:1, with values of 541 mV
and 571 mV, for ZTO with ~30 nm and 10 nm, respectively. Regarding the Jsc, the values
are fairly constant, regardless of the ZTO composition, ranging between 12 mA/cm2 and
14 mA/cm2. The most interesting results are the ones concerning the fill factor, as they
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give information about the junction quality. When both the i-ZnO layer and AZO were
employed, no trend could be observed. Instead, when the interlayer of i-ZnO is not used,
higher FFs are achieved. On the other hand, the best FFs results (between 51% and 53%)
and the highest efficiencies (between 2.6% and 4.0%) were achieved with a buffer layer with
Zn/Sn ratio 2:1, with ZTO 30 nm thick and without the i-ZnO layer in the device structure.
Comparing the CZTS/ZTO/AZO devices with CZTS/CdS/i-ZnO/AZO control devices
(Table 2, Entry #1 and Entry #8), it is possible to observe similar efficiency.

Table 2. Thicknesses and compositions of the ALD-ZTO buffer layers, device structures, and PV
parameters measured for the champion cell in each set.

Buffer
Layer

Thickness
(nm) Zn/Sn Top Contact Voc (mV) Jsc (mA cm−2) FF (%) η (%)

1 CdS 70 - i-ZnO/AZO 563.4 12.0 58.3 3.9

2 ZTO 30 2:1 i-ZnO/AZO 407.9 12.6 39.1 2.0

3 ZTO 10 2:1 i-ZnO/AZO 346.5 13.3 45.1 2.1

4 ZTO 30 3:1 i-ZnO/AZO 534.4 12.7 40.1 2.7

5 ZTO 10 3:1 i-ZnO/AZO 373.6 11.9 33.6 1.5

6 ZTO 20 4:1 i-ZnO/AZO 416.0 12.1 43.6 2.2

7 ZTO 10 4:1 i-ZnO/AZO 288.4 13.6 46.0 1.8

8 ZTO 30 2:1 AZO 540.9 13.9 53.3 4.0

9 ZTO 10 2:1 AZO 571.1 11.6 42.8 2.8

10 ZTO 30 3:1 AZO 530.2 15.7 35.1 2.9

11 ZTO 10 3:1 AZO 522.2 13.2 41.5 2.9

12 ZTO 20 4:1 AZO 466.9 11.5 37.6 2.0

13 ZTO 10 4:1 AZO 508.7 13.1 35.4 2.4

External quantum efficiency measurements were performed to study the spectral
response of the devices employing ZTO with Zn/Sn ratio 2:1 as the buffer layer, which
achieved the highest efficiencies (Figure 6a), and to compare them with the control device
(CZTS/CdS junction). The EQE gain of removing the i-ZnO layer is already clear in the first
range of interest (350 nm–400 nm), where typically, the i-ZnO and AZO have their parasitic
absorption [33]. The control device’s EQE reduction between 350 nm and 470 nm is mainly
due to the CdS layer; then, this parasitic absorption is removed by replacing the CdS with
the ZTO. The only wavelength range in which ZTO is less effective than CdS is the region
between 500 nm and 700 nm, which is more affected by light reflection [20]. In this case, the
introduction of an antireflective coating could be beneficial and increase the gain in this area
as well, as already reported for the ZTO-based devices [34]. Finally, in the spectral region
between 750 and 950 nm, the ZTO layer allows for better charge extraction, probably due to
the reduced recombination of charge carriers [33]. Figure 6b shows the evaluated electronic
bandgap [35]. The values calculated from the EQE data are affected by the recombination
losses and by the functional layers employed in the device architecture [33]: the device
showing an electronic bandgap closer to the expected value (1.50 eV) is the 30nm-ZTO
(2/1) AZO. From EQE data, it can be deduced that the most efficient device configuration
is the one with ZTO (Zn/Sn ratio 2:1) with 30 nm thickness and no i-ZnO, as confirmed
by the J–V curves (Figure 7). This results in lower use of materials and the removal of a
process step for the manufacture of photovoltaic devices, thus leading to a reduction in
time, costs and energy required to produce CZTS PV devices.
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Figure 5. Box plot of (a) Voc, (b) Jsc, (c) FF, (d) efficiency of all the devices with CZTS/ZTO junction.
The ZTO thin film under consideration have different compositions [Zn/Sn 2:1 (red), 3:1 (yellow), 4:1
(blue)] and different thicknesses (20–30 nm or 10 nm) and two are the cell architectures investigated
(i-ZnO/AZO or only AZO as top contact).
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CZTS/CdS junction and the best devices with CZTS/ZTO junction; (b) Band gap calculated from
EQE analysis.
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Figure 7. J−V curves for the CZTS/Cd and the CZTS/ZTO junction champion devices (ZTO = 30 nm
with Zn/Sn = 2:1) with (ZTO-Z) and without (ZTO-A) i-ZnO layer.

The J–V curves of the record devices with the CZTS/ZTO heterojunction (ZTO = 30 nm
with Zn/Sn = 2:1) are shown in Figure 7, and they are compared to the ones of the control
device with the CZTS/CdS heterojunction. SCAPS-1D simulations and IS measurements
have been performed on CZTS/ZTO/i-ZnO/AZO and CZTS/ZTO/AZO devices, from
now on called, respectively, ZTO-Z and ZTO-A, to evaluate the differences of charge
extraction depending on the presence of i-ZnO layer.

The numerical simulation of CZTS solar cells using SCAPS-1D version 3.3.08 [36]
was carried out to study the alternative buffer layer ZTO and the device architecture’s
impact on the overall CZTS solar cell device performances. Output parameters such as
J–V characteristics under illumination can be extrapolated from the results obtained from
the simulations. Solar Cell Capacitance Simulator (SCAPS-1D) is one-dimensional solar
cell simulation software developed at the Department of Electronics and Information
Systems (ELIS) of the University of Gent in Belgium and used for numerical analysis of
solar cells. Several profiles, such as grading, generation, recombination, and defects (in
bulk and at the interfaces), can be calculated for a given device architecture. The default
temperature was set at 300 K with standard illumination of AM1.5G, as defined by the
global reference spectrum for flat-plate devices, listed in standards IEC 60904–3 edition 2
and ASTM G173–03 [5].

The material parameters used in the simulation, listed in Tables 3–5, were all carefully
chosen from experimental studies and modeling works that have been performed with
SCAPS and already reported in the literature [37–46].

Table 3. Parameters of window layer, buffer layer and absorber layers used for SCAPS-1D simulation.

Parameters CZTS CdS ZTO ZTO/i-ZnO i-ZnO AZO MoS2

Thickness (nm) 1500 70 34 100 70 350 50

Band gap (eV) * 2.4 2.7 3 3.27 3.3 1.24

Electron affinity (eV) 4.2 4.25 4.29 4 4.5 4.51 4.2

Dielectric permittivity 7 9 9 9 9 9 13.6

CB effective density of states (cm−3) 2.2 × 1018 2.20 × 1018 2.2 × 1018 2.2 × 1018 2.2 × 1018 2.2 × 1018 2.2 × 1018

VB effective density of (cm−3) 1.8 × 1019 1.80 × 1019 1.8 × 1019 1.8 × 1019 1.8 × 1019 1.8 × 1019 1.8 × 1019

Electron thermal velocity (cm/S) 1.0 × 107 1.00 × 107 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107

Hole thermal velocity (cm/s) 1.0 × 107 1.00 × 107 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107

Electron mobility (cm2/Vs) 6.0 20 30 100 100 100 100



Energies 2023, 16, 4137 10 of 17

Table 3. Cont.

Parameters CZTS CdS ZTO ZTO/i-ZnO i-ZnO AZO MoS2

Hole mobility (cm2/Vs) 1 20 5 25 25 25 25

Shallow uniform donor density (ND cm−3) 0 1.00 × 1018 1.0 × 1018 1.0 × 1018 1.0 × 1018 1.0 × 1020 0

Shallow uniform acceptor density (NA cm−3) 1.0 × 1016 0 1.0 × 101 1.0 × 101 0 0 2.5 × 1016

* The electronic bandgap was extrapolated from the EQE curves analysis, considering that CZTS is a semiconductor
with direct transitions (Figure 6b) [35].

Table 4. CZTS defects parameters used in the SCAPS simulation [38].

Bulk
Defect Nt Type Charge

State; Type σe (cm2) σh (cm2)
Level
above

VBM (eV)
Distribution

1 CuZn (VCu) 2.0 × 1016 Single
acceptor (0/−) 1.0 × 10−15 1.0 × 10−14 0.15 VB tail

2 ZnCu 1.0 × 1013 Single
donor (0/+) 8.0 × 10−14 2.0 × 10−16 0.4 above Ev

3 Sn 1.0 × 1014 Neutral single 1.0 × 1015 1.0 × 1015 0.6 above Ev

Table 5. CZTS/CdS interface defects and ZTO/AZO parameters used in the simulation [40].

Defect Parameters Sn Defect ZnCu CuZn

Defect type neutral donor acceptor

Total density (cm−3) 3.0 × 1017 1.0 × 10+15 4.0 × 10+12

Capture cross-section electrons (cm2) 1.0 × 10−14 8.0 × 10−15 1.0 × 10−14

Capture cross-section hole (cm2) 1.0 × 10−15 8.0 × 10−15 5.0 × 10−15

Energy distribution single above EV left side uniform above EV left side 0.1 eV above
VBMDistribution VB tail

Energy level with respect to reference 0.6 0.5 0.1

characteristic energy (eV) - 0.1 0.1

The shunt and series resistances, obtained by a pre-fitting procedure carried out using
an ad-hoc program written in Matlab ambient (software version 9.13.0 R2022b) [47], have
been introduced for all solar cells as fixed parameters. These values were refined during
the simulation process but without a significant deviation from those obtained by the
pre-fitting and are all reported in Table 6.

Table 6. Series and shunt resistances for the different devices used in the SCAPS simulation.

Device Control Device
CZTS/CdS/i-ZnO/AZO ZTO-A (CZTS/ZTO/AZO) ZTO-Z (CZTS/ZTO/i-ZnO/AZO)

Measurement
conditions Dark Light Dark Light Dark Light

Rs (Ohm sq) 1 0.7 3 2.5 15 12

Rsh (Ohm sq) 2400 500 811 500 518 200

Figure 8 reports the simulation results for the J–V curves (dark and light) for the control
device with CZTS/CdS junction. Starting from this simulation, the CdS was removed in the
SCAPS simulated structure, and the ZTO film was then introduced, initially keeping the
i-ZnO layer in the device architecture (ZTO-Z device). Then, the i-ZnO layer was removed
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to model the ZTO-A device. The resulting simulations are reported in Figures 9 and 10,
respectively.
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Figure 8. J−V curves (dark curves in blue and light curves in red) for the control device with
CZTS/CdS junction. The experimental curves are represented with squares, while the simulated ones
with solid lines.
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Figure 9. J−V curves (dark curves in blue and light curves in red) for the ZTO-Z device. The
experimental curves are illustrated with squares, while the simulated ones with solid lines.

The recombination center density was adjusted at the CZTS/ZTO interface while the
remaining parameters were kept fixed (except for the resistances) to fit the model to the
ZTO-A device data. On the other hand, for the ZTO-Z device, a reliable simulation was
achieved considering that the ZTO film changes its characteristics near the interface with
i-ZnO, presenting properties in the electron affinity and bandgap close to the ones of the
i-ZnO layer. It can be assumed that the conditions used for the i-ZnO sputtering deposition
can alter the ZTO nature and properties leading to a sole intermixed layer with features
more like i-ZnO than ZTO instead of a stack of the two. The RF Magnetron sputtering
employed here involves a mixture of Ar/O2 plasma necessary to compensate for oxygen
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losses during the i-ZnO deposition, and this feature could also alter the ZTO stoichiometry.
This assumption can be made according to Haddout and coworkers [39], reporting a
deterioration in PV device performance in the case of ZTO films with characteristics
(electronic affinity and band gap) approaching those of pure ZnO or SnO films. This
hypothesis can give a reliable explanation for the worse performances of the ZTO-Z device
compared to ZTO-A. Moreover, it has to be considered that the i-ZnO layer was usually
employed to face issues related to possible shunts given by a certain surface inhomogeneity
typical of a chemical bath deposition [48]. ALD, for definition, leads to compact layers [49],
so the i-ZnO sputtered layer is formally redundant and, at least in this case, detrimental.
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IS measurements have been performed on ZTO-A and ZTO-Z devices to demonstrate
this hypothesis. IS is a powerful characterization technique that allows the investigation of
the physics taking place at the various interfaces existing in the device by only accessing
its external terminals [50]. This technique has been widely employed in the study of
semiconductor devices, with special emphasis on solar cells [51–55]. Impedance data are
usually shown in the form of a Nyquist plot. Such graphs represent the real part of the
measured impedance on the x-axis and the imaginary part on the y-axis. Each curve
is obtained for a given DC bias (VDC), while each point on the curve is measured for a
specific frequency. These plots are usually chosen since it is possible to readily extract the
equivalent circuit configuration from such form. Nyquist plots that exhibit a semicircular
shape can be described with an equivalent circuit composed of a single RC pair (the parallel
connection of a Resistor and a Capacitor), while the shift on the x-axis is represented by a
series resistance in the equivalent configuration [56]. The resulting Nyquist plots for ZTO-A
(red lines) and ZTO-Z (blue lines) samples are shown in Figure 11, where it is possible to
notice that the AC behavior of the two devices is significantly different.

The radius of the Nyquist plots associated with the ZTO-A is initially very large, while
it reduces exponentially with increasing imposed VDC, as expected. This trend is not visible
in the case of the ZTO-Z device, where the radius of the Nyquist plots decreases almost
linearly with applied bias. Since, in both cases, the Nyquist plots do not show a semicircular
shape, the equivalent circuit cannot include a single RC pair. Thus, an automatic procedure
allowing the extraction of the equivalent circuit from the impedance spectra has been
performed [56]. The extracted circuit represents the configuration describing the AC
behavior with the minimum error with respect to the measured data. The selected circuits
for the ZTO-A and ZTO-Z devices are presented, respectively, in Figure 12a,b. The extracted
equivalent circuit for ZTO-A and ZTO-Z is composed, respectively, of two RC pairs and
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three RC pairs. Thus, the introduction of an additional resistive layer, such as i-ZnO, results
in the occurrence of a third RC pair.
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Figure 12. Equivalent circuit configuration extracted for (a) ZTO-A and (b) ZTO-Z devices.

Nyquist plots obtained from the extracted circuit model, in both cases, are comparable
with experimental data. In particular, the comparison between the model and experimental
data for a VDC equal to the open circuit voltage is shown in Figure 13, where it can be noticed
that the extracted configurations are suitable to model the AC behavior of both samples.

Based on these results, we can confirm that when the ZTO buffer layer is deposited
through ALD, then the i-ZnO layer is not only not necessary but, at least in our case, also
detrimental to the charge extraction, limiting the solar cell behavior due to its resistive nature.
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4. Conclusions

In conclusion, we report on our optimized process to produce efficient Cd-free kesterite
solar cells featuring ZnxSn1-xO as a buffer layer deposited via ALD. We found the best
Zn/Sn ratio being 2:1 and the optimal thickness being 30 nm. We experimentally confirmed
that ZTO is a good alternative to CdS as a buffer layer in CZTS solar cells, leading to
efficiencies of η = 4%, comparable and even slightly higher than our CZTS/CdS control
device (η = 3.9%), using the simplest device architecture Mo/CZTS/ZTO/AZO/Al.

Compared to other experimental works reported on this topic, we investigated through
SCAPS simulations and IS measurements on the charge extraction of the final devices,
proving that the top layers of the solar cell strongly impact the PV performance. Specifically,
the i-ZnO window layer is conventionally used to prevent shunts in cells with CZTS/CdS
junction due to the uneven growth of CdS during the chemical bath deposition. In this case,
when ZTO is deposited through ALD, the i-ZnO window layer is not only redundant but
also detrimental to the charge extraction due to its resistive nature.

All evidence suggests that, by using our optimized ALD-ZTO synthesis with the sim-
plest possible solar cell architecture (Mo/CZTS/ZTO/AZO/Al), ZTO could be regularly
used as a buffer layer in highly efficient, Cd-free CZTS solar cells.
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