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Abstract: Due to the critical nature of the ramp-up phase of an efficient steam-assisted gravity
drainage (SAGD) process, it is important to understand the physics of the steam chamber ramp-up
phase in order to improve SAGD production performance. In conventional numerical simulation
models, the dynamics of the steam chamber ramp-up phase are not fully resolved because of unclear
steam–oil–water interactions during the vertical growth of the steam chamber and how its state
changes as the reservoir parameters vary. This work provides an efficient approach for the numerical
modeling of the steam chamber ramp-up phase in an SAGD operation. The steam chamber ramp-up
phase was fully examined through the consideration of the effects of the temperature-dependent
oil–water–gas multiphase flow system and the vertical countercurrent flow. The simulation results
revealed that for the large temperature gradient of the mobile oil zone at the edge of the steam chamber,
a delicate temperature-dependent multiphase flow system was essential for the reliable estimation
of the SAGD ramp-up phase. The vertical countercurrent flows of oil–gas and oil–condensate were
the dominant mechanisms over cocurrent flow, which significantly impacted the steam chamber
ramp-up rate. The numerical model physically predicted the steam chamber ramp-up phase and
could be used to efficiently compute a field-scale simulation using a dynamic gridding function that
was based on a fine grid model.

Keywords: SAGD; steam chamber ramp-up; numerical simulation; dynamic gridding

1. Introduction

In a typical SAGD operation, a pair of horizontal wells are utilized for the recovery of
heavy oil or bitumen reservoirs. The production well is drilled 2 m above the bottom of
the reservoir and the injection well is parallel to and 5 m above the production well [1–3].
Saturated steam is injected into the reservoir through the injection well to form a steam
chamber within the reservoir. The steam flows inside the steam chamber and condenses at
the edge of the steam chamber once it encounters the cool oil that is in the reservoir. As the
heat transfers from the hot steam chamber to the surrounding cold formations, heavy oil or
bitumen is mobilized under the high temperature. Therefore, the heated oil and condensate
flow downward into the production well due to gravity [4,5]. The steam chamber gradually
expands with the developing evacuated space that is caused by the steam injection [6].

Due to the intrinsic impact of the expansion of an SAGD steam chamber on its pro-
duction performance, modeling and understanding the growth of the steam chamber have
been important research topics [7]. During a typical SAGD process, results from laboratory
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experiments [1,8] and observations from Underground Test Facility (UTF) field applica-
tions [9] have demonstrated that the steam chamber grows in three stages: ramp-up, lateral
spreading and wind down. In the early stage of SAGD, which is referred to as the ramp-up
phase, the steam chamber mainly grows in a vertical direction [10]. In the analysis of field
applications data, it has been summarized that most SAGD ramp-up phases are completed
in one to two years [11]. Additionally, analytical calculations have concluded that the
ramp-up phase is closely related to the instability of the steam–condensate–oil front at
the top of the chamber [12]. Therefore, it is important to have a reliable estimation of the
performance of the ramp-up phase [9,13] through the consideration of the steam–oil–water
interaction.

Analytical and numerical models have been proposed for the prediction of the SAGD
ramp-up phase and the corresponding steam chamber evolution process. It is commonly
assumed that the growth of a steam chamber solely occurs in the vertical direction during
the ramp-up phase [1,14]. However, these models cannot predict the dynamic charac-
teristics of the real inclined edge of a steam chamber during the ramp-up phase, which
simultaneously grows in upward and lateral directions [15,16]. Recently, the use of the flat
top of a steam chamber in an analytical model has been assumed to obtain an estimation
of the ramp-up phase [13]. Further analytical models assume the steam chamber to be
an inverted triangle that rises at a constant angle from the bottom production well to the
reservoir overburden [17]. One particular concern is that there is an instable condensate–oil
interface at the top of the steam chamber [18].

In the previous models of the steam chamber ramp-up phase, some critical reservoir
properties, such as the input parameters, have not been appropriately included. In the
SAGD process, there is a large temperature gradient in the oil drainage zone at the edge of a
steam chamber between the steam temperature and the original reservoir temperature. The
behavior of the multiphase fluid flow, which is estimated using relative permeabilities, is
sensitive to the temperature gradient in this oil drainage zone and is essential to be consid-
ered [19]. Both experimental and mathematical studies have reported that in the process of
thermal oil recovery, significant effects of temperature-dependent oil–water relative perme-
ability have been observed on oil production [20–30]. Some models have been proposed for
the representation of temperature-dependent relative permeabilities [20,30–32]. Between
the original reservoir temperature and the saturated steam temperature, the water relative
permeability endpoint can increase by two orders of magnitude [33] and the oil relative
permeability endpoint can also alternate [19,27]. Further investigations on the temperature-
dependent liquid–gas relative permeabilities in heavy oil systems have also been conducted.
Experimental results have shown that the oil relative permeability changes slightly and
the gas relative permeability increases gradually with the increase in temperature from 54
to 150 ◦C [34]. Although it is known that the oil–water–gas relative permeability system
changes with temperature, the isothermal relative permeability curves are often used to
predict the multiphase flow regardless of the large temperature range that is involved in
the SAGD process [35]. Therefore, this isothermal relative permeability system can lead to
significant uncertainties when applied in thermal oil recovery process estimations [24].

During an SAGD ramp-up phase, a lighter steam penetrates the heavier heavy oil
or bitumen formation above it due to the buoyance effect, which leads to the erosion of
the top of the steam chamber [4,8,36]. A critical uniqueness has been proposed in that the
performance of SAGD relies on the vertically moving fluids in the countercurrent flows [37].
The comparisons between co- and countercurrent flows have been analyzed using both
experiments and mathematical computations [38–41]. Due to the differences in phase
flow velocities, momentum transfer accelerates the slower fluid flow and decelerates the
faster moving fluids when the fluids are moving in a cocurrent manner. Correspondingly,
when the fluids are moving in a countercurrent manner, both fluids are decelerated [41–44].
Review work that was based on these results has proposed the following concern: both
co- and countercurrent flows occur at the steam interface and the combination of co- and
countercurrent flows could have a profound impact on the ramp-up phase [45]. Hence,
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flow potential-dependent relative permeabilities that are caused by the combination of
co- and countercurrent flows have to be considered in the modeling of an SAGD ramp-up
phase, which has not yet been fully resolved.

Numerical reservoir simulation has always been a powerful tool for the estimation
of the physics of SAGD processes. However, the accuracy, efficiency and robustness of
the simulation highly depends on the input parameters and computation methodology.
Notwithstanding the extensive research studies that have been conducted on the techniques
for the estimation of the steam chamber ramp-up phase in SAGD, the models are not
capable of adequately capturing the physics of the vertical ramp-up phase or estimating
the oil production performance. Thus, it is difficult to account for complexities, such as the
temperature-dependent oil–water–gas relative permeabilities, the combination of vertical
co- and countercurrent flows, initial water saturation variations and their effects on steam
chamber ramp-up phase performance. In order to obtain reliable simulation results, in
contrast to previous simulation studies, the physical dynamic process of the steam chamber
ramp-up phase was revealed in this study. The simulation effectively integrated the vertical
steam chamber ramp-up physics and efficiently computed the process by applying the
dynamic gridding algorithm in CMG STARS. As a result, this paper could provide a
deeper understanding of the vertical steam chamber ramp-up mechanisms within the
SAGD process.

2. Theory

In this work, a numerical model for governing the steam chamber ramp-up phase
of an SAGD process was theorized, as shown in the schematic of a steam chamber cross-
section in Figure 1. Below the top of the steam chamber, steam rises upward from the
reservoir due to buoyancy effects as oil and condensate drain downward [4,15]. To capture
the physics of the expansion of a steam chamber during the ramp-up phase, a fine grid
reservoir model was applied. The model integrated the temperature-dependent oil–water–
gas multiphase flow system and the vertical co- and countercurrent flows that are induced
by the upward moving steam and downward moving heated oil and condensate. To
efficiently accelerate the simulation, the dynamic gridding algorithm was optimized by
dynamically reducing the total number of grids that were used in the model, depending on
the specified trigger criterion.
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2.1. Fine Grid Model

In the numerical reservoir simulation of the SAGD process, it was essential to apply
sufficiently fine grids for the accurate estimation of the steam chamber [46]. Recent work on
the effects of grid dimensions on thermal oil recovery simulation has further indicated that
a fine grid system eliminates the impact of numerical diffusion on the numerical estimation,
which is caused by the discretization in space and time [47]. In this work, a field-scale
numerical simulation model with fine grids was built to investigate the multiphase fluid
flow mechanisms and dynamic steam chamber expansion during the ramp-up phase of
an SAGD process. A grid size sensitivity analysis that was based on the cumulative oil
production comparison was also conducted to determine the appropriate grid size for the
modeling of the target process.

2.2. Temperature-Dependent MultiPhase Flow

In recent years, many researchers have established correlations to express temperature-
dependent oil–water relative permeability [32,48]. Mathematical analysis has proved that
the Corey correlation can reliably predict temperature-dependent relative permeability
curves [24,49]. The experimental data from the Athabasca bitumen and water system
demonstrated that the generalized Corey relative permeability model, as shown below in
Equations (1) and (2), could be employed to compute temperature-dependent oil and water
relative permeability curves [19,27,29,30]:

krw = k0
rw(T)(

Sw − Swcon(T)
1 − Sorw(T)− Swcon(T)

)
Nw

, (1)

krow = k0
row(T)(1 −

Sw − Swcon(T)
1 − Sorw(T)− Swcon(T)

)
No

, (2)

where k0
rw(T) is the water relative permeability endpoint in the oil–water system, k0

ro(T) is
the oil relative permeability endpoint in the oil–water system, Sw is the water saturation,
Swcon(T) is the connate water saturation, Sorw(T) is the residual oil saturation, Nw is the
water exponent and No is the oil exponent.

Four endpoints of a temperature-dependent oil–water relative permeability have been
studied simultaneously in recent literature and the regressed correlations have been applied
to estimate the dependence. Equations (3) and (4) were used to express the temperature-
dependent connate water saturation and residual oil saturation of the Athabasca oil sands,
respectively [27]:

Swcon = 2.68 × 10−4T(K)− 0.0352, (3)

Sorw = −0.419 ln(T(K)) + 2.761, (4)

The nonlinear trend curve of the oil endpoint relative permeability (k0
ro(T)) was pro-

posed according to the well-matched results of the experimental data, as shown in Equation
(5), while the water endpoint relative permeability (k0

rw(T)) was assumed to be a constant
(k0

rw(T) = 1). In addition, the water exponent (Nw) and oil exponent (No) were determined
by fitting at 2.8 and 1.8, respectively [27], for the Athabasca oil sands.

k0
row(T) = 0.4947 ln(T(°C))− 1.666, (5)

The fitted Corey relative permeability model (Equations (6) and (7)) of the temperature-
dependent liquid–gas relative permeabilities were also provided based on the simulation
work of the Athabasca oil sands SAGD project, which has also been successfully integrated
with the temperature-dependent oil–water relative permeability models [50,51].

krg = k0
rg(T)(

Sg − Sgcon(T)
1 − Sgcon(T)− Sorg(T)− Swcon(T)

)
Ng

, (6)
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krog = k0
rog(T)(

1 − Sg − Sorg − Swcon(T)
1 − Sgcon(T)− Sorg(T)− Swcon(T)

)
Nog

, (7)

where, k0
rg(T) is the gas relative permeability endpoint in the liquid–gas system, k0

rog(T) is
the liquid relative permeability endpoint in the liquid–gas system, Sg is the gas saturation,
Sgcon(T) is the connate gas saturation, Sorg(T) is the residual oil saturation in the liquid–gas
system, Ng is the gas exponent and Nog is the liquid exponent.

The liquid endpoint relative permeability (k0
rog(T)) equaled the oil endpoint relative

permeability (k0
row(T)). The temperature-dependent gas relative permeability endpoint

(k0
rg(T)), gas exponent (Ng) and liquid exponent (Nog) were also obtained using the regres-

sion method, as expressed by Equations (8)–(10), respectively:

k0
rg(T) = −7.11 × 10−7T(°C)2 + 2.267 × 10−4T(°C) + 0.466, (8)

Ng = −0.0018 × T(°C) + 1.1375, (9)

Nog = 0.0153 × T(°C)− 0.2667, (10)

2.3. Countercurrent Flow in the Vertical Direction

To simulate the process of the countercurrent flow, decreasing two-phase relative
permeabilities have been demonstrated to be the most appropriate technique for estimation,
according to the comparison of numerical results to experiment data [38]. In this technique,
Corey-type equations are used to generate countercurrent flow relative permeability curves
that are based on the corresponding cocurrent curves [41]. In this work, the countercurrent
flow relative permeabilities were also generated according to the temperature-dependent
cocurrent relative permeability curves by decreasing the relative permeability endpoints
(k0

rw(T), k0
row(T), k0

rg(T) and k0
rog(T)) to 50% [41]. The flow potential of each phase was

dynamically tested and shifted between co- and countercurrent relative permeability curves
in every region (every grid cell) during the simulation [52,53].

2.4. Dynamic Gridding

In a high-resolution numerical simulation, an entire reservoir model that is made up of
fine grids can enhance the accuracy of the simulation, which results in a long computation
time and, therefore, is impractical in a field-scale modeling [54]. Dynamic gridding is the
methodology that is used to combine the local fine grids into groups and create relatively
coarse grids that are controlled by a property gradient among the neighboring fine grids.
On the contrary, once the gradient is larger than the threshold, de-amalgamation is executed
and the local fine grids reappear [54,55]. Previous simulation work has demonstrated that
dynamic gridding is an effective approach for accelerating computation by automatically
adjusting the grid size and reducing computation time [54]. By comparing the simulation
results from a fine grid model and a dynamic model, it was found that the temperature
gradient is the best criterion to use to control the dynamic gridding in the thermal oil
recovery process [54]. In this work, the commercial simulator CMG STARS was utilized for
the dynamic gridding feature, in which both grid amalgamation and grid refinement were
fully included [53]. The controlling parameters and threshold values that were used for the
dynamic gridding application to capture the physics of the steam chamber ramp-up phase
are examined in the next subsection.

3. Simulation Model

In this study, the proposed reservoir model represented the Athabasca oil sands in
Alberta, Canada [56]. The commercial simulator CMG STARS, version 2020.10, which is a
widely applied thermal oil recovery simulation tool, was used to generate the simulation
model and perform the simulation computations [5,53]. This model included a horizontal
pair of wells that were drilled at the bottom of the reservoir. To make the study on the
cross-sectional steam chamber ramp-up phase more straightforward, a two-dimensional
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model was utilized [56]. The key assumptions and simplifications that were used to develop
the proposed simulation model for evaluating the steam chamber ramp-up phase in SAGD
operation are summarized as follows:

1. A homogeneous simulation model was used with averaged porosity, permeability,
initial temperature and oil viscosity;

2. The bitumen that was deposited in the reservoir was single-component and dead
without solution gas;

3. The fluids, such as water and bitumen were immiscible and Newtonian;
4. The effects of capillary pressure on fluid flow were neglected due to the high perme-

ability.

The target reservoir had a deposition of 300 m, a thickness of 20 m and a width of
20 m, as shown in the schematic in Figure 2. The key reservoir properties are summarized
in Table 1. The average reservoir porosity was 0.3 and the ratio of vertical permeability to
horizontal permeability equaled 0.4 with a vertical permeability of 4 darcys. The initial oil
saturation and temperature were 0.8 and 20 ◦C, respectively. The bitumen viscosity that
was hosted under the initial reservoir condition was over 1 million cP [56]. To reduce the
effects of numerical dispersion, the fine grids were used in both the lateral and vertical
directions, which has been confirmed to be sufficient in the simulation of steam chamber
expansion in SAGD [57]. The reservoir was modeled with a single 800 m long grid along
the horizontal well. Prior to the SAGD production mode, pre-heating between the injection
and production wells was established by the circulation of steam within the two wells,
while fluid production was constrained by bottom hole pressure, which was equal to the
original reservoir pressure [56]. Then, steam was introduced into the injection well at a
pressure of 2200 kPa (217 ◦C) and a steam quality of 0.8. The production through the
production well was constrained under a maximum steam production rate of 1 m3/day
(CWE) [10]. The reservoir simulation was run for 13 months of a steam chamber ramp-up
phase [58].
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Table 1. Key reservoir model parameters.

Items Values

Depth to top of reservoir (reference depth), m 300

Net pay, m 20

Reference pressure, kPa 1300

Initial water saturation, % 20

Initial oil saturation, % 80

Initial reservoir temperature (reference temperature),
◦C 20

Horizontal absolute permeability, darcy 4.0

Vertical absolute permeability, darcy 1.6

Formation compressibility, 1/kPa 8.0 × 10−6

Formation heat capacity, J/(m3×◦C) 2.35 × 106

Rock conductivity, J/(m×day×◦C) 6.60 × 105

Water conductivity, J/(m×day×◦C) 5.35 × 104

Oil conductivity, J/(m×day×◦C) 1.25 × 104

Gas conductivity, J/(m×day×◦C) 3200

Overburden/underburden volumetric heat capacity,
J/(m3×◦C) 2.35 × 105

Oil viscosity, cp lnln(µ) = −3.5738 ln(T(°C)) + 22.8379

The temperature-dependent oil-water-gas multiphase flow system was expressed as
the oil–water and liquid–gas relative permeability curves at varying temperatures. The
relative permeability values of the Athabasca oil sands were estimated using Equations
(1)–(10) and the corresponding curves were plotted in the temperature range of 20 to 220 ◦C,
as shown in Figure 3. Figure 3 shows the results that have been published in the literature,
which demonstrate that the reservoir wettability tends to more water-wet [29] and gas
mobility increases with the increase in temperature [34].
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In the representation of the countercurrent flow relative permeability curves, cocur-
rent relative permeability curves were used as the reference and the endpoints of these
curves were modified [38]. In all simulation scenarios, the relative permeabilities of the
countercurrent flow were fixed by manually reducing the relative permeability endpoints
in Equations (1), (2), (6) and (7) [59]. Figure 4 shows the oil–water and liquid–gas two-phase
relative permeability curves when each phase relative permeability was reduced to 50%
and the co- and countercurrent relative permeabilities were fixed at 220 ◦C [41].
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4. Model Validation

To obtain a reliable and robust simulation model, the numerical scheme was validated
using four steps: reservoir width, grid size, dynamic gridding parameters and comparison
to field performance.

4.1. Effects of Reservoir Width on Oil Production

Due to the simultaneous vertical and lateral growth of the steam chamber during
an SAGD ramp-up phase [15,16], the reservoir width selection for the modeling process
impacted the simulation performance. On one hand, when the reservoir was narrow, the
early touching between the steam chamber and the side boundaries of the model impaired
the accurate estimation of the vertical ramp-up phase. On the other hand, although a
wide reservoir model could estimate the ramp-up phase accurately, the large number of
grids on both sides of the model caused unnecessary additional computation time. Three
reservoir widths of 15 m, 20 m and 25 m were simulated and compared to the results of the
cumulative oil production curves that are plotted in Figure 5. During the comparison of the
curves, it was found that the reservoir with a width of 20 m showed an excellent agreement
with the larger reservoir width of 25 m. However, the narrow reservoir width of 15 m
overestimated the oil production after 250 days due to the early touching between the steam
chamber and the side boundaries. The narrow reservoir restricted later steam chamber
growth and resulted in fast vertical steam chamber growth, as shown in the cross-sectional
temperature distributions of the steam chamber at 330 days that are presented in Figure 6.
To efficiently simulate the ramp-up phase, the 20 m reservoir width was selected for the
following simulation work.
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Figure 6. Cumulative oil production of scenarios 1 to 3 under varying reservoir widths.

4.2. Effects of Grid Size on Simulation Performance

Due to the significant effects of numerical diffusion/dispersion on the numerical
simulation results, which was caused by the discretization in space and time [47], a sensi-
tivity analysis on the impact of grid size on the SAGD ramp-up phase performance was
conducted by comparing the cumulative oil production of varying grid sizes from 2.5 cm
to 20 cm, as summarized in Table 2. The cumulative oil production by time, which was
used as the grid size quality testing parameter [59], were plotted in curves, which are pre-
sented in Figure 7. From the comparison of the curves, it was observed that the large grid
sizes (Scenario 5 and 6) accelerated the oil production rate because the large grid system
overestimated the heat transfer, which is the dominant oil flow enhancement mechanism
of SAGD [60]. It is also demonstrated that the grid size of 5.0 cm × 5.0 cm (scenario 2)
produced a high accuracy with a good agreement with the results that were computed
by the smaller grid size of 2.5 cm × 2.5 cm (scenario 4), while the computation time for
the 2.5 cm grid size was much longer than that for the 5.0 cm grid size, as summarized
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in Table 3. By using fine grids, the effects of heat transfer on both thermal conductivity
and convection were greater than the effects of the numerical diffusion/dispersion on the
SAGD performance. As a consequence, the impact of numerical diffusion/dispersion on
the numerically simulated steam chamber ramp-up phase could be neglected by applying
the grid size of 5.0 cm × 5.0 cm. The findings were consistent with the results of previous
studies in that millimeter-sized grids led to an accurate numerical diffusion/dispersion for
the representation of the physical process [47]. Thus, to obtain an efficient simulation model,
the grid size of 5.0 cm × 5.0 cm (scenario 2) was chosen as the base grid size. Furthermore,
the grids (5.0 cm × 5.0 cm) that were used in this work were finer than the relatively coarse
grids (20 cm × 20 cm) that are used in simple SAGD models [56] and in situ combustion
models [47], in which isothermal relative permeability curves are used when neglecting
the impact of the countercurrent flows. Thus, the temperature-dependent oil–water–gas
multiphase flows and buoyancy-induced countercurrent flows required fine grids for an
effective numerical simulation.

Table 2. Scenarios demonstrating the impact of reservoir width on SAGD ramp-up phase.

Case Description

Scenario 1 Reservoir width = 15 m

Scenario 2 Reservoir width = 20 m

Scenario 3 Reservoir width = 25 m
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Table 3. Summary of scenarios for grid size selection.

Case Description

Scenario 2 Grid size = 5.0 cm × 5.0 cm

Scenario 4 Grid size = 2.5 cm × 2.5 cm

Scenario 5 Grid size = 10 cm × 10 cm

Scenario 6 Grid size = 20 cm × 20 cm
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4.3. Dynamic Gridding and Numerical Convergence

In this work, dynamic gridding was applied to overcome the issue of long computation
time that is required for fine grid SAGD simulation. In the dynamic gridding scenarios,
once the amalgamation was activated, the fine grids were locally combined to create coarse
grids by monitoring the threshold value, which was the temperature difference between the
neighboring grids [47]. Otherwise, the de-amalgamation was activated and the coarse grids
were split into fine grids when the temperature difference was less than the threshold value.
The simulation results from scenario 2 were used as the reference for the evaluation of the
dynamic gridding parameters. Four scenarios (summarized in Table 4) were generated to
examine the effects of various trigger temperatures on the simulation results.

In this work, a ten-core personal workstation (3.7 GHz processor) was used to perform
the simulations. Figure 8 presents the temperature and oil saturation distributions of
both scenario 2 and scenario 8 at 150 days, 240 days and 330 days. Further curves that
demonstrate the cumulative oil production of the scenarios are shown in Figure 9. In
scenario 8, fine grids (5.0 cm × 5.0 cm) covered the mobile oil region (as shown in the
refined grids), while coarse grid blocks (25 cm × 25 cm) were generated inside the steam
chamber and cold oil reservoir regions. Once the mobile oil region passed the threshold,
the fine grids were combined into coarse grids behind the mobile oil region as time went
on. After an abundance of sensitivity analyses, it was found that the temperature gradient
that was used in scenario 8 (5 ◦C) had an excellent agreement with scenario 2, both in
terms of the temperature distributions and cumulative oil production, as well as a reduced
computation time (from 8 h 57 min to 2 h 1 min). Thus, according to the comparison of
property distribution and oil production, the dynamic grid model could deliver a good
representation of the fine grid model.

1 
 

 
  Figure 8. Cont.
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Figure 8. Cross-sectional temperature and oil saturation distributions of scenarios 2 and 8 at
(a) 150 days, (b) 240 days and (c) 330 days.
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Table 4. Cases of fine grid and dynamic grid scenarios.

Case Description
Dynamic Grid
Temperature

Gradient

Average
Timestep

Average
Iterations

Simulation
Time

Scenario 2 Fine grids; dimension = 5.0 cm ×
5.0 cm - 3 × 10−2 days 3 8 h 57 min

Scenario 7 Dynamic grids; amalgamation
dimension = 25 cm × 25 cm 2 ◦C 5 × 10−2 days 2 3 h 16 min

Scenario 8 Dynamic grids; amalgamation
dimension = 25 cm × 25 cm 5 ◦C 5 × 10−2 days 2 2 h 1min

Scenario 9 Dynamic grids; amalgamation
dimension = 25 cm × 25 cm 10 ◦C 5 × 10−2 days 2 0 h 52 min
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Figure 9. Cumulative oil production of scenarios 2, 7, 8 and 9 under the application of dynamic
gridding.

As the steam chamber ramp-up phase involves complex flow behavior, which is
temperature- and flow direction-dependent, an adaptive implicit numerical method using
CMG STARS was applied to solve the strongly nonlinear system and enable efficient com-
putation convergence. The automatically adjusted timestep size was utilized to facilitate
convergence, in which the timestep size was appropriately increased after fast convergence
and decreased when the iteration number exceeded the pre-set maximum level [53]. As
shown in Table 4, the average timestep of scenario 2 without dynamic grids fluctuated
around 2 × 10−2 days, while the average timestep increased to 5 × 10−2 days for scenario
8 under the application of dynamic grids. The average iteration number in each timestep
also decreased from 3 to 2 after the application of dynamic grids in scenario 8. Thus, the
proposed dynamic gridding model for the simulation of the steam chamber ramp-up phase
was efficient in enlarging the average timestep and decreasing the number of iterations.

4.4. Comparison to Field Data

In this section, as well as the validation of the simulation parameters, the proposed sim-
ulation model is further validated against the Athabasca oil sands field observations of the
Jackfish 1, Pad A SAGD project [61]. In the published literature, the Jackfish 1 SAGD project
is located 150 km south of the city of Fort McMurray and has the same geological infor-
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mation of Athabasca oil sands deposit [61]. In the simulation model, the average reservoir
properties of the Athabasca oil sands were used to represent the Jackfish 1 SAGD simulation,
as shown in Table 1. In addition, due to the lack of operational details for the field project,
the curves of the normalized cumulative oil production ( cumulative oil production

cumulative oil production at 365 days ),
which was a dimensionless parameter, versus time were plotted, as shown in Figure 10.
The good agreement between the results of scenario 8 and those of the field project further
demonstrated the validity of the generated simulation model for the estimation of the
steam chamber ramp-up phase of the SAGD process in the Athabasca oil sands.
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Figure 10. Comparison of the cumulative oil production results of simulation scenario 8 and the
Jackfish 1, Pad A (Athabasca oil sands) SAGD project.

As a summary of the model validation, the generated numerical model provided
reasonable predictions of the SAGD ramp-up phase, which could be designed to estimate
the primary physics of the vertical growth of the steam chamber ramp-up phase and export
a variety of outputs.

5. Results and Discussions

In this section, further simulation results and discussions are provided to obtain a
deeper understanding of the SAGD ramp-up phase, based on the proposed model.

5.1. Characteristics of the Steam Chamber Ramp-Up Phase of the SAGD Process

Figure 11 depicts the process of an SAGD ramp-up phase that was based on the simu-
lation results of scenario 8. In the left-hand column, the temperature distributions in the
cross-section are shown at 150 days, 240 days and 330 days. The geometries of the growth
of the steam chamber that were represented by the temperature distributions demonstrated
the conclusion that the steam chamber grew upward and outward simultaneously during
the ramp-up phase [15,16]. Correspondingly, a reference line (the dashed line shown in Fig-
ure 11, left-hand column) from the injection well to the top of the reservoir was selected and
the relevant properties were plotted along that reference line, as shown in the right-hand
column of Figure 11. The curves for the temperature and the gas, oil and water vertical
flow velocities were also plotted and analyzed. The dashed line in the right-hand column
separates the reservoir into two zones: the steam chamber and outside the steam chamber.
The results revealed that in the steam chamber, as the hot steam came into contact with the
cold oil, the steam condensed and the oil was mobilized by the high temperature. Then,
the oil and condensate flowed downward (positive velocities) and the gas flowed upward
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(negative velocity) throughout the whole ramp-up phase. Thus, the countercurrent flows
of steam–condensate and steam–oil occurred inside the steam chamber. Outside the steam
chamber, both the oil and condensate flowed downward in a cocurrent manner without the
existence of steam, due to the steam condensation.
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5.2. Temperature-Dependent Relative Permeabilities and CounterCurrent Flow

Scenarios concerning the impact of the temperature-dependent multiphase flow and
vertical countercurrent flow were computed and the corresponding results were analyzed.
In Table 5, the relevant scenarios are summarized. Scenario 8 was the reference case, which
integrated the temperature-dependent relative permeabilities and vertical countercurrent
flows. To study the effects of temperature on the multiphase flow, scenarios 10 and 12 used
an isothermal relative permeability system at the same temperature as the saturated steam.
In scenarios 11 and 12, the vertical countercurrent flow was neglected by removing the
countercurrent flow relative permeabilities, as shown in the curves in Figure 4.
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Table 5. Scenarios of temperature-dependent relative permeabilities and countercurrent flow.

Case Description

Scenario 8 Temperature-dependent relative permeabilities and countercurrent flow

Scenario 10 Temperature-independent relative permeabilities and countercurrent flow

Scenario 11 Temperature-dependent relative permeabilities and cocurrent flow

Scenario 12 Temperature-independent relative permeabilities and cocurrent flow

The cross-sectional temperature distributions of the four scenarios are displayed in
Figure 12 and the corresponding cumulative oil production curves are plotted in Figure 13.
Scenarios 8 and 10 produced similar temperature distributions, whereas the isothermal
relative permeability system in scenario 10 relatively overestimated the amount of oil pro-
duction compared to scenario 8. In the comparison of scenarios 11 and 12, the temperature-
dependent multiphase flow system also produced more oil. Thus, using the delicate
temperature-dependent multiphase flow system was essential for the SAGD ramp-up
phase simulation due to the significant temperature variation in the mobile oil region,
which was caused by the steam injection. Further analysis between the countercurrent
scenarios (8 and 10) and cocurrent scenarios (11 and 12) was also conducted. The coun-
tercurrent flow decreased the effects of the temperature-dependent multiphase flow on
the steam chamber ramp-up phase by decreasing difference between the oil production
of scenarios 8 and 10 and scenarios 11 and 12. Thus, the countercurrent flow had a rela-
tively greater impact on the ramp-up phase performance than the temperature-dependent
multiphase flow.
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Figure 13. Cumulative oil production of scenarios 8, 10, 11 and 12 under varying relative permeability
settings.

5.3. Effects of Co- and Countercurrent Flows on the Ramp-Up Phase

Using previous work on the estimation of countercurrent flow relative permeabilities
through the decrease in the corresponding cocurrent flow relative permeabilities [41,59],
the effects of the co- and countercurrent flows on the SAGD ramp-up phase were examined.
Table 6 summarizes the scenarios for estimating the countercurrent relative permeability
values using between 30% and 70% of the cocurrent flow relative permeability values,
as well as a corresponding vertical permeability to horizontal permeability ratio (kv/kh)
between 0.24 and 0.56. For example, in scenario 13, the countercurrent flow was reduced
to 30% of that in scenario 8. In scenario 15, both the co- and countercurrent flow phases
were decreased to 30% by reducing the vertical permeability compared to scenario 8. The
simulation results for the cross-sectional temperature distributions and cumulative oil
production curves are shown in Figure 14 and 15, respectively. A significant deceleration
in the vertical growth of the steam chamber and a reduction in oil production were found
with the decrease in both countercurrent flow relative permeability value and kv/kh ratio.
These observations further demonstrated the assumption of the consistent deceleration
of the ramp-up phase being caused by the vertical countercurrent flow during the SAGD
ramp-up phase [17].

As discussions on the characteristics of the steam chamber ramp-up phase in the
SAGD process have shown, steam–oil and steam–condensate countercurrent flows occur in
the steam chamber and condensate–oil cocurrent flows may exist in the same region [62].
Further examinations of the impact of co- and countercurrent flows on oil production
were conducted. In scenarios 15 and 16, the flow capacities of both co- and countercurrent
flows were modified by varying the kv/kh ratio, whereas only the countercurrent flow
was altered in scenarios 13 and 14. The acceleration of the steam chamber ramp-up phase
by increasing vertical permeability was proven by the temperature distributions that are
presented in Figure 14, which was similar to the effect of an increase in countercurrent
relative permeability values. The curves for the cumulative oil production are plotted in
Figure 15, including scenarios 8 and 13 to 16. Through the comparison of these curves, it
was found that decreasing the countercurrent flow relative permeability values (only the
countercurrent flow was decreased) had a similar effect to decreasing the vertical absolute
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oil reservoir permeability (both co- and countercurrent flows were reduced) on the oil
production of the ramp-up phase, as can be seen from scenarios 13 and 15 and scenarios
14 and 16. In other words, the countercurrent flow was the dominant multiphase flow
mechanism for the vertical growth of the SAGD ramp-up phase.

Table 6. Scenarios of modified countercurrent relative permeabilities and kv/kh ratios.

Case Description

Scenario 8 Estimating countercurrent relative permeability by decreasing cocurrent
relative permeability to 50%; kv/kh = 0.50

Scenario 13 Estimating countercurrent relative permeability by decreasing cocurrent
relative permeability to 30%; kv/kh = 0.50

Scenario 14 Estimating countercurrent relative permeability by decreasing cocurrent
relative permeability to 70%; kv/kh = 0.50

Scenario 15 Estimating countercurrent relative permeability by decreasing cocurrent
relative permeability to 50%; kv/kh = 0.24

Scenario 16 Estimating countercurrent relative permeability by decreasing cocurrent
relative permeability to 50%; kv/kh = 0.56
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5.4. Effects of Initial Water Mobility on the Steam Chamber Ramp-Up Phase

Laboratory experiment results have demonstrated that the initial water is mobile when
the saturation is above 7% at room temperature [63]. The mobile water outside the steam
chamber boundary could significantly impact the growth of the steam chamber [64]. In this
work, the effects of the initial water mobility on the SAGD ramp-up phase performance
were examined by altering the initial water saturation. Table 7 presents the scenarios with
initial water saturation values ranging from 0.1 to 0.3. The corresponding cross-sectional
temperature distributions are shown in Figure 16 and the cumulative oil production curves
are plotted in Figure 17. The comparison of scenarios 8 and 17 revealed that the rate of
steam chamber growth was almost unchanged when the initial oil saturation increased
from 0.1 to 0.2. In contrast, there was significantly rapid steam chamber growth in scenario
18 with the initial water saturation of 0.3. The amount of temperature-dependent connate
water saturation that was in the representation of the water saturation endpoint in Figure 3
confirmed that under at the temperature of the injected steam (217 ◦C), initial water
saturation was mobilized when the saturation was over 0.28. As a result, the convective
flow of mobile water in the oil reservoir accelerated the heat transfer outside the steam
chamber boundary. Thus, the simulation results were consistent with those from previous
experiments in terms of the tendency of a high initial water saturation value enabling a
faster steam chamber ramp-up phase compared to a low initial water saturation value [56].
The curves of the cumulative oil production that are presented in Figure 17 demonstrate
that a lower amount of oil was recovered when the initial water saturation was high.
Although there was a large area of reservoir that was swept by steam in scenario 18, under
high initial water saturation conditions, the low initial oil saturation counteracted the large
steam chamber growth and decreased the total amount of oil that was produced.
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Table 7. Scenarios of varying initial water saturation.

Case Description

Scenario 8 Initial water saturation = 0.20

Scenario 17 Initial water saturation = 0.10

Scenario 18 Initial water saturation = 0.30

Energies 2022, 15, x FOR PEER REVIEW 20 of 23 
 

 

was high. Although there was a large area of reservoir that was swept by steam in scenario 
18, under high initial water saturation conditions, the low initial oil saturation counter-
acted the large steam chamber growth and decreased the total amount of oil that was 
produced. 

Table 7. Scenarios of varying initial water saturation. 

Case Description 
Scenario 8 Initial water saturation = 0.20 

Scenario 17 Initial water saturation = 0.10 
Scenario 18 Initial water saturation = 0.30 

 
Figure 16. Cross-sectional temperature distributions of scenarios 8, 17 and 18 under varying initial 
water saturation. 

 
Figure 17. Cumulative oil production of scenarios 8, 17 and 18 under varying initial water satura-
tion. 

6. Conclusions 
The dynamics of the SAGD steam chamber ramp-up phase were examined using a 

detailed thermal reservoir simulation model. The conclusions from the research are as 
follows: 

0 50 100 150 200 250 300 350 400
Time, days

0

6000

12000

18000

24000

C
um

ul
at

iv
e 

O
il 

Pr
od

uc
ed

, m
3

Scenario 17: initial water saturatio is 0.1
Scenario 8: initial water saturatio is 0.2
Scenario 18: initial water saturatio is 0.3

Figure 16. Cross-sectional temperature distributions of scenarios 8, 17 and 18 under varying initial
water saturation.

Energies 2022, 15, x FOR PEER REVIEW 20 of 23 

was high. Although there was a large area of reservoir that was swept by steam in scenario 
18, under high initial water saturation conditions, the low initial oil saturation counter-
acted the large steam chamber growth and decreased the total amount of oil that was 
produced. 

Table 7. Scenarios of varying initial water saturation. 

Case Description
Scenario 8 Initial water saturation = 0.20

Scenario 17 Initial water saturation = 0.10
Scenario 18 Initial water saturation = 0.30

Figure 16. Cross-sectional temperature distributions of scenarios 8, 17 and 18 under varying initial 
water saturation. 

Figure 17. Cumulative oil production of scenarios 8, 17 and 18 under varying initial water satura-
tion. 

6. Conclusions 
The dynamics of the SAGD steam chamber ramp-up phase were examined using a

detailed thermal reservoir simulation model. The conclusions from the research are as 
follows: 

0 50 100 150 200 250 300 350 400
Time, days

0

6000

12,000

18,000

24,000

C
um

ul
at

iv
e 

O
il 

Pr
od

uc
ed

, m
3

Scenario 17: initial water saturatio is 0.1
Scenario 8: initial water saturatio is 0.2
Scenario 18: initial water saturatio is 0.3

Figure 17. Cumulative oil production of scenarios 8, 17 and 18 under varying initial water saturation.

6. Conclusions

The dynamics of the SAGD steam chamber ramp-up phase were examined using a
detailed thermal reservoir simulation model. The conclusions from the research are as
follows:

1. A reliable and efficient numerical reservoir simulation model was generated for
the modeling of the steam chamber ramp-up phase in an SAGD process using the
application of dynamic gridding that was based on a fine grid simulation model;
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2. The steam chamber ramp-up phase of SAGD is a complex process and the temperature-
dependent multiphase flow and vertical countercurrent flow were essential parame-
ters for the estimation of the ramp-up phase. The countercurrent flow slowed down
the vertical growth of the steam chamber and essentially eliminated the effects of the
temperature-dependent multiphase flow on the steam chamber ramp-up phase;

3. In an SAGD ramp-up phase, it was found that the countercurrent flow was the
dominant multiphase flow pattern, over the cocurrent flow, in terms of the growth of
the vertical steam chamber;

4. The initial water satiation altered the steam chamber ramp-up phase once the satura-
tion was higher than the connate water saturation under the injected steam tempera-
ture conditions.
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