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Abstract: The presented survey of the up-to-date state of knowledge indicates that despite the great
number of works devoted to the issue in question, there is no simple method that allows the use of
commercial programs for the identification of the transient thermal state in elements with a simple or
complex shape. This paper presents an inverse method developed to estimate the convective heat
transfer coefficient varying both in time and space on a vertical plate during its cooling. Despite the
smaller number of measurement points and larger disturbance of measured temperatures compared to
the data presented in the available literature, comparable results are obtained. The developed iterative
algorithm is also applied to estimate the time- and space-dependent heat flux and the convective heat
transfer coefficient in the steam boiler membrane waterwall. The analysed component has the form
of the non-simply connected and complex shape domain Ω. Temperature-dependent thermophysical
properties are used. Calculations are performed for the unknown heat flux or heat transfer coefficient
distribution on the domain boundary based on measured temperature transients disturbed with
a random error of 0.5 ◦C. To reduce oscillations, the number of future time steps of NF = 20 is
selected. The number of iterations in each time step ranges between 1 and 8. The estimated boundary
conditions are close to the exact values. In this work, the ANSYS software using the FEM is applied.

Keywords: convective heat transfer coefficient estimation; inverse heat conduction problem; nonlinear
estimation; Levenberg-Marquardt algorithm; steam boilers

1. Introduction

Modelling heat and fluid flows as well as thermal-, flow-, and strength-related pro-
cesses plays an important role in the design and operation in engineering. The influence
of the real ground temperature on a building’s heat loss is analysed in [1]. The numerical
model of heating and cooling unit with a reversible heat pump based on CO2 is presented
in [2]. Its experimental validation is also reported. Paper [3] presents a novel crossflow air–
to–water heat exchange, its experimental testing, and modelling. A thermal and strength
analysis of the power boiler superheater is shown in [4]. The maximum operating tem-
perature is calculated by the proposed creep equation. The transient-state distribution of
thermal stresses in a steam gate valve and the proposition of optimization algorithm for
heating and cooling operations is presented in [5]. The significant problem of modelling the
temperature and stress distributions in newly designed and used components causes the
difficulty in defining some of the boundary conditions. Modelling requires the specification
of dimensions, thermophysical properties, source terms, boundary conditions or initial
conditions. The more precisely the input data are determined, the better the modelling
results are. In practice, it is often difficult to define the boundary conditions. Placing
thermocouples on the inner surface of CFB furnace, superheater chambers, pipelines, as
well as gates and valves can destroy them [6]. A direct temperature measurement on the
outer surface of an atmospheric re-entry capsule is difficult due to its high value [7].

A boundary condition that is difficult to define can be considered as unknown, and
additional information can be added to the analysis. An analysis defined in this way is
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called an inverse boundary problem. For components with simple shapes, one-dimensional
temperature distribution and constant material properties’ exact methods can be used [8].
A certain inconvenience of the proposed solutions is the need to take a larger number
of terms in the series describing the temperature distribution. If the number of terms is
not high enough, the temperature distribution calculated at the initial time instant will
differ from the real one. For multidimensional problems, finding a solution is laborious [9];
therefore, numerical methods are used. Nonlinear one-dimensional inverse problems may
be solved by means of the finite difference method (FDM) [10]. The proposed method
for a two-dimensional problem [11] has a global character, which means that calculations
may be started only after measurements are performed, when the temperature histories
from the initial to the final time instant have been recorded. For this reason, the methods
cannot be used for online identification of the temperature distribution in the element.
An optimization method intended for solving multidimensional inverse problems was
proposed in [12]. In [13], an online inverse space marching method based on the control
volume method (CVM) in cylindrical coordinates was formulated. The proposed method
was applied to identify the transient-state two-dimensional temperature estimation in the
steam header cross-section and to reconstruct the unknown boundary condition on its inner
surface. A numerical algorithm for determination of the heat transfer coefficient distribution
on a vertical plate under mixed-convection conditions was developed in [14] using a two-
dimensional inverse method. Applications of a modified Levenberg-Marquardt method for
identification of the conductivity and heat capacity of solids is presented in [15,16].

The presented survey of the up-to-date state of knowledge indicates that despite the
great number of works devoted to the issue in question, there is no simple method that
allows the use of commercial programs for the identification of the transient thermal state
in elements with a simple or complex shape. The methods published so far require writing
the source code with the use of FDM or CVM.

This paper presents a method developed to estimate the convective heat transfer
coefficient varying both in space and time. The proposed method is used to estimate the
heat transfer coefficient distribution of a vertical plate during cooling under the mixed-
convection regime. The estimated values are compared to those calculated in [6]. Despite
the smaller number of measurement points and larger disturbance of the measured temper-
atures, the obtained results are comparable to [14]. Additionally, the proposed method is
easier to apply as it allows the use of commercial programs. The developed iterative algo-
rithm is also applied to estimate the heat flux and the convective heat transfer coefficient
varying over time in the steam boiler membrane waterwall. The analysed component has
the form of the non-simply connected domain Ω.

2. Formulation of the Method

The transient heat conduction problem in the non-simply connected domain Ω shown
in Figure 1 can be described using the following equation [17]:

c(T)ρ(T)
∂T
∂t

= −∇·q (1)

where q is the heat flux vector defined by Fourier’s law:

q = −D∇T (2)

and

D =

 kx(T) 0 0
0 ky(T) 0
0 0 kz(T)

 (3)

If the material is isotropic, then kx(T) = ky(T) = kz(T) = k(T). All material properties
(c—specific heat, k—thermal conductivity, and ρ—density) are usually known functions of
temperature. Fourier’s law applies to all engineering applications for which the infinite
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speed of a heat propagation can be assumed. Transient heat conduction problems are
initial–boundary problems for which appropriate initial and boundary conditions should
be defined [17]. The initial condition specifies the temperature value of the non-simply
connected domain Ω at its first moment t0 = 0 s:

T(x, y, z, t)|t0=0 = T0(x, y, z) (4)

One of the first-, second-, or third-kind boundary conditions should be defined on
boundary Γ = Γin ∪ Γout

T|Γ = Tb (5)

(D∇T·n)|Γ = qB (6)

(D∇T·n)|Γ = h(Tm − T|Γ) (7)

where n—unit normal vector to boundary, Tb—temperature on the domain boundary,
qB–heat flux on the domain boundary, h—heat transfer coefficient on the domain boundary
Γ, and Tm—temperature of the medium. A phenomenon characterized by Equations (1)–(7)
in which all dimensions, properties, the initial condition, and the boundary conditions
over the entire boundary Γ = Γin ∪ Γout are specified is known as a direct transient heat
conduction problem. If part of boundary conditions (5)–(7) is unknown, the problem is
ill-posed, and additional internal temperature measurements are required

fi(t) = T(ri) i = 1, . . . , NT (8)
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The unknown first-, second-, or third-kind boundary condition is divided into Nu
intervals. It can be approximated as a staircase or a polynomial function on the domain
edge (Figure 2).
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The aim is to choose time-varying u(u1(t), u2(t), . . . , uNu(t)) such that the calculated
temperatures are close to the temperature values obtained from the experimental measure-
ments. This can be expressed as:

Ti(u, ri, t)− fi(t) ∼= 0, i = 1, . . . , NT (9)

The number of measurement points NT cannot be smaller than the number of unknown
boundary condition intervals Nu. Ill-posed problems are tough to solve. They are sensitive
to errors in input data. Many algorithms can be adopted to stabilise the solution. Future
time steps are applied in this paper. To stabilise the solution, vector uL is held constant in
NF future time steps [18], as can be seen in Figure 3.

uL = uL+1 = . . . = uL+NF−1 (10)

where uL = u(u1(tL), u2(tL), . . . , uNu(tL)).
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The least squares method is applied to estimate parameters uL. The sum of squares

S =
NT

∑
i=1

L+NF−1

∑
j=L

[
f
(
tj
)

i − T
(
uL, ri, tj

)]2

(11)

can be minimized using a general unconstrained method. The Levenberg-Marquardt
method [15] is applied herein to determine parameters uL. It is assumed that the sought
vector changes in the range of:

ul
L ≤ uL ≤ uu

L (12)

where superscripts l and u denote the lower and the upper bound of the sought parameters,
respectively. The initial–boundary problem given by Equations (1)–(7) is solved in each
iteration step by the finite element method (FEM) calculating the unknown boundary
conditions from uL.

The iterative algorithm for the inverse problem solution using the LM method can be
summarized as follows:

1. Solve the initial–boundary problem formulated by Equations (1)–(7) in the interval
t ∈ 〈0, ∆tNF〉 for the initial value of sought vector uL(L = 0) from the range defined
by (12);

2. Determine objective function S using (11);
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3. Apply the LM method to estimate vector uL(L = 0), which minimizes objective function S;
4. Save the obtained vector uL(L = 0) and the temperature distribution in time t = ∆tNF.
5. Solve the initial–boundary problem formulated by Equations (1)–(7) in interval t ∈

〈∆tNF, 2∆tNF〉 taking the initial value of vector uL(L = NF) = uL(L = 0) and the obtained
temperature distribution in time t = ∆tNF for the initial condition (4);

6. Apply the LM method to estimate vector uL(L = NF), which minimizes objective
function S;

7. Save vector uL(L = NF) and the temperature distribution in time t = 2∆tNF;
8. Continue the algorithm to the time (tend).

The proposed algorithm is used to identify the heat transfer coefficient distribution of
a heated vertical plate during cooling under the mixed-convection regime. The applicability
of the proposed algorithm will also be demonstrated by solving an inverse heat conduction
problem in the non-simply connected domain Ω. It will be used for a transient-state
analysis of membrane waterwalls in steam boilers.

3. Mixed Convection on a Vertical Plate

A plate with initial temperature T0 = 200 ◦C, height L = 20 cm, and width b = 1 cm
is presented in Figure 4 [14]. It was insulated on three sides and vertically exposed to
mixed convection from the left surface. The material properties of the stainless-steel plate
in the adopted initial temperature were as follows: ρ = 8238 [kg/m3], k = 15.2 [W/mK], and
cp = 504 [J/kg·K].
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Figure 4. A plate exposed to mixed convection.

Combined free and forced convection affect a vertical hot plate due to an assisting flow
with temperature T∞ = 25 ◦C, while the Richardson number Ri = GrL/Re2

L varies from
0.1 to 1. All fluid properties were calculated at the mean value of film temperature. The

mixed-convection heat transfer was then evaluated along the plate Nu =
(

Nu3
F + Nu3

N

)1/3
,

where NuF is the local Nusselt number of forced convection [19], and NuN is the local
Nusselt number of natural convection [20]. Finally, the convective heat transfer varying
both over time and along the plate length on the left boundary (hmc (x, t)) was calculated.
The heat transfer distribution in space was approximated using the following function

hmc(x, t) = a(t) + b(t)/x0.5 (13)

where parameters a and b were found by the least squares method in every minute of
cooling. They are presented in Table 1.
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Table 1. Coefficients of the function approximating the distribution of the convective heat transfer in
time and space in Equation (13).

t [s] a [W/m2K] b [W/m3/2K]

60 1.2198462 18.67917202

120 −0.162362 25.376006

180 −1.194652 31.048731

240 −2.005685 35.961097

300 −2.671 40.32

360 −3.238473 44.280206

420 −3.734243 47.914765

480 −4.181083 51.307252

540 −4.581333 54.476993

600 −4.955758 57.48656938

The temperature distribution during the cooling process was calculated using the FEM
implemented in the ANSYS program [21]. ANSYS Mechanical APDL was used in the batch
mode. The plate was discretized into 2000 linear plane finite elements. Ten elements were
used along its thickness and 200 along its height. The convective boundary condition was
assumed on the respective surfaces of 200 elements. The temperature histories obtained
from the FEM were used as “exact measured data”. When the calculations were carried
out with the time step of ∆t = 60 s, the temperature distribution was very close to the one
presented in [14], which was measured and generated by the MATLAB code. Figure 5
shows temperature transients f 1(t), f 2(t) and f 3(t) in points P1, P2, and P3, respectively,
whose location is given in mm based on the coordinate system in Figure 4: (3, 1), (62, 1),
and (191, 1). A reduction in the time step to ∆t = 10 s involved a slight difference in the
temperature transients.
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The unknown time- and space-dependent heat transfer coefficient of cooling in the
mixed-convection regime was calculated by the proposed algorithm based on the three
measured temperature transients f 1(t), f 2(t), and f 3(t) described in Figure 4.



Energies 2022, 15, 2686 7 of 13

It was assumed that the unknown parameters a and b from Equation (13) were func-
tions of time. There were two unknown transients and three given measured temperature
transients. Vector uL consisted of two components: a(tL) and b(tL).

The temperature histories taken from the FEM with time step ∆t = 10 s were considered
as “exact measured data”. To obtain numerical tests similar to real conditions, “noisy
measured data” were formulated by adding normal random errors of ±0.5 ◦C of the zero
mean to “exact measured data” (σf = 1/6). These temperature transients in nodes P1, P2,
and P3 for the inverse solution are shown in Figure 6. They are compared to the data
presented in the available literature [14].
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The presented method was tested using the produced “noisy measured data” and time
step ∆t = 10 s. The values of <–10 W/m2K, 0 W/m3/2K> and <10 W/m2K, 100 W/m3/2K>,
respectively, were chosen in vector uL for the lower and the upper bound of all sought
parameters. The starting vector was assumed as uL(L = 0) = <1 W/m2K, 20 W/m3/2K>.
Calculations without future time steps could produce instability. To reduce oscillations, the
number of future time steps was selected as NF = 6. The number of iterations in each time
step ranged between 3 and 30. If the midpoints of the constant parameter intervals were
connected with straight lines, the estimated values of a and b were close to the exact ones
as can be seen in Figure 7.

Finally, the unknown time- and space-dependent heat transfer coefficient distribution
in the mixed-convection regime was calculated. The comparison between estimated and
exact values is presented in Figure 8. The HTC transients in Figure 8a are shown for the
following x coordinates: 1, 6, 16, 59, and 195 mm. They are also compared to the heat
transfer coefficients calculated by the MATLAB code in paper [14]. It needs to be noted
that in [14] twenty measurement points were used, and the investigation considered errors
of ±0.1 ◦C. Despite the smaller number of measurement points and larger disturbance of
measured temperatures than in [14], the obtained results were comparable. Additionally,
the proposed method was easier to apply, as it allowed the use of commercial programs.
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The introduced random errors had a slight effect on the identified boundary condition.
Future steps effectively eliminated random measurement errors. During each iteration, the
initial–boundary problem formulated by Equations (1)–(7) was solved by the FEM using
the ANSYS software [21]. Due to the parametric formulation of the method, its use was
simplified. The presented algorithm can be applied to transient nonlinear problems if they
only have a direct solution.

4. Transient Analysis of Membrane Waterwalls in Steam Boilers

The furnace wall tubes are usually welded together using steel bars to make membrane
wall panels, which are exposed to the furnace on one side and insulated on the other, as
presented in Figure 9. A tubular-type instrument (flux tube) was installed to enable
accurate measurement of the absorbed heat flux qm and heat transfer coefficient h inside the
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membrane wall in steady-state conditions [22]. The proposed method was used to identify
the absorbed heat flux and the heat transfer coefficient during transient operation.
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The membrane wall and the flux tube were made of 20 G steel. Temperature-dependent
material properties were assumed (Figure 10). The following functions of the absorbed
heat flux and of the heat transfer coefficient over time were assumed:

qm(t) = 14.03·t + 39, 038.8
[
W/m2

]
h(t) = −1.12·t + 14, 970.9

[
W/m2K

]  for 0 < t < 1000 s

qm(t) = −1.025·t + 53, 068.2
[
W/m2

]
h(t) = 8.66·t + 13, 849.5

[
W/m2K

]  for 1000 < t < 2000 s
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Steam temperature totals Tm = 316.52 [◦C]. The local heat flux on the membrane wall
and on the flux tube was evaluated numerically using the FEM-based ANSYS program [21].
Due to symmetry, only the representative waterwall section presented in Figure 11 needs
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to be analysed. Temperature transients f 1, f 2, f 3, f 4, and f 5 in the locations illustrated in
Figure 9 were calculated using the FEM and disturbed with normal random errors ±0.5 ◦C
of the zero mean (σf = 1/6). The generated “noisy measured data” for the inverse solution
are shown in Figure 12.
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Figure 12. “Noisy measured data” generated by the FEM for the inverse solution.

There were two unknown transients qm(t), h(t) and five given measured temperature
transients. Vector uL consisted of two components: u1(tL) and u2(tL).

The proposed method was tested with the time step of ∆t = 10 s. The values of
0 and 100,000 <W/m2 K, W/m2>, respectively, were chosen in vector uL for the lower
and the upper bounds of the sought parameters. The starting vector was assumed as
uL(L = 0) = <15,000 W/m2K, 40,000 W/m2>.

To reduce oscillations, the number of future time steps of NF = 20 was selected. The
number of iterations in each time step ranged between 1 and 8. The estimated boundary
conditions were close to the exact values, as can be seen in Figure 13.
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5. Conclusions

The presented survey of the up-to-date state of knowledge indicated that despite the
great number of works devoted to the issue in question, there was no simple method,
which allowed the use of commercial programs for the identification of the transient
thermal state in elements with a simple or complex shape. The proposed method did not
require writing the source code with the use of FDM, CVM, or FEM. Its advantage was
the possibility of using commercial programs. In this work, the ANSYS software using the
FEM was applied. The two presented examples demonstrated good stability and accuracy
of the developed method. The proposed inverse method made it possible to estimate the
convective heat transfer coefficient in the heated vertical plate varying both in time and
space during cooling under the mixed-convection regime. Despite the smaller number of
measurement points and greater disturbance of measured temperatures than in [14], results
comparable to [14] were obtained. The developed iterative algorithm was also applied
to estimate the time-dependent heat flux and the convective heat transfer coefficient in
the steam boiler membrane waterwall. The analysed component had the form of the
non-simply connected domain Ω, and temperature-dependent thermophysical properties
were assumed. Calculations were performed for the unknown heat flux or the heat transfer
coefficient distribution on the domain boundary based on measured temperature transients
disturbed with the random error of 0.5 ◦C. To reduce oscillations, the number of future time
steps of NF = 20 was selected. The number of iterations in each time step ranged between
1 and 8. The estimated boundary conditions were close to the exact values. The method
can be used in practice in an offline mode.
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Nomenclature

c specific heat [J/kgK]
k thermal conductivity [W/mK]
D thermal conductivity matrix [W/mK]
f measured temperature history [◦C]
h heat transfer coefficient [W/m2K]
NF number of future time steps [-]
NT- number of temperature measurement points [-]
Nu number of unknown boundary condition intervals [-]
t time [s]
T temperature [◦C]
u vector of unknown boundary conditions, individual components [W/m2 or W/m2K]
q heat flux [W/m2]
qm absorbed heat flux [W/m2]
q heat flux vector [W/m2]
ρ density [kg/m3]
σf standard deviation
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