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Abstract: Nowadays, the large set of available simulation tools brings numerous benefits to urban
and architectural practices. However, simulations often take a considerable amount of time to yield
significant results, particularly when performing many simulations and with large models, as is
typical in complex urban and architectural endeavors. Additionally, multiple objective optimizations
with metaheuristic algorithms have been widely used to solve building optimization problems. How-
ever, most of these optimization processes exponentially increase the computational time to correctly
produce outputs and require extensive knowledge to interpret results. Thus, building optimization
with time-consuming simulation tools is often rendered unfeasible and requires a specific methodol-
ogy to overcome these barriers. This work integrates a baseline multi-objective optimization process
with a widely used, validated building energy simulation tool. The goal is to minimize the energy
use and cost of the construction of a residential building complex. Afterward, machine learning and
optimization techniques are used to create a surrogate model capable of accurately predicting the
simulation results. Finally, different metaheuristics with their tuned hyperparameters are compared.
Results show significant improvements in optimization results with a decrease of up to 22% in the
total cost while having similar performance results and execution times up to 100 times faster.

Keywords: building optimization; building simulation; surrogate models; multi-objective optimization

1. Introduction

One of the largest shares of energy consumption is associated with the building stock
(in Europe, it is responsible for 40% of the total energy consumption). In this context, the
European Parliament established the “Energy Performance of Buildings Directive”, which
promotes policies to help to achieve the energy efficiency and decarbonization of buildings
by 2050 [1,2]. This directive highlights the need to improve the existing building stock
and establishes guidelines and frameworks to achieve this. Since a building’s lifetime
can exceed 100 years, it is important to improve regulations and specific instruments that
promote energy efficiency and the reduction of greenhouse gas emissions while improving
the thermal comfort and quality of life of occupants [3].

To obtain information regarding the building stock and define strategies to improve it
via these directives, Building Performance Simulation (BPS) tools can help to predict build-
ing design and rehabilitation impacts in multiple aspects of a building’s performance [4].
BPS tools predict these results through models described by specific inputs that yield
the desired outputs. With these simulations, it is possible to integrate iterative Build-
ing Performance Optimization (BPO) into building design, planning, and rehabilitation
processes [5].
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Unfortunately, the use of BPS tools with BPO is still out of reach for most practitioners
and presents several limitations:

1. BPS tools are not portable and require different model formats and descriptions. This
forces practitioners to develop models with different descriptions and inputs for each
simulation, which is error-prone [6,7].

2. Most BPS is time-consuming and still requires a considerable amount of time to
perform the calculations for multiple or large models. This constitutes a signifi-
cant limitation, particularly for BPO that requires testing of multiple iterations of
a project [8,9].

3. The use of BPS tools requires extensive knowledge regarding building physics and
performed calculations to understand and process the inputs and results [10,11].

BPO typically entails multiple objectives, which are often conflicting [5]. Addition-
ally, most building performance indicators are outputs of BPS or extensive calculations
performed by field experts [12]. Because of this, optimization problems that are focused
outside the practitioner’s realm of knowledge are usually treated as multi-objective opti-
mization (MOO) problems with derivative-free functions [5,13–15]. Metaheuristics, a class
of optimization algorithms, have been widely used in the field of optimization for the built
environment with positive results. These algorithms guide the search based on biological
heuristics such as evolutionary ones and swarms of different kinds, among others [16].
Furthermore, Wolpert and Macready state with the “No Free Lunch” theorem that no
algorithm outperforms all others for all problems. This means that one has to either know
from experience which algorithms yield better performance for each BPO problem or test
multiple metaheuristics to find the best one [17]. Moreover, these algorithms have variables
that define how they search for the optimal space, called hyperparameters. These need to
be fine-tuned to provide optimum results [18]. To fine-tune optimization algorithms, one
must optimize the combination of hyperparameters that yield the best indicators of their
performance. The most commonly used evaluation metric for multi-objective optimization
algorithms is the hypervolume [19–21].

Pereira et al. [13] evaluated multiple optimization algorithms and benchmarked their
hypervolumes for a daylighting and a structural optimization problem. This study estab-
lished that algorithms that performed worse in one problem performed best in the other.
This highlights the need to benchmark multiple algorithms according to their hypervolumes
for different building optimization problems.

BPO functions that are outputs of BPS are significantly time-consuming [10,11,22], and
when integrating them with the above-mentioned pipeline of activities for a derivative-
free MOO problem, it usually renders the process unfeasible. Thus, emerging research
in this field has been studying alternatives and approaches that allow us to overcome
these barriers.

Algorithmic Design (AD) emerged as a way to solve the portability issue of BPS tools.
AD allows practitioners to describe a design project with a single algorithm. With this
design process, it is possible to swiftly change parameters or design heuristics and obtain
the respective model without effort. Additionally, some AD tools are either capable of
supporting BPS tools or exporting models that are able to be read by them. Consequently,
with AD, it is possible to integrate BPO to automatically explore a design space, a process
often referred to as Algorithmic Design and Analysis (ADA) [23].

The use of ADA constitutes a trade-off, since it allows practitioners to obtain higher
portability between their projects’ design, performance analysis, and optimization, at
the cost of having to learn programming languages that have a high learning curve [23].
Moreover, ADA does not address the remaining limitations of BPS processes, which still
require significant computation time, expertise, and testing to be successfully applied [9,13].

Coincidentally, recent advances in research have been demonstrating the advantages
of surrogate models (SM) developed with machine learning (ML) techniques to help
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practitioners to execute their projects that integrate BPO [24]. SM are capable of predicting
a target output after being trained with a database that illustrates its variation according to
specific training features. In particular, SM developed with a building database can help to
reduce the number of required inputs and features while significantly improving BPS and
BPO’s computational times [12,25,26].

The resulting research is intended to support practitioners and stakeholders to make
better-informed project decisions in the following ways.

1. Tackling portability issues by deploying the developed SM for a widely used BPS tool
and a common BPO problem.

2. Significantly improving the required computational time to use BPS and BPO.
3. Providing SM that are easier to grasp than the respective BPS inputs and do not

require as much knowledge and expertise.
4. Providing workflows capable of addressing the current limitations regarding the use

of BPS tools and BPO.

In this sense, this work documents the processes required to perform a standard
pipeline of activities for a BPO of time-consuming functions. Initially, an ADA approach is
used to integrate a baseline MOO problem with a metaheuristic and a widely used BPS
tool. The obtained results are coupled with machine learning techniques and regression
algorithms to generate a surrogate model capable of yielding significantly faster simulation
results based on the BPO decision variables. With this surrogate model, it is then feasible to
fine-tune the metaheuristics hyperparameters, compare their performance for a specific
BPO problem, and benchmark their results. This process is applied to a case study of a
residential complex construction composed of six buildings in Lisbon, Portugal.

2. Materials and Methods

The methodology for this work can be further subdivided into four sections: base-
line optimization, surrogate model, hyperparameter tuning, and results and discussion
(Figure 1). In the baseline optimization section, the optimization objectives and decision
variables are described, and a simulation-based optimization with EnergyPlus [27] in a
Python environment [28] is integrated to compile a training database. This database is
used in the surrogate model section to train a convolutional neural network (CNN) with
the Keras and TensorFlow packages [29], capable of predicting the total energy use of the
6 buildings and their standard deviations. The CNN layers’ nodes are optimized with a
Bayesian optimization using Gaussian processes [30]. In the hyperparameter tuning section,
four metaheuristics are selected to be compared. Each algorithm’s hyperparameters are
fine-tuned with a Bayesian optimization as well. Finally, the metaheuristics are compared
regarding their performance indicators, and optimization results are discussed for this
particular class of BPO problems.

Figure 1. Methodology diagram.
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2.1. Baseline Optimization

Our BPO problem is to find the best combination of constructions for each building’s
surface type that minimizes the construction cost and total energy use. The case study com-
prises a standard midrise apartment program from LadybugTools for building operation,
usage, and schedules [31] applied to a geometric model of 6 buildings in Lisbon, Portugal,
illustrated in Figure 2. LadybugTools integrates the Rhino3D tool with EnergyPlus by
translating geometrical representations and weather files into a file folder and format that is
readable by EnergyPlus. In this case study, a simulation of each building’s total heating and
cooling energy (J) is performed with an ideal air load system for one year with residential
occupation schedules (Table 1).

Figure 2. Plan (left) and 3D model (right) of the studied residential building complex.

Table 1. Simulation setting values for the proposed case study.

Simulation Setting Value

Period 1 year
Timestep 1 timestep per hour

Program and schedules Midrise apartment
Window-to-wall ratio 0.2

Outputs Zone Ideal Load Supply Air Total Heating Energy (J)
Zone Ideal Load Supply Air Total Cooling Energy (J)

Each building can have one out of three different constructions for each surface type:
exterior walls, interior floors, roofs, and windows. Thus, our optimization problem com-
prises the walls, roofs, floors, and windows of 6 buildings, with a total of 24 variables with
3 possible constructions each (Table 2). The opaque materials’ properties are represented
from their outermost layer to their innermost, and the window materials are defined us-
ing a simple glazing system definition with the window U-value, solar (τsol), and visible
transmittance (τvis). Each simulation takes ≈25 (s).

The optimization variables and goals are described in Equations (1) to (4). En
(Equation (1)) represents the total energy use of building n, f1 (Equation (2)) is the to-
tal energy use of all buildings, f2 (3) is the standard deviation of the building sample,
and f3 (4) is the total cost of construction. The BPO problem objectives are to minimize
these functions to guarantee the minimum total energy use ( f1), the best fairness of perfor-
mance among buildings ( f2), and minimum costs ( f3). The Non-Dominated Sorting Genetic
Algorithm II (NSGAII) [32] was the chosen algorithm to run for 1000 iterations.

En(x0, . . . , xn×4) = Heatingn + Coolingn kWh/m2 (1)

f1 (x0, . . . , xn×4) = ∑ En (x0, . . . , xn×4) kWh/m2 (2)

f2 (x0, . . . , xn×4) = σ(En(x0, . . . , xn×4)) kWh/m2 (3)

f3 (x0, . . . , xn×4) = Cost(x0, . . . , xn×4) e (4)

x ∈ {0, 1, 2}—Number o f construction types
n = Number o f buildings
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Table 2. Materials for each surface type construction solution.

Construction Type Total
Area m2 x Cost

[€/m2] Materials

Walls 8699.94

0 20

Plaster—2 cm
Bored brick—11 cm

Air gap—6 cm
Bored brick—11 cm

Stucco—1.5 cm

1 25

Plaster—2 cm
Bored brick—15 cm

Air gap—6 cm
Bored brick—11 cm

Stucco—1.5 cm

2 35

Plaster—2 cm
Bored brick—11 cm

Air gap—6 cm
XPS—4 cm

Bored brick—11 cm
Stucco—1.5 cm

Interior floors 9327.27

0 10
Wood panels—12 cm

Stucco—1.5 cm

1 25

Ceramics—1 cm
Screed—8 cm

Lightweight slab—15 cm
Stucco—1.5 cm

2 30

Ceramics—1 cm
Screed—8 cm

Concrete slab—15 cm
Stucco—1.5 cm

Roofs 1216.67

0 20

Screed—8 cm
Waterproofing—0.2 cm

Screed—8 cm
Lightweight slab—15 cm

Stucco—1.5 cm

1 30

Screed—8 cm
Waterproofing—0.2 cm

XPS—4 cm
Screed—8 cm

Lightweight slab—15 cm
Stucco—1.5 cm

2 35

Screed—8 cm
Waterproofing—0.2 cm

XPS—4 cm
Screed—8 cm

Concrete slab—15 cm
Stucco—1.5 cm

U[W/m2K] τsol τvis

Windows 2174.98
0 50 2.69 0.75 0.80
1 80 1.70 0.38 0.70
2 100 1.25 0.20 0.70
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2.2. Surrogate Model

The SM was developed using the simulation-based optimization data as a training
set. Afterward, the data were split into a train and test set with a ratio of 67/33, and the
variables were used to train a sequential neural network with 1 dense layer, 4 convolutional
layers, and 1 dense output layer. To optimize the layers’ filters (number of nodes), a
Bayesian optimization using Gaussian processes with 100 iterations was integrated to
maximize the CNN coefficient of variation (R2 score) between the test set results and the
model predictions (Equation (5)). Finally, this process was employed to train two CNN
models that predicted f1 and f2 (Equations (2) and (3)), with an early stopping callback to
avoid over-fitting. The optimized CNN structure’s final R2 score and Root Mean Squared
Error (RMSE) are documented in Tables 3 and 4. The SM obtained an R2 score of 0.96
and 0.97, and an RMSE of 0.54 and 0.01, for f1 and f2, respectively. Additionally, the SM
prediction execution time was ≈0.25 (s) for each iteration, which is 100 times faster than
the simulation computation time.

f4 (i0, . . . , in) = R2(test, predictions) (5)

i ∈ [6 , 300] —Number o f f ilters
n = Number o f layers

Table 3. Optimum convolutional neural network structure and performance for surrogate model of
Equation (2).

Layer (Type) Filters Kernel Size

Dense 300 1
1D-Convolutional 157 2
1D-Convolutional 6 2
1D-Convolutional 290 2
1D-Convolutional 70 1

Dense 1 1

R2 score 0.96
RMSE (kWh/m2) 0.54

Table 4. Optimum convolutional neural network structure and performance for a surrogate model of
Equation (3).

Layer (Type) Filters Kernel Size

Dense 300 1
1D-Convolutional 300 2
1D-Convolutional 300 2
1D-Convolutional 6 2
1D-Convolutional 100 1

Dense 1 1

R2 score 0.97
RMSE (kWh/m2) 0.01

2.3. Hyperparameter Tuning

This section describes the selected metaheuristics and the optimization problem that
fine-tunes each algorithm’s hyperparameters. Two evolutionary (EA) and two particle
swarm optimization (PSO) algorithms were selected. From the EA class of algorithms, we
selected NSGAII and the Indicator-Based Evolutionary Algorithm (IBEA) [33]. From the
PSO class, the Speed-Constrained Multi-Objective PSO (SMPSO) [34] and the OMOPSO [35]
were selected. The algorithms were run for 500 iterations and, besides each one’s default
hyperparameters, a polynomial mutation and an SBX crossover were added [36]. Table 5
documents each algorithm’s considered hyperparameters.
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Table 5. Considered hyperparameters and their ranges for all the optimization algorithms.

Algorithm Iterations Hyperparameters Range

NSGAII 500
Population size Ps [30 .. 200]
SBX crossover S [0, 1]

Polynomial
mutation Pm

[0, 1]

IBEA 500
Ps [30 .. 200]
S [0, 1]

Pm [0, 1]

SMPSO 500

Swarm size Ss [30 .. 200]
Leader size Ls [30 .. 200]

Max iterations i [30 .. 200]
S [0, 1]

Pm [0, 1]

OMOPSO 500

Ss [30 .. 200]
Ls [30 .. 200]
i [30 .. 200]
S [0, 1]

Pm [0, 1]
Epsilon ε [0.0001, 1]

To evaluate an optimization model’s performance for MOO, most performance metrics
are calculated regarding the optimum solutions found by the algorithm. These solutions
are called non-dominated solutions. They represent solutions that cannot improve more
in one objective, without harming the other/s [37]. In this case study, the problem’s
non-dominated solutions illustrate the trade-offs between the total energy use of the
buildings ( f1), the fairness of performance among buildings ( f2), and the cost of construction
( f3) (Equations (2) to (4)). Thus, an algorithm that explores the largest solution space
tends to perform better for this particular problem. To measure this, the hypervolume
of each algorithm’s non-dominated solutions is calculated as a means of describing the
area/volume of the solutions obtained in a ratio of a specific boundary domain [19,20].
In this case, our boundary domain represents the highest and lowest possible thresholds for
the minimum total energy use ( f1), standard deviation ( f2), and costs of construction ( f3).

The fine-tuning of the algorithms’ hyperparameters can be described as a single
objective optimization problem to find the combination of parameters that yields the
maximum hypervolume in fNSGAII , f IBEA, fSMPSO, and fOMOPSO (Equations (6) to (9)).
Thus, a Bayesian optimization with 100 iterations is integrated to find the best combination
of hyperparameters for each algorithm’s settings.

fNSGAII (Ps, S, Pm) = H( f1, f2, f3) (6)

f IBEA (Ps, S, Pm) = H( f1, f2, f3) (7)

fSMPSO (Ss, Ls i, S, Pm) = H( f1, f2, f3) (8)

fOMOPSO (Ss, Ls i, S, Pm, ε) = H( f1, f2, f3) (9)

H—Hypervolume;
Boundaries f or H calculation :

f1 ∈ [30, 60] - kWh/m2

f2 ∈ [0.25, 0.50] - kWh/m2

f3 ∈ [400,000, 900,000] - e

3. Results and Discussion

After the optimizations with the fine-tuned metaheuristics, the algorithms’ non-
dominated solutions are calculated and plotted according to the results of each objective.
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Afterward, the algorithms’ hypervolumes are compared and the best-performing algorithm
is selected for the final optimization process. Results are presented and discussed.

3.1. Results

The solution space explored by each algorithm is illustrated in Figure 3. It is visible that
the algorithms obtained different results regarding the exploration of the objective space.
SMPSO and OMOPSO explored a wider range of values, while IBEA focused more on one
area of the solution space. NSGAII explored an acceptable area but failed to find solutions
with higher total energy use ( f1, Equation (2)), a lower standard deviation ( f2, Equation (3)),
and lower construction costs ( f3, Equation (4)), in contrast to the PSO algorithms. In total,
the algorithms explored a solution space with values of f1 between ≈45 and ≈55 kWh/m2,
f2 between ≈0.30 and ≈0.40 kWh/m2, and f3 between ≈400,000 and ≈600,000 €.

Table 6 documents the algorithms’ hypervolumes for the optimum values of their
hyperparameters. The IBEA algorithm ( f IBEA, Equation (7)) obtained the best hypervolume
of 0.54, followed by NSGAII, with 0.53 ( fNSGAII , Equation (6)), and SMPSO and OMOPSO,
with 0.52 ( fSMPSO and fOMOPSO Equations (8) and (9)). Additionally, it is visible in Figure 3
that IBEA obtained the higher hypervolume because it focused on a specific area, not be-
cause it explored the largest solution space. Thus, IBEA successfully found better optimum
solutions but ultimately failed in the exploration of the solution space and its inherent
trade-offs between the buildings’ energy usage, standard deviation, and cost of construc-
tion. For these reasons, the NSGAII algorithm, which obtained the highest hypervolume
and explored a balanced solution space, was chosen to perform the final optimization.

Table 6. Optimum metaheuristics hyperparameters and respective hypervolumes.

Hyperparameter Value Hypervolume

NSGAII
Ps 30

0.53S 1
Pm 0.59

IBEA
Ps 32

0.54S 0.66
Pm 1

SMPSO

Ss 68

0.52
Ls 59
i 67
S 0.43

Pm 0.35

OMOPSO

Ss 30

0.52
Ls 200
i 200
S 1

Pm 0
ε 0.001

The NSGAII algorithm was run with the optimum hyperparameters found for 10,000 it-
erations and the non-dominated solutions found were simulated to validate the surrogate
model predictions. Results show a hypervolume of 0.60, which is significantly larger when
compared with the values obtained for the 500 iterations in Table 6. Additionally, Figure 4
shows that the algorithm explored values between 40 and 60 kWh/m2, 0.2 and 0.5 kWh/m2,
and 400,000 and 900,000 €. With these results, it is possible to discern the existing trade-offs
between energy consumption, fairness of performance among buildings, and the total cost
of construction. Moreover, assuming that this construction has a fixed budget, it is possible
to find the best available solution with a minimum f1 and f2. Finally, Figure 4 also shows
how a solution with the most expensive construction for all surfaces is not necessarily
the best solution, with the algorithm finding a significant number of cheaper solutions
with lower f1 and f2, which can allow savings of up to 22% (200,000 €) on the total cost of
construction while maintaining the same performance ( f1) and fairness of performance
among buildings ( f2).
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Figure 3. Plotted non-dominated solutions of optimized metaheuristics.
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Figure 4. NSGAII non-dominated solutions for 10000 iterations - The most expensive solution is
represented in red.
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3.2. Discussion

The use of SM to estimate building energy use speeds up a building simulation process
exponentially. Additionally, SM can be deployed in a single platform (e.g., web applications,
programming environments, mobile applications, among others), and because they use
only optimization problem variables as inputs, they reduce the simulation complexity and
provide a more accessible analysis to users with any expertise level. As an example, the
optimization process performed in this study can be integrated into a web application
where the user specifies variables and costs and performs the optimization with the selected
algorithm. Afterward, the algorithm’s hypervolume is calculated and a figure illustrates
the obtained optimum solutions.

The comparison of the optimization algorithms shows that, for this particular BPO
problem, different algorithms explored different solution spaces. These can be more or
less suitable for the practitioner’s decision-making goals. Additionally, they show that the
algorithm with the highest hypervolume obtained the best solutions, but did not explore
the desired solution space. In particular, the PSO algorithms excelled in exploring a wide
solution space, the IBEA algorithm obtained the highest hypervolume and best solution,
and NSGAII showed an even balance between the hypervolume and solution space.

The comparison of the four MOO algorithms’ hypervolumes (Table 6) and solution
spaces (Figure 3) provided a confident selection of the most suitable algorithm for the
proposed optimization problem, with results that allowed us to save up to 22% of the
total construction cost while maintaining acceptable energy performance. In the future, an
extensive comparison of optimization algorithms for different aspects of building perfor-
mance can provide a comprehensive foundation regarding the algorithms’ performance for
different building performance optimization problems.

4. Conclusions

Most building and urban optimization problems typically have objectives that are
outputs of analysis and simulation tools. These tools are prone to errors, take significant
time to yield results, and lack model portability among tools (different building models
must be developed for each tool). Because of this, it is often unfeasible to perform a correct
optimization process. This work integrates a surrogate model approach in the optimization
structure that allows us to perform a standard pipeline of activities for the optimization of
a time-consuming function in an acceptable timeframe. This approach is illustrated with
the optimization of a six-building residential complex in Lisbon, Portugal.

The optimization problem is described as the best combination of construction ma-
terials that yield the minimum annual total energy use, construction cost, and standard
deviation (to guarantee the fairness of performance among buildings). Four different opti-
mization algorithms were compared and NSGAII was selected to perform the optimization.
Results of this case study show that adjusting building materials with this approach can
result in savings of up to 22% in the construction cost, while showing the minimum energy
use and standard deviation. The processes required for the optimization are integrated with
a surrogate model developed with a convolutional neural network, with R2 scores of ≈0.96
in the prediction of the simulation results, and being 100 times faster than a simulation.

Surrogate models are efficient in not only reducing the time taken for simulations to
run but also in reducing the number of input features required to obtain results. Addi-
tionally, they are portable and can be deployed easily within a single platform. In spite of
this methodology focusing on a particular problem, research shows that these approaches
are efficient and can be applicable transversely to other time-consuming optimization
problems within the building performance realm, such as computational fluid dynamics,
agent-based modeling, daylighting, and structural analysis, among others. By developing
and deploying multiple surrogate models that predict aspects of building performance,
it is possible to obtain a broader understanding of a building’s performance and tackle
portability issues associated with the use of multiple simulation tools.



Energies 2023, 16, 4030 11 of 13

Future work must focus on (1) the benchmarking of specific algorithms for optimiza-
tion problems, and (2) the development of end-user interfaces with automated optimization
and surrogate model development. In (1), multiple algorithms must be extensively com-
pared regarding their hypervolumes and solution spaces for optimization problems that
encompass different building performance aspects. In (2), the surrogate model develop-
ment and optimization must be automated according to the benchmarked algorithms and
problems, while a user defines the variables and objectives. These studies are extremely
relevant in order to bridge the existing gap between practitioners and building performance
analysis and optimization processes such as the one portrayed in this study.
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