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Abstract: This paper proposes an Intelligent Monitoring System (IMS) for Photovoltaic (PV) systems
using affordable and cost-efficient hardware and also lightweight software that is capable of being
easily implemented in different locations and having the capability to be installed in different types
of PV power plants. IMS uses the Internet of Things (IoT) platform for handling data as well as
Interoperability and Communication among the devices and components in the IMS. Moreover, IMS
includes a personal cloud server for computing and storing the acquired data of PV systems. The
IMS also consists of a web monitor system via some open-source and lightweight software that
displays the information to multiple users. The IMS uses deep ensemble models for fault detection
and power prediction in PV systems. A remarkable ability of the IMS is the prediction of the output
power of the PV system to increase energy yield and identify malfunctions in PV plants. To this
end, a long short-term memory (LSTM) ensemble neural network is developed to predict the output
power of PV systems under different environmental conditions. On the other hand, the IMS uses
machine learning-based models to detect numerous faults in PV systems. The fault diagnostic of
IMS is based on the following stages. Firstly, major features are elicited through an analysis of
Current–Voltage (I–V) characteristic curve under different faulty and normal events. Second, an
ensemble learning model including Naive Bayes (NB), K-Nearest Neighbors (KNN), and Support
Vector Machine (SVM) is used for detecting and classifying fault events. To enhance the performance
in the process of fault detection, a feature selection algorithm is also applied. A PV system has
been designed and implemented for testing and validating the IMS under real conditions. IMS is
an interoperable, scalable, and replicable solution for holistic monitoring of PV plant from data
acquisition, storing, pre-and post-processing to malfunction and failure diagnosis, performance and
energy yield assessment, and output power prediction.

Keywords: cloud computing; ensemble learning; intelligent monitoring system; internet of things;
power prediction; fault detection; autonomous monitoring

1. Introduction

According to Snapshot of Global PV Markets 2021, the total cumulative photovoltaics
(PV) installations escalated significantly to a peak of 758.9 GW in 2020 and will presumably
exceed 1 TW in 2022, considering a medium scenario where cases such as the COVID-19
pandemic are also taken into account [1]. With this growing trend in PV installations, the
systems’ stability, reliability, and safe operation are of vital importance. The quality and
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commercial attractiveness of a PV system is primarily determined by its performance in
the field, cost, and lifetime, to each of which the PV module significantly contributes [2,3].
However, PV systems experience various faults due to environmental conditions, human
errors, and equipment failure during their service life [4,5].

PV monitoring systems have received remarkable attention over the last two decades
due to the inability to diagnose operation and maintenance problems in the absence
of adequate monitoring that have led to a dramatic shortening of the useful life of PV
systems [6,7]. To build an effective PV monitoring system and increase the amount of
produced power to an acceptable level, one should understand the challenges of monitoring
a PV system. First, the required commercial data acquisition existing on the market
constitutes a large part of the cost of a monitoring system. Second, the common approaches
used in monitoring a PV plant require a personal computer (PC) as a computation system
to run special software in real-time. Moreover, the output power of a PV system may
vary due to the influence of various failures and defects on PV modules. As a result, a
human operator should immediately identify and repair any detected failure on any PV
panel, regardless of which system they operate on. Hence, to address the aforementioned
challenges, a smart monitoring system and an accurate prediction model are required [8].

Accordingly, in recent years, many studies related to the PV monitoring systems have
been carried out [9]. In this regard, N. Forero et al. [10] presented a monitoring system
using a commercial data logger to save and transfer electrical and environmental data to
LabVIEW (Laboratory Virtual Instrument Engineering Workbench). The PV monitoring
system developed in [11,12] uses a wireless data acquisition, which is a system consisting
of a PIC microcontroller and LabVIEW packages for the user interface. However, the
proposed PIC microcontroller algorithm uses complicated RISC (Reduced Instruction
Set Computer) such that the code is not user friendly and consequently, the LabVIEW
software is not developed as an open-source software package. A. Chouder et al. [11]
developed a PV monitoring system in Algeria using LabVIEW, in which data are transferred
between PC and LabVIEW. The system employs an Agilent 34970A 16-channel data logger
to process and transfer climatic and electrical data to a server for preparing an Excel
report. As a considerable disadvantage, the monitoring system utilizes a PC as the main
server; therefore, the flexibility of the system is reduced dramatically. In [12], an ET-7017
device is applied as data acquisition system, which has 20 analog single-ended channels.
Moreover, the TCP/IP protocol is applied for transferring data, and then shows the PV
plant information in a web application. Thus, the PV parameter monitoring system, which
has been developed by many researchers, is still relatively complicated and requires a high
cost of production. This is largely due to the utilization of expensive pyranometers in the
entry of the photovoltaic system to measure irradiance, the use of expensive controllers, and
the use of heavy weight software such as LABVIEW [13,14]. J. Han et al. [15] implemented
a PV monitoring system based on Power Line Communication (PLC) for communication.
In [16], a PV module monitoring system is designed based on PLC to detect fault at the
panel-level. However, the PLC modules used in PV panels are expensive and not affordable
for small PV plants. In another research study [17], the performance of a PV monitoring
system was investigated in Doha. In this project, the sensors collect meteorological and
electrical data using the data logger via a PCB board. Later on, data is transmitted through
a ZigBee device to the PC for processing. The limitation of the monitoring systems is to
employ expensive equipment.

However, recent years have witnessed a huge growth in cost optimization of high
demand hardware used for PV monitoring. Pereira et al. [18] have designed a monitoring
system based on the RaspberryPi platform, and a cloud service for a decentralized PV
plant. The data logger includes a PIC microcontroller to convert A/D (Analog-to-digital)
converter and the RaspberryPi board. The advantage of proposed system was the use
of lightweight software. However, it suffers from hardware complexity. An Internet of
Things (IoT) platform for a monitoring system in solar systems with 3G connectivity was
developed in [19,20]. The collected information is sent to a server by 3G connectivity to be
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stored on a cloud storage space and is then represented in a web application. Closeness to
a 3G station is the critical limiting factor that must be considered in this approach.

Besides, over the recent years, researchers have implemented and designed different
machine learning-based fault detection and output power prediction models for PV plants.
Power output prediction of PV plants plays a crucial role in evaluating the performance
of a PV system [21]. It should be noted that the output power in PV systems depends on
climatic factors such as radiation, humidity, and temperature, which can lead to instability
in the PV plants power output. There is a wide range of methods available for PV output
power prediction. For instance, Samara et al. [22] have introduced a monitoring system
for PV panels using the artificial neural network (ANN) approach in order to predict
the output power for diagnosing degradation. The ANN model is not applicable if the
data is noisy. In [23], a comparative study on SVM and KNN is conducted based on
weather classification models for short-term PV power forecasting. A major drawback of
the proposed method is using a KNN model, because it does not perform properly with a
large and high dimensional dataset. Raza et al. [24] proposed an ensemble framework for
the day-ahead forecasting of PV output power in smart grids. This model demonstrates
that the proposed framework improves the accuracy in comparison with individual and
benchmark models. This model has limitations for time series data [25]. Furthermore,
in recent years, studies have been carried out on PV systems fault diagnosis using ML
techniques [26]. B. Basnet et al. [27] proposed the multilayer perceptron (MLP), followed
by a supervised learning approach. However, this is restricted to specific environmental
conditions, since the study focuses on collecting data only in the winter. Besides, Ref. [28]
suggests a fault detection algorithm, which has been based on theoretical curves modelling
and fuzzy classification system using LabVIEW. Generally, the approaches seem to be
computationally demanding and relatively expensive. In Ref. [29], a method based on
the assessment of three coefficients to detect and classify line-line and open-circuit faults
is proposed, in which real measured and simulation model predicted coefficients are
compared. However, despite simplicity, the model seems to be vulnerable and susceptible
to an ill-suited threshold setting [30]. Besides, there are some other studies which suffer
from the ignorance of the shift-invariant properties of the vibration data and, therefore, in
feature extraction the focus of attention is mostly on the frequency spectrum data rather
than the raw vibration data [31]. In fact, there are many studies in which different sorts of
faults are detected based on a comparison between the measured and modeled outputs
and, afterwards, the diagnosis is performed [32], which can be over- or underestimated
unless the model is perfectly accurate or, otherwise, it can cause fault detection in turn.

In this study, we propose the Intelligent Monitoring System (IMS), consisting of an IoT
platform, a cloud service, and a web monitoring software for end-users. Accordingly, we
present a cloud service for data processing (cloud computing), cloud storage for recording
data, and use an IoT platform for data transmission. Moreover, the proposed method
employs a long short-term memory (LSTM) ensemble neural network to predict the output
power PV systems for one day ahead. The LSTM model is appropriate for sequential and
time series problems. The proposed PV monitoring system forecasts output power of PV
systems, analyzes information, and creates detailed reports automatically for repair and
maintenance in PV plants. Moreover, another ensemble learning-based model is utilized
for fault diagnosis of PV arrays to maximize the classification accuracy and the diagnostic
performance as well as to attenuate and lighten the computational burden [33]. In an early
study [33], we proposed a novel method to detect line-line faults. However, it should be
noted that in current study, this model is based on the IoT platform and cloud computing.
Moreover, this model is designed to detect and classify open circuit faults, array degradation
faults, and string degradation faults using an ensemble learning model that contains three
single algorithms, namely Naive Bayes (NB), K-Nearest Neighbors (KNN), and Support
Vector Machine (SVM). It is worth mentioning that, in general, we have selected these three
algorithms since they are firstly proved to be the most powerful methods for detecting
and classifying various faults in PV systems and, secondly, they are perfectly capable of
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dealing with multi-class and binary classification problems. To be precise, Support Vector
Machine (SVM) is selected to solve complex classification problems using kernel tricks.
Besides, we have deployed Naive Bayes (NB), which performs very effectively with a small
amount of data, especially in the process of training. Finally, K-Nearest Neighbors (KNN)
is nominated because it has low bias, but that also means it can have high variance. Thus,
the main objective is the development of an IMS to reduce hardware equipment for which
the proposed method uses open-source and lightweight software and also cost-efficient
hardware. This system is appropriate for a stand-alone system and remote regions and has
the flexibility for implementation on different types of PV plants. The scope of the IMS
system is to detect and classify three electrical faults and predict the output power in PV
arrays.

The rest of this paper is organized as follows. Section 2 describes the IMS architecture
and discusses the details of hardware and software development. The architecture of the
developed ensemble learning techniques is described in Section 3. Section 4 focuses on the
simulations and experiment results to validate the performance of the proposed method.
The paper is concluded in Section 5.

2. The Proposed Intelligent Monitoring System (IMS)

The aim of this study is to design an affordable and high precision monitoring system
in order to perform the precise monitoring of PV plants. Consequently, an IMS has been
proposed and designed to predict the output power of PV modules on the day ahead and
diagnose fault events for improving the performance of the PV plant.

Figure 1 depicts the structure of the IMS proposed in this paper as well as the location
of environmental and electrical sensors. The IMS collects meteorological and electrical data
through sensors installed on PV modules, PV arrays, and the environment. As shown in
Figure 1, the data logger consists of ESP8266 and Microcontroller boards. The electrical
data is sent to the ESP8266 module for initial processing. This step is required for data
preparation to be transferred to the server. The ESP8266 is a cost-efficient mini-Wi-Fi device
based on ESP8266EX, which is popular for IoT applications. The ESP8266 module is able
to be connected to the internet via the access point to post data to the cloud service for
recording and ultimate processing (cloud computing). The device is set up in order to
connect different types of internet access points.

Having quick access to the internet and accordingly the web monitoring system, which
can provide analysis, information, predictions, and numerous reports, the monitoring
service has noticeably been facilitated for different people such as owners, operators, end-
users, etc. through gadgets and smart devices such as computers, mobile phones, etc.
Moreover, it is worthwhile be noted that the proposed IMS takes advantage of open-source
programming languages for developing different parts of the architecture. The ESP8266
module is developed via C++ programming language to collect and transfer data to the
cloud computing server. On the server side, the flask framework is used as the backend
system. Backend development is defined as the server side of an application. For front-end
of the monitoring system, we have used HTML, CSS, bootstrap, and JavaScript to develop
and design the web monitoring systems. Front-end is related to anything users interact
with on the application or web browser. Moreover, different Python packages (Flask, Keras,
TensorFlow, etc.) have been used to implement the ensemble learning algorithms.

The configuration of the developed IMS includes five crucial components, as follows:

• IMS structure;
• IoT platform;
• Cloud data logger;
• Cloud server;
• Web monitor.



Energies 2022, 15, 3014 5 of 25Energies 2022, 15, x FOR PEER REVIEW 5 of 25 
 

 

 

Figure 1. (a) An overview of Intelligent Monitoring System (ISM) architecture; (b) sensors 

distribution. 

Having quick access to the internet and accordingly the web monitoring system, 

which can provide analysis, information, predictions, and numerous reports, the 

monitoring service has noticeably been facilitated for different people such as owners, 

operators, end-users, etc. through gadgets and smart devices such as computers, mobile 

phones, etc. Moreover, it is worthwhile be noted that the proposed IMS takes advantage 

of open-source programming languages for developing different parts of the architecture. 

The ESP8266 module is developed via C++ programming language to collect and transfer 

data to the cloud computing server. On the server side, the flask framework is used as the 

backend system. Backend development is defined as the server side of an application. For 

front-end of the monitoring system, we have used HTML, CSS, bootstrap, and JavaScript 

to develop and design the web monitoring systems. Front-end is related to anything users 

interact with on the application or web browser. Moreover, different Python packages 

(Flask, Keras, TensorFlow, etc.) have been used to implement the ensemble learning 

algorithms. 

The configuration of the developed IMS includes five crucial components, as follows: 

 IMS structure; 

 IoT platform; 

 Cloud data logger; 

 Cloud server; 

 Web monitor. 

Data Gathering

Connect to 

Internet

Send and 

Receive Data

Send and 

Receive Data

Send and Receive 

information

Voltage sensor Current sensor

Temperature sensor

Humidity sensor

Irradiance sensor

(a)

Web monitor
Internet Access Point

Sensors

Data Logger

Cloud Server

PV plant

(b)

Figure 1. (a) An overview of Intelligent Monitoring System (ISM) architecture; (b) sensors distribution.

Given that the purpose of this study is to transmit information via the common
communication protocol and to use the data to verify the functionality of the PV plant, we
hence did not focus on the issue of security and delay or conflict of information. However,
to prevent disruption, we used a backup system to collect daily data, and data will be
replaced in the event of disruption after the system is fixed. It should be noted that we
have highly considered the data privacy of the end-users in IMS by keeping the data at the
PV plant level. The data measurement can be continued or periodic upon the request of the
plant’s owners.

2.1. IMS Architecture

Figure 2 provides an in-depth overview of how the proposed monitoring system
has been arranged. In this experimental research, a stand-alone PV system has been
deployed to test and analyze the performance of the IMS. As shown in Figure 2, the
designed IMS consists of PV modules, microcontrollers, a data logger, and sensors with
wired connections. The equipment used in hardware section include 18 PV modules with
10 W total output power, a resistance load, an access point, mini-Wi-Fi device based on
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ESP8266EX, a microcontroller, and different sensors, which have been listed in Table 1. By
using the presented IMS structure, different PV monitoring tasks, e.g., data collection, can
be done quickly and efficiently through the connected microcontroller to a computational
system via the internet.
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Table 1. Characteristics of the applied sensors.

Module Name Measurement Type Measurement Range Accuracy

DHT22
Humidity 0–100% 2–5%

Temperature −40 to 80 ◦C ±0.5 ◦C
ACS712 Current 0–5 volt 1%

Voltage divider Voltage - -

2.2. Internet of Thing (IoT) Platform

The IoT is a new technology that is envisioned as a global network of interconnected
machines, devices, objects, people, and even animals interacting with each other and
transferring and sharing data over the network. IoT technology is one of the most important
technologies in the future and has attracted the attention of a wide range of industries [34].
A flowchart demonstrating the process of the IoT platform process in the proposed IMS
is provided in Figure 3. In the first step, the IoT file is loaded by the microcontroller. The
IoT file includes posts and gets commands for data transfer between the cloud and the
microcontroller. After uploading the file to the microcontroller, using an Internet connection,
the system then connects to the server and executes the script (.js file) on the server. In case
the connection is lost, the platform starts transferring data from the microcontroller to the
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server again for recording and processing. If the data transfer fails, an URL error will be
displayed to the user.
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2.3. Cloud Server

This paper focuses on powerful cloud tools, which are presented by cloud servers such
as coding packages, cybersecurity, admin page, process units, etc. Figure 4 illustrates the
services provided by a cloud server. Service models consist of three types, namely Software
as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [35].
In this study, the SaaS model (Google Cloud) has been used for the cloud computation unit.
The user has access to control the deployment of end applications. However, the user is not
allowed to control the operating infrastructures. Cloud computing is a model for enabling
ubiquitous, convenient, and on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly released with minimal management effort or service provider interaction.
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2.4. Cloud Data Logger

Cloud data loggers communicate over the Internet connection with a remote cloud-
based server, which can be deployed anywhere in the world. The cloud-based server uses
the cloud data logger as a container for recording data. Users can take advantage of any
devices supporting a web browser to access data on the cloud. This paper proposes a
new structure for the data logger based on an open-source and lightweight software and
a customized cost-efficient hardware. Figure 5 shows the steps of the data logger used
in the IMS as a flowchart. In the first step, the data logger loads the file in .c format and
later on, the file is executed on the microcontroller. The next step is to connect to Google
Script. If there is any problem with the connection, the system tries to reconnect to the
server. Later on, the script is executed by Google Cloud, so that the ID related to the storage
file is checked with Google ID. If the IDs are the same, the microcontroller is connected
to the cloud, otherwise, the URL error will be displayed. Finally, the system checks the
authenticity of the ID. Once the ID is correct, it starts receiving data from the microcontroller.
The data is recorded as a CSV file and displayed on the Google Sheet simultaneously.
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2.5. Web Monitor

The term ‘Web monitoring’ signifies the process in which the information that end-
users can interact with on a website or a web application via the internet is systematically
analyzed and displayed (See Figure 6 for a general overview of a web monitoring process).
Accordingly, the cloud server loads the scripts, which is followed by receiving a CSV-format
version of the data file from the database and subsequently posting it to the backend for
further processing. The backend is responsible for running programs in scripting languages
like Python. The task includes execution of the ensemble learning algorithms code on
the flask, users’ identification, and data processing in the backend. Finally, the processed
data is displayed in the frontend. The task of the frontend layer is to run web languages
such as HTML, CSS, and JavaScript in web browsers. Figure 7 shows the overview of the
frontend layer used for data display to users. If the error occurs in the process layers, the
user receives the URL error through the browser.
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3. The IMS Using Machine Learning Techniques

To develop the IMS in order to obtain an accurate prediction of the output power
and a precise detection of PV faults, we have applied novel machine learning techniques
(MLTs) in a way that a long short-term memory (LSTM) model helps the IMS in the process
of power prediction while, on the other side, an ensemble learning (EN) classifier which
is based on the I-V curve measurement of the PV arrays is employed to provide a more
accurate detection of the faults.

3.1. Power Forecasting Architecture

Recurrent neural networks (RNNs) are a popular deep learning model that is widely
used for the prediction of time series and sequential instances. A RNN model includes a
recursive loop, so that the model stores the past information to update and enhance the
model for future prediction. Besides the efficiency of RNN in long-term forecasting, it
suffers from two major drawbacks including vanishing and exploding gradients. In RNNs,
vanishing and exploding gradients can result in an unstable network that is not able to
learn features sufficiently from training data. Consequently, the network cannot learn over
long input sequences of data. To overcome these drawbacks, LSTM is introduced, which is
an improved version of RNNs.

This study aims to achieve an efficient prediction model by composing ensemble
neural networks and LSTM. The ensemble methods improve the dynamics and enhance
the accuracy of the neural network models. Accordingly, this experimental research has
developed an LSTM ensemble architecture for output power prediction of PV Plants. In the
following, we describe three main components of the LSTM model, which are the structure
of LSTM, LSTM ensemble architecture, and the evaluation methods.

3.1.1. LSTM Structure

The LSTM models are a modified version of RNNs, which resolve the vanishing and
exploding gradient problems. These models recall past data more easily than traditional
RNNs and are suitable for predictive time series instances [36].

Figure 8 shows the LSTM architecture, which includes four layers in its hidden layers.
RNN models are a specific type of LSTM models with a major difference, being the existence
of gates in RNNs. The LSTM neural networks consist of three types of gates, namely, the
input, output, and forget gates. The following equations represent the methodology of
layers, operators, and gates of the LSTM model, as follows:

it= σ(W ixxt+Wihht−1+bi), (1)

ft= σ(Wfxxt+Wfhht−1+bf), (2)

ct= ft � ct−1+it �φ(W cxxt+Wcmmt−1 +bc), (3)

ot= σ(W oxxt+Wohht−1 +bc), (4)

ht= ot �φ(c t). (5)

In Equations (1)–(5), xt represents the current input, ct−1 is the memory from the
last LSTM unit, ht−1 denotes the output of the last LSTM unit, ct shows the new updated
memory, and ht signifies the current output. Also, according to Equations (1)–(5), Wmn
denotes the connection weight from gate m to n. The parameter b is a bias parameter for
the training model, where n ∈ {x, h}, and m ∈ {i, f, o, c}. Moreover, the operator �
indicates the element-wise product (Hadamard product), σ indicates the logistic sigmoid
function, and Φ indicates the network’s output activation function. These functions are
calculated as follows:

σ(x) =
1

1 + e−x , (6)

Φ(x) =
ex − e−x

ex+e−x . (7)
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3.1.2. LSTM Ensemble Architecture

The ensemble methods have been introduced for improving the performance and
learning accuracy of the machine learning models. This paper uses an enhanced model of
the ensemble LSTM for the output power prediction of PV plants [37]. The architecture
of the ensemble LSTM is developed based on some single NNs used as predictor models.
Figure 9 shows the three layers of the ensemble model including input layer, training layer,
and forecasting layer (output layer). In the input layer, the electrical and environmental
data are given to the LSTM network. Next, inside the training layer, each LSTM model
is trained separately. Finally, for final output prediction, a particular weight coefficient is
assigned to each model’s output for output forecasting of the ensemble LSTM calculation.
In this model, the weight of the prediction and output forecasting are according to Equation
(8), which considers the entire M LSTM models that are presented in a set of models. The
ensemble prediction results for the time series are represented as

(
y1 , y2 . . . , yN) with

N observations. Parameter ŷi
j signifies the prediction output obtained using of jth LSTM

model (at the ith time interval) and wj is subject to weights composition. In Equation (8),
each weight wj is related to a prediction output of the LSTM model, where, 0 ≤ wj ≤ 1
and ∑n

j=1 wj= 1.

ŷi = ∑n
j=1wjŷi

j for i = 1, . . . , N. (8)

Weight combination is one of the most significant parameters in the efficiency predic-
tion of our LSTM ensemble model. According to Equation (9), wj of weight compounds
(j = 1, . . . , n) that n is a member of the basic LSTM ensemble network. Based on the
experiments performed on the LSTM ensemble network, M = 5 has been selected as the
best choice. Equation (9) is used to calculate the weights of the power output prediction
of the basic LSTM model for the day d + 1. Accordingly, enorm

i is the normalized error
of single ith LSTM model over the number of days, and j is number of LSTM ensemble
network models. The e parameter is considered as mean absolute error (MAE) in the first
LSTM ensemble network, and as root mean square error (RMSE) error in the second LSTM
ensemble network. The first LSTM ensemble network is represented by the symbol EN_1
and the second by the symbol EN_2, and they are computed as follows:

Wd+1
i =

1− enorm
i

∑M
j=1 1− enorm

j
. (9)
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Figure 9. LSTM ensemble architecture.

3.1.3. Evaluation Methods

In this experimental study, to evaluate the performance of the regression models, three
criteria, namely RMSE, MAE, and Mean Absolute Percentage Error (MAPE) have been
used. In Equations (10)–(12), Pi and P̂i are the real output power and predicted output
power for the ith day in PV system. Parameter N is the number of days in testing dataset,
and n is the number of time step of output power prediction for one day (n = 20).

RMSE =

√
∑N

i=1
(

Pi − P̂i
)2

N × n
, (10)

MAE =
1

N × n

N

∑
i=1

∣∣∣∣∣Pi − P̂i

∣∣∣∣∣, (11)

MAPE =
1

N × n

N

∑
i=1

∣∣Pi − P̂i
∣∣

Pi
. (12)

3.2. Fault Detection and Classification

In this paper, an ensemble learning (EN) model for fault diagnosis of PV arrays is
investigated in order to achieve superiority in classification accuracy. Figure 10a shows
an overview of the required steps to build an EN-based fault classification model. As a
supervised machine learning technique, the EN-based model relies on a certain number
of fault features extracted from the raw data obtained. To achieve a high diagnostic
performance with a low computational burden, a feature selection algorithm is utilized.
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To evaluate the performance of the model, the labeled samples are divided into training
and validation sub-sets. The training set is used to train the model, while the validation
set is used to measure the performance of the model. Then, we have tested the learning
algorithm by an unseen dataset with dissimilar input parameters to the original dataset.
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Figure 10. (a) The algorithm structure of the proposed method, and (b) flowchart of the EN model.

3.2.1. Feature Extraction

In this section, the dataset must go through a two-stage process which includes (1)
faults attributes identification and (2) feature extraction. Normally, the first stage is fulfilled
by a detailed analysis of the current-voltage (I–V) characteristic curve.

The output voltage and current of the PV array are recorded to capture the I-V curves.
Then, in the second stage, based on a careful analysis of five specific points on the current-
voltage curve, namely short circuit current, open- circuit voltage, Maximum Power Point
(MPP), half short-circuit current, and half open-circuit voltage, for a more accurate fault
detection, the algorithm has extracted 16 features which are listed in Table 2, normalized to
standard testing conditions (STC).

As shown in Figure 11, two layers of the EN model are designed to detect any fault
and classify its type. The first layer aims to detect the fault condition through a binary
classification. The second layer includes the multiple classes, which classify the type of
defects by a multi-label classification algorithm. There are three kinds of outputs, namely
open-circuit, string, and array degradation faults.
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Table 2. Extracted features from current-voltage curves.

Extracted Features

f1 = ISC/ISC(STC) f2 = VOC/VOC(STC) f3 = VMPP/VMPP(STC)

f4 = IMPP/IMPP(STC) f5 = I VOC
2

/ISC(STC) f6 = V ISC
2

/VOC(STC)

f7= f4/f3 f8= f3/f2 f9 = f4/f1
f10= (I MPP − ISC)/(V MPP) f11= (−I MPP)/(V OC −VMPP)

f12= (I VOC
2
−ISC)/(

VOC
2 )

f13= (I MPP−I VOC
2
)/(V MPP −

VOC
2 )

f14= ( ISC
2 −IMPP)/(V ISC

2
−VMPP) f15 = (− ISC

2 )/(V OC −V ISC
2
)

f16 = FF
FF(STC)

→ FF =VMPP × IMPP
VOC × ISC

, FF(STC) =
VMPP(STC) × IMPP(STC)

VOC(STC) × ISC(STC)
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The fault detection process is as follows: the first layer identifies whether new sample
data is affected by any kind of fault or not. If the sample data is defected, then the second
layer is responsible for recognizing the type of the fault.

3.2.2. Feature Selection Algorithm

Feature selection is a process by which a proper subset of the original extracted
features is carefully chosen by the elimination of the unrelated features to enhance the
overall classification performance of the ML algorithm and to reduce the learning time.
There exist different methods of selecting the appropriate features, among which, we have
chosen a wrapper method and specifically a sequential algorithm owing to its concentration
on the usefulness of the features based on the performance of the classifier.

The above-mentioned selection method is the Sequential Floating Forward Selection
(SFFS) algorithm, mainly chosen for its potential capability of backward movement.

Initially, the SFFS starts with an empty subset and proceeds with adding the most
accurate feature chosen by the classifier and eliminating all previously selected features at
the end of each iteration. Subsequently, new subsets are evaluated to determine whether
the prior nominated features were optimal or not. This loop is repeated over the number
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of features in the dataset in order to obtain the most optimal number of features with the
highest accuracy.

3.2.3. The Proposed Ensemble Learning Algorithm

Using an appropriate learning algorithm is a matter of the utmost importance in
ML-based fault classification. Many studies have deployed a single classification algorithm,
which has culminated in low accuracy or poor performance. To cope with the aforemen-
tioned problems, in this study, we have proposed an ensemble learning algorithm which
is comprised of three different classifiers, namely Support Vector Machine (SVM), Naive
Bayes (NB), and K-Nearest Neighbors (KNN).

The probability of data belonging to a specific class has a large impact on the overall
performance of the model for data classification. Hence, in this paper, a probabilistic
ensemble model is devised to combine the merits of three previously mentioned classifiers
(see Figure 10b). The process starts with predicting the class labels according to the average
of probabilities predicted by each single algorithm. Then, the model calculates the average
probability of every class label attributed to the sample data and eventually selects the label
with the highest probability. The process is formulated in Equation (13):

ŷ = arg max
j

∑m
i=1 Pji

m
, (13)

where ŷ is the output predicted by the classifier and Pji is the probability that class j is
nominated for a sample data belonging to ith learning algorithm (m = 3). Note that j is two
for fault detection and three for fault classification.

3.2.4. Evaluation Metrics

We have divided the whole dataset into validation data and unseen data to evaluate the
efficiency of the learning algorithms. For this purpose, a confusion matrix helps show the
prediction results of fault detection and classification, produced by every single algorithm
(see Table 3). In Table 3, TP, known as true positive, is the state in which a sample is
correctly predicted in the first class. The same is true for TN, standing for true negative,
which signifies a correctly identified second class sample data. Moreover, FP, short for
false positive, refers to a sample that is wrongly identified as a member of the first class.
Adversely, a sample data categorized as FN (false negative), should have been labeled as
the first class but is incorrectly classified as the second.

Table 3. Confusion matrix to evaluate the performance of the learning algorithms.

Predicted

First Class Second Class

Actual
First class TP FN

Second class FP TN

Furthermore, based on the confusion matrix, we have defined the accuracy and F1-
score measures (Equations (13) and (14), respectively) to assess the performance of the
learning algorithms.

The classification accuracy is expressed in Equation (14):

Accuracy =
TP + TN

TP + TN + FN + FP
. (14)

The F1-score, which represents the harmonic mean of recall and precision, shows more
realistically how accurately the trained model performs when dealing with unseen data. It
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is calculated according to Equation (15) and will be later evaluated for the different classes
(Ci, i ∈ {1, 2, 3}):

F1 =
2 × Precision × Recall

Precision + Recall
, (15)

where Recall shows the percentage of correctly identified actual class events (see Equation
(16)) and Precision is that of correctly labeled predicted class events (see Equation (17)).

Recall =
TP

TP + FN
, (16)

Precision =
TP

TP + FP
, (17)

Moreover, in order to evaluate the performance of the proposed method, we have
devised two scenarios, one with and one without the feature selection algorithm for both
layers.

4. Experimental Verification

In this paper, an IMS is developed with several abilities such as power output pre-
diction, fault detection, cloud storage, IoT application, and web monitoring. This section
gives information on the experimental results and provides an explanation in two parts.
The LSTM ensemble network results are presented in the first part, while the second part
carries the results related to the performance of the fault detection.

4.1. Data Acquisition

The developed IMS collects data from a stand-alone PV system (see Figure 2). In the
power forecasting part, the training data has many features, e.g., temperature, irradiance,
humidity, power, voltage, and current. In the feature extraction step, the training data is
passed through the developed technique to find the correlation between different features.
Finally, the selected features are temperature, irradiance, and power. Therefore, input data
includes 3 features and 20 time steps, where each time step includes 30 min intervals from
7 am to 5 pm. The entire dataset includes 7300 samples. It should be noted that our main
criterion for selecting such a dataset is based on the environmental conditions of our region
where the experiments were executed.

To confirm the validity of the proposed method in fault diagnosis part, we created
a combination of faulty and normal events via the original dataset as well as unseen
dataset. The faulty and normal panels are tested under a vast range of irradiance between
200 W/m2 and 1000 W/m2, and the temperature changes ranging from 0 ◦C to 40 ◦C.

It should be noted that the fault degradation in a PV string is executed by applying
series resistor on the String #1. Moreover, as can be seen in Figure 11, a resistor is inserted
in series into the output of the PV array to imitate the degradation fault. Therefore, the
range of fault impedance is set to [2 Ω, 15 Ω] with a step of 3 Ω.

The open-circuit fault is emulated by setting the infinity number of the series-connection
resistor. This paper demonstrates an open circuit scenario with one disconnected PV string
in String #2, as illustrated in Figure 11.

In this experimental research, we have collected 433 cases in normal condition,
433 cases with open-circuit fault, 582 cases with PV string degradation fault, and 582
cases with PV array degradation fault. Once the training process is completed, layers are
evaluated by an unseen dataset. This dataset is split under different operation conditions,
which are combinations of irradiance levels, operation temperatures, and fault impedances
(4, 8, and 12 Ω). Therefore, to assess the model more accurately, 60 normal, 60 open-circuit,
48 PV string degradation, and 48 PV array degradation conditions are obtained by the
experimental setup.
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4.2. Experimental Results
4.2.1. Power Forecasting Results

In this study, EN_1 and EN_2 models are compared with other deep NN models
such as LSTM, MLP, and Conv1D from different perspectives. The EN-1 model is an
LSTM ensemble network with an updated weight based on RMSE error. Accordingly, the
EN-2 model is an LSTM ensemble network with an updated weight based on MAE error
(see Table 4).

Table 4. Parameters of the ANN algorithm.

Model Optimizer Activation
Function Dropout Batch Size Epochs

LSTM radam relu 0.1 16 100

Figure 12 shows the performance of the trained models. According to Figure 12, by
comparing the errors of the models in two metrics (RMSE and MAE), the ensemble model
has a better performance than other models in both indices. For further analysis, we also
list the forecasting errors evaluation considering multiple models as numerical results, see
Table 5.
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Figure 12. RMSE and MAE errors of models.

Table 5. PV output forecasting error evaluation considering multiple models.

Model MAE(W) MAPE (%) RMSE(W)

MLP 14.519 4.24 19.832
Conv1d 10.69 3.47 15.941
LSTM 9.68 3.05 15.585
EN-1 8.795 2.58 14.29
EN-2 8.856 2.69 14.353

Figure 13 shows the actual power diagram of the PV plant and the predicted power
by the predictor models for one day. Accordingly, the graph indicates that the output of the
ensemble models is closer to the actual value compared with the rest of the models.
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Figure 13. Forecasting and actual power diagram of deep learning models for one day.

According to the results of the output power prediction, the EN-1 model has shown
better performance. Figure 14 represents the output power forecasting of the LSTM en-
semble model. As shown in Figure 14a, the graphs of actual and predicted output power
during one week in summer are depicted. Figure 14b illustrates the actual and predicted
output power during one week in winter. As we can see, there exists a good convergence
of the predicted output power to the actual output power in different seasons. Therefore,
this model is able to accurately predict the output power of the PV system.
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Figure 14. Real and predicted power output diagram. (a) The EN-1 model for one week in the
summer and (b) the EN-1 model for one week in the winter.
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According to the results, the functionality of the proposed IMS system in power
prediction demonstrated that the amount of experimental dataset is sufficient to train the
neural network model for power prediction in a certain period of time.

4.2.2. Fault Detection (FD) Layer

In this section, we introduce a binary classification layer, called Fault Detection (FD),
which is a part of the proposed monitoring system. As mentioned previously, we have
examined both normal and faulty events in the fault detection (FD) layer and labeled them
as the first and second class, respectively. In this regard, we have recorded 433 normal and
1597 faulty events to train and validate the layer. The fault detection is defined as a binary
classification problem in which two classes of data are used in the training and validation
steps. To evaluate the performance of FD layer, we have recorded 156 faulty and 60 normal
events as the unseen dataset. In addition, 1624 training samples (comprised of 342 normal
and 1282 faulty events) and 406 validation samples (including 91 normal and 315 faulty
events) are chosen randomly to assess the layer. Besides, a comparison is arranged between
the trained fault detection layer and a majority voting-based ensemble learning algorithm.
For further verification, we have also compared the layer individually to each of the three
algorithms presented in this paper.

The fault detection layer is perfectly trained in two previously mentioned scenarios.
In addition, we deployed a 10-fold Cross-Validation (CV) algorithm to be reassured about
the performance of both feature selection and learning processes. Table 6 shows the best
selected features and provides information on the efficiency of each learning algorithm by
means of two statistical parameters; average accuracy and standard deviation. In summary,
Table 6 depicts that despite a reduction in the number of features, the performance of
the second scenario is shown to be more satisfying. Moreover, in both scenarios, the
proposed method is proved to be more accurate in comparison to other algorithms. Besides,
Figure 15 displays how five different algorithms result on the training dataset in the process
of feature selection. According to Figure 15d, it can be easily noticed that the proposed
method performs the best with five features and outputs a 95% high accuracy as well as a
1.5% low standard deviation.

Table 6. The training results of the FD layer.

Layer Type

Scenario 1 Scenario 2

Train Accuracy (Standard Deviation) Selected Features
Train Accuracy (Standard Deviation)

NB SVM KNN
Major
Voting

The
Proposed
Method

NB SVM KNN
EN

Major
Voting

The Proposed
Method

FD 61.14%
(2.2%)

61.7%
(3.2%)

86.2%
(1.9%)

73.4%
(3.1%)

87%
(3.2%)

f1, f2, f3,
f4, f8, f9
87.7%
(3.1%)

f7, f8, f9,
f11, f16
92.61%
(2.1%)

f3, f13
94.89%
(1.7%)

f3, f16
92.73%
(1.8%)

f2, f4, f5, f8, f16
96.12%
(1.5%)

In the next stage, the algorithms are into the path of being assessed by the validation
dataset. Table 7 presents the results of this stage and shows that the proposed method is
proved to be more accurate than other algorithms. In Table 7, FD-S1 and FD-S2 signify the
process of fault detection in the first and second scenario, respectively.

Finally, each algorithm goes through the process of evaluation via unseen data. The
learning algorithms are compared by means of F1-score to show the realistic performance
of algorithms in fault classification task. Figure 16 depicts the superiority of F1-score of the
proposed method over the other algorithms in this stage.
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Table 7. Validation results of the FD layer.

Layer Type

Confusion Matrix
(Accuracy %)

F1NB F1SVM F1KNN
F1EN

NB SVM KNN

EN

Major Voting The Proposed
Method

Major
Voting

The Proposed
Method

FD-S1

[
82 9

160 155

]
(58.37%)

[
74 17
124 191

]
(65.27%)

[
42 49
10 305

]
(85.46%)

[
74 17
100 215

]
(71.18%)

[
69 22
35 280

]
(85.96%)

F1(C1) = 96%
F1(C2) = 0.96%

F1(C1) =93%
F1(C2) =93%

F1(C1) = 96%
F1(C2) = 96%

F1(C1) = 96%
F1(C2) = 96%

F1(C1) = 98%
F1(C2) = 98%

FD-S2

[
70 21
40 275

]
(84.97%)

[
91 0
33 282

]
(91.87%)

[
87 4
23 292

]
(93.34%)

[
87 4
35 280

]
(90.39%)

[
82 9
13 302

]
(94.58%)

F1(C1) = 97%
F1(C2) = 97%

F1(C1) = 97%
F1(C2) = 97%

F1(C1) = 96%
F1(C2) = 96%

F1(C1) = 96%
F1(C2) = 96%

F1(C1) = 99%
F1(C2) = 100%

4.2.3. Fault Classification (FC) Layer

In this section, we describe the details of a multi-class fault classification layer, devel-
oped to detect a wide range of faults on PV strings.

To train a classifier, we need training data and its labels. In this experiment, the labels
consist of three classes, namely open-circuit faults, array degradation faults, and string
degradation faults. The number of training and validation data is equal to 1597 events,
including 433 of the first class, 582 of the second class, and 582 of the third class. In this
context, we considered 1277 events for the training purpose (333 events of the first, 472 of
the second, and the same of the third class) and 320 events for the validation purpose (100
events of the first, 110 of the second, and the same of the last class). Apart from that, to
test the layer accurately, we have provided 156 fault events as unseen data comprising 60
events of the first, 48 of the second, and also 48 of the third class.
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Table 8 summarizes the performance of different learning algorithms in the process
of fault classification in two scenarios. In the first scenario, according to Table 8, the
proposed method is proved to be more accurate (89.11%) than the majority voting-based
ensemble learning algorithm (67.34%) in spite of the unsatisfactory performance of SVM
and NB algorithms. Besides, in the second scenario, faults are shown to be classified far
more accurately by the proposed method with an accuracy of 94.74% and a 2.4% standard
deviation.

Table 8. The training results of the FC layer.

Model Type

Scenario 1 Scenario 2

Training Accuracy (Standard Deviation) Selected Features
Training Accuracy (Standard Deviation)

NB SVM KNN

EN

NB SVM KNN

EN

Major
Voting

The
Proposed
Method

Major
Voting

The Proposed
Method

FC 66.79%
(4.5%)

63.35%
(5.2%)

89.03%
(2.2%)

67.34%
(4.6%)

89.11%
(2.5%)

f6, f11,
f13, f14,

f16
75.56%
(2.9%)

f2, f6, f9,
f15, f16

90%
(2.7%)

f4, f6,
f16

90.9%
(3.6%)

f6, f9, f10,
f11, f16
84.64%
(2.9%)

f2, f7, f16
94.74%
(2.4%)

Figure 17 shows how five different algorithms perform on the training dataset in the
process of feature selection. Looking closely at Figure 17d, it is evident that the proposed
method performs the best with three features.

Then, we assess the algorithms in two scenarios by the validation dataset in terms
of fault classification. As is clearly depicted in Table 9, in the first scenario, the SVM
and NB algorithms demonstrate a poorer performance than KNN while the proposed
method is shown to be more efficient in fault classification in comparison to the majority
voting-based ensemble model. It even exceeds the result of the first scenario and presents a
high accuracy of 95.93% in the second scenario, which proves the effectiveness the feature
selection algorithm in the accurate classification of faults in PV systems.
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Figure 17. The performance of learning algorithms during the feature selection process in FC layer,
(a) NB classifier, (b) SVM classifier, (c) KNN classifier, (d) EN classifier with majority vote, and (e) the
proposed method.

Table 9. Validation results of the FC layer.

Layer
Type

Confusion Matrix
(Accuracy %)

F1NB F1SVM F1KNN

F1EN

NB SVM KNN
EN

Major Voting Proposed Method Major Voting Proposed
Method

FC-S1

 79 0 21
32 67 11
43 4 63


(65.31%)

 84 0 16
41 62 7
48 0 62


(65%)

 93 1 6
6 99 5
8 0 102


(91.87%)

 84 0 16
36 67 7
43 0 67


(68.12%)

 93 0 7
7 99 4

11 0 99


(90.93%)

F1(C1) =49%
F1(C2) =54%
F1(C3) =90%

F1(C1) =33%
F1(C2) =32%

F1(C3)
=76%

F1(C1) =92%
F1(C2) =67%

F1(C3)
=92%

F1(C1) =63%
F1(C2) =56%
F1(C3) =88%

F1(C1) =96%
F1(C2) =81%
F1(C3) =96%

FC-S2

 92 0 8
24 80 6
32 1 77


(77.81%)

 100 0 0
11 99 0
15 0 95


(91.87%)

 100 0 0
11 99 0
6 0 104


(94.68%)

 96 4 0
11 95 4
21 0 89


(87.5%)

 96 4 0
9 101 0
0 0 110


(95.93%)

F1(C1) =81%
F1(C2) =75%
F1(C3) =98%

F1(C1)
=100%

F1(C2) =83%
F1(C3)
=94%

F1(C1) =79%
F1(C2) =76%

F1(C3)
=97%

F1(C1) =95%
F1(C2) =88%
F1(C3) =98%

F1(C1) =100%
F1(C2) =100%
F1(C3) =100%

At last, in order for the proposed method to be fully confirmed, we test the algorithms
via unseen data. Figure 18 compares the performance of the algorithms in both scenarios
and clearly shows that our proposed method is 100% accurate in the second scenario.

For further validation, the performance of the proposed method is compared with
the results of three different methods proposed by other studies. These methods are the
most authoritative studies in the detection and classification of faults in PV systems. The
comparative results are listed in Table 10. The proposed method has a higher accuracy,
and this accuracy is achieved with a very low number of datasets. It should be noted
that the presence of high fault impedances leads to low accuracy in fault detection and
classification because the operating conditions of the PV system in these faults are close to
normal conditions.
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Table 10. Comparative results between the proposed method and other studies.

Case Study Machine Learning
Technique

Fault Impedance
Range

No. of Learning
Datasets Required

Average
Accuracy

This study Ensemble learning
algorithm 0–15 Ω 2030 96.72%

[38]
Graph-based

semi-supervised
learning

0 Ω and 10 Ω 5594 64.61%

[39] Random Forest
algorithm 4 Ω 108,000 98%

[40] SVM learning
algorithm 0–25 Ω 2976 93.07%

5. Conclusions

In this study, an IoT-based monitoring system called Intelligent Monitoring System
(IMS) for monitoring of PV plants has been developed. The main objective of IMS was
to provide a smart and autonomous monitoring solution using lightweight software and
cost-efficient hardware. The IMS used deep ensemble models for fault detection and power
prediction in PV systems. The fault diagnostic of IMS was based on the following stages.
Firstly, the main features were elicited via analyzing Current–Voltage (I–V) characteristics
in several faulty and normal events. Secondly, an ensemble learning model including Naive
Bayes (NB), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN) was used for
detecting and classifying fault events. To obtain a higher performance in diagnosing the
faults in PV systems, a feature selection algorithm was also applied. IMS is an interoperable,
scalable, and replicable solution for holistic monitoring of PV plants from data acquisition,
storing, pre-and post-processing to malfunction and failure diagnosis, performance and
energy yield assessment and output power prediction. The system processing can be
performed on the cloud server and used Internet of Things (IoT) applications for data
transfer and user access. This monitoring solution can be used in remote regions, urban,
and rural. The results have shown that the LSTM ensemble network has unique accuracy
compared to other models for output prediction, failure identification, and decision-making
for remedial actions. In this way, the proposed method was able to detect and classify the
faults with an average accuracy of 96.56% and 96.89%, respectively. Moreover, the proposed
LSTM ensemble algorithm demonstrated a very small forecasting error compared to the
other proposed algorithms.
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In future work, we plan to diagnose all the electrical faults including bypass diode
problem, line-ground, shading, etc., accurately in PV arrays. For this purpose, we will
apply further learning algorithms that can be difficult to choose in ensemble learning
models. Therefore, optimization methods such as the genetic algorithm or particle swarm
optimization algorithm can be used to select the best learning algorithms. Moreover, we
will use different loss functions in order to improve the accuracy in power forecasting.
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