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Abstract: A new crystallization process for sodium bicarbonate (NaHCO3) was studied, proposing the
use of osmotic membrane distillation crystallization. Crystallization takes place due to the saturation
of the feed solution after water evaporation on the feed side, permeating through the membrane
pores to the osmotic side. The process operational parameters, i.e., feed and osmotic velocities,
feed concentration, and temperature were studied to determine the optimal operating conditions.
Regarding the feed and osmotic velocities, values of 0.038 and 0.0101 m/s, respectively, showed the
highest transmembrane flux, i.e., 4.4 × 10−8 m3/m2·s. Moreover, study of the temperature variation
illustrated that higher temperatures have a positive effect on the size and purity of the obtained
crystals. The purity of the crystals obtained varied from 96.4 to 100% In addition, the flux changed
from 2 × 10−8 to 7 × 10−8 m3/m2·s with an increase in temperature from 15 to 40 ◦C. However, due
to heat exchange between the feed and the osmotic solutions, the energy loss in osmotic membrane
distillation crystallization is higher at higher temperatures.

Keywords: NaHCO3; osmotic membrane distillation crystallization; membrane contactor

1. Introduction

Climate change is redirecting global objectives to regulate greenhouse gas emissions.
Industry accounts for 21% of these emissions [1] Thus, in order to minimize waste produc-
tion and its effect on the environment, the design of more efficient processes is required.
Many industrial sectors are already focused on lower energy consumption, such as the
pharmaceutical industry, food industry, fine chemicals industry, and construction. However,
some of their processes are still far from sustainable [2,3]. That is the case for crystallization,
a separation technique for producing or purifying solid products from a supersaturated
solution. Crystals have high stability, are easy to store, and have a long life. For these
reasons, there is an immense requirement for their production from industry [4].

On a larger scale, several principles are used to form crystals, such as cooling of
the feed solution, evaporation of the solvent, and anti-solvent techniques. The conven-
tional equipment for performing crystallization is a batch stirred tank, which has several
drawbacks. Firstly, the conventional crystallizer cannot provide crystalline solid products
of sufficient morphological quality (size, shape, and crystal size distribution), structure
(polymorphism), and purity [5]. Secondly, there are some reproducibility issues such as
imperfect mixing, where the solution is not homogeneous, and the supersaturation con-
trol is limited. Moreover, the points at which crystallization can be performed vary from
one batch to another. Furthermore, a great deal of energy is needed either to heat/cool
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the solution in a conventional evaporator or to power vacuum systems, which are not
efficient [6].

In addition, the stirred tank mostly operates as a batch reactor, meaning that the
process is not continuous and has to be stopped to recover the products. It would be
more convenient and energetically more efficient to use a continuous process [5,7–9]. As
conventional crystallizers have many inconveniences, research has been conducted to find
alternatives allowing better control and performance during the crystallization process,
and membrane distillation crystallization is one of these alternatives [4].

Osmotic membrane distillation crystallization (OMDC) is an innovative technique
in which two liquids are brought into contact through a non-selective hydrophobic mi-
croporous membrane [10]. Because the concentration is not the same on both sides, this
induces a water activity difference and leads to the evaporation of water from the feed
to the osmotic side. Thus, the driving force is the vapor pressure gradient created by the
water activity difference between the two sides of the membrane. Figure 1 depicts the mass
transfer profile for the OMDC system [7,8].
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OMDC has advantages over conventional distillation and crystallization processes.
This technique has a very high specific contact area, promoting higher mass transfer with
more compact equipment than in conventional crystallization or distillation. The main
advantage of OMDC is lower energy consumption [11,12]. As the driving force is created
through the partial pressure gradient, no additional pressure is required, which allows
equipment costs to be reduced and process safety to be increased in comparison with
pressure-driven processes. Residual heat or renewable energy can also be used, if available,
which could reduce the overall cost and environmental impact [12–14]. Another benefit of
OMDC is the use of polymer materials in the equipment, which decreases or even avoids
erosion problems [4–7].

OMDC is presented as an alternative option for crystallizing sodium bicarbonate
(NaHCO3). NaHCO3 is a salt obtained from a reaction between soda ash and carbon
dioxide (CO2) [15,16]. NaHCO3 is used in various industries such as food, pharmaceuticals,
agriculture, etc. However, the purity and the morphology of the obtained crystals play
an important role in where the NaHCO3 salts can be used. To crystallize NaHCO3 in a
conventional crystallizer, CO2 must be introduced to the tank atmosphere as NaHCO3,
which can easily be converted to CO2 by heat or stirring [15]. Shifeng Jiang also studied
the crystallization of NaHCO3 using a cooling crystallizer to generate more NaHCO3
crystals [17]. However, when using OMDC technology to crystallize NaHCO3, there is no
need for the constant addition of CO2. Moreover, as the solution is not heated, less NaHCO3
is converted to CO2, which is the main advantage of OMDC for crystallizing NaHCO3.
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To the best of our knowledge, no studies have been performed on the crystallization of
NaHCO3 using membrane distillation crystallization. However, OMDC has been used for
other materials. Israel Ruiz Salmon et al. studied OMDC for the crystallization of sodium
carbonate. It was observed that in OMDC, the main resistance was the membrane itself,
and the process suffered from concentration polarization and possible wetting [18].

In this study, the main objective was to optimize the OMDC system for the crystalliza-
tion of NaHCO3. Several operational parameters such as the feed and osmotic velocities,
the effect of feed concentration, and the feed temperature were studied. Moreover, the
purity, shape, and size of the crystals were analyzed using X-ray diffraction (XRD) and
scanning electron microscopy (SEM).

2. Materials and Methods
2.1. Chemicals

The feed solution for each experiment was produced by dissolving NaHCO3 salt
(sodium bicarbonate, ≥99.7%, AnalaR NORMAPUR, Leuven, Belgium) in ultrapure water,
and the osmotic solution was obtained by dissolving sodium chloride (NaCl) (sodium
chloride, ≥99.9%, AnalaR NORMAPUR, Leuven, Belgium) up to the maximum solubility
in ultrapure water.

2.2. Equipment

Figure 2 shows the scheme for the distillation/crystallization setup. The membrane
contactor used to carry out experiments was a 3MTM Liqui-CelTM MM-1 × 5.5 Series
Membrane Contactor. The characteristics of the membrane are given in Table 1. The feed
and osmotic solution were in contact with a countercurrent flow. The feed solution flowed
on the lumen side and the osmotic solution was on the shell side. The weight of the feed
reservoir was measured constantly using a balance (LP 4202I, VWR, Milano, Italy), and is
used in Equation (1) for calculating the transmembrane flux and in Equation (2) for the mass
transfer coefficient calculation. The feed solution was always kept in a closed-cap container.
The feed and osmotic solutions were kept at room temperature for most experiments, except
for the temperature study, in which a cooler (Corio CD-900F, Julabo, Seelbach, Germany)
and a water bath (VWB2 12L, VWR, Poole, UK) were used to change the temperature in the
range of 15 to 40 ◦C. The temperature was measured using thermocouple thermometers
(2000, TME, Birmingham, UK).
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Figure 2. Schematic diagram of the membrane distillation crystallization setup: A feed solution;
B gear pump; C membrane contactor; D peristaltic pump; E osmotic solution; F balance; G water
bath/cooler; T1–T4 thermometers.
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Table 1. Characteristics of the membrane contactor and hollow fibers.

Contactor Type Liqui-Cel® 1 × 5.5 MiniModuleTM

Module configuration Hollow fibers
Housing/potting Polycarbonate/polyurethane
Membrane type X50 microporous fiber

Membrane material Pp (hydrophobic)
Porosity 40%

Effective pore size 0.04 µm
Inner diameter/outer diameter 300 µm/220 µm

Active surface area 0.18 m2

Number of fibers 2300

Scanning electron microscopy (SEM) (GEMINI, Zeiss, Ultra 55) was used to observe
the NaHCO3 crystals produced at different feed temperatures. The SEM images studied
were taken at 500× magnification with a signal A = E2.

X-ray diffraction (XRD) (Bruker, AXS D8 ADVANCE) was used to determine whether
the feed temperature altered the crystal purity. First, a metal sputter deposition system
(CEA030, Balzers, Liechtenstein) was used to coat the surface with a thin gold layer to
produce a conductive surface. Subsequently, the analyses were performed with a LYNXEYE
detector, with a 2Theta from 20◦ to 100◦.

2.3. Overall Mass Transfer Coefficient and Transmembrane Flux Calculation

Two parameters allow characterization of the operating conditions of the membrane
system, namely, the transmembrane flux (J, m3/m2·s) and the overall mass transfer coeffi-
cient (Kov, m3/m2·Pa.s). J was calculated by measuring the weight of the feed tank over
time and recorded in intervals of 20 min. The flux shown in the figures is an average of the
fluxes during the experiment, calculated by Equation (1) [12,19,20].

J = − 1
Aρw f

dw f

dt
=

1
ρw f

w f (ti+1)−w f (ti)

ti+1 − ti
(1)

For calculating Kov, the following relation is used [12,19,20]:

J = Kov∆p = Kov

(
p∗f a f − p∗o ao

)
(2)

In this equation, p* and a are the vapor pressure and the activity coefficient of the feed
(f ) and osmotic (o) sides, respectively, which were computed following the procedure de-
scribed by Hamer et al. [21] and by Sandler [22] when the values of the osmotic coefficients
were not found in the literature [23]. The vapor pressure (mmHg) was calculated using
Antoine’s equation, with the temperature T given in ◦C:

φ =
− ln(aw)

vMm M
(3)

where aw is the sum of the ions of the electrolyte (−), Mm is the molar mass of water
(kg/mol), M is the molality (mol/kg), and aw is the water activity.

3. Results and Discussion
3.1. Influence of the Fluid Dynamics

Improving the mass transfer is the key to having a lower required contact area and
reducing capital costs. There are three resistances to mass transfer in the OMDC system: the
feed boundary layer, the membrane, and the osmotic boundary layer. An increment in the
velocity has a positive effect on reducing the lumen- and shell-side boundary resistances and
increasing Kov. Figures 3 and 4 show the flux and Kov versus the change in the osmotic/feed
velocities, respectively, while the velocity at the other side was set at a constant value. In
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addition to the boundary resistances, membrane crystallization is significantly affected by
the phenomenon of concentration polarization (e.g., when the concentration of the salt is
higher on the surface of the membrane), and therefore higher velocities in the membrane are
more suitable, since they result in higher turbulence and thus better mixing of the solution
in the membrane contactor. However, it can be observed in Figure 3a that overall, the
feed velocity presents a maximum flux at 0.04 m/s when the osmotic solution operates at
0.01 m/s. At higher velocities of the feed solution, there is a decrease in flux. This decrease
might be because of partial wetting of the membrane pores. As previously reported [17],
wetting of the pores results in a lower flux and a higher resistance to mass transfer. In
Figure 3b, with increasing feed velocity, Kov decreases slightly, reinforcing the idea of
potential membrane wetting. The error bars for the feed flow rate of 0.01 m/s are around
13%. Regarding the osmotic velocity, Kov increases slightly when a higher velocity is used,
which is an indication of more turbulence on the osmotic side and lower resistance to
mass transfer. It can be observed in Figure 4a that in general, there is a rise in flux with an
increase in the osmotic velocity. The maximum flux was observed at an osmotic velocity of
0.01 m/s. In Figure 4b, Kov increases when the feed flow rate is higher, to overcome the
resistance in the osmotic boundary layer. However, there is a drop after 0.015 m/s due to
possible membrane wetting. It can be concluded that the effect of the osmotic flow rate is
higher than that of the feed flow rate, and it is more favorable to have a higher osmotic
flow rate than a lower feed flow rate to avoid membrane wetting.
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Another set of experiments was performed to check whether there was total membrane
wetting. This would be the case if NaCl was found in the feed solution. Ultrapure water was
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placed in the feed container, and the conductivity of the feed was measured over time with
a conductivity meter. It was concluded that there was a high mass transfer of NaCl salts to
the feed container at high velocity. For example, when the feed and osmotic velocities were
0.078 and 0.02 m/s, respectively, the conductivity of the ultrapure water changed from 13
µS/cm to 32 mS/cm within 2 h. This also confirms the hypothesis of partial membrane
wetting at higher flow rates. Thus, velocities of 0.038 m/s (200 mL/min) for the feed side
and 0.01 m/s (~200 mL/min) for the osmotic side were chosen as the optimal conditions,
leading to a high Kov without significant membrane wetting. These velocities were set as
constant values for the rest of the experiments described in the following sections.

3.2. Influence of the Feed Concentration

Figure 5 shows the flux and Kov versus the change in NaHCO3 concentration. The
average flux decreases with an increase in concentration. This is due to a decrease in the
driving force. In osmotic membrane crystallization, the driving force for water evaporation
is the vapor pressure difference between the two sides of the membrane, which is influenced
by the water activity. To promote flux, the driving force must be increased. This can
be achieved either by increasing the osmotic concentration or by decreasing the feed
concentration. An increase in the osmotic concentration implies a lower water activity,
while a decrease in the feed concentration induces a lower water activity. Globally, this
results in a higher driving force [7]. Therefore, we expect to see a drop in flux with an
increase in feed concentration, as can be observed in Figure 5a. By calculating Kov using
Equation (2), the effect of the driving force will be removed, and a constant Kov is expected
with a change in concentration. However, it can be observed in Figure 5b that Kov still
decreases with an increase in the concentration. The factor that causes Kov to decrease
could be concentration polarization.
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3.3. Influence of the Feed Temperature

The temperature of the feed solution was varied in a range between 15 ◦C and 40 ◦C,
while the osmotic temperature was kept at 20 ◦C, equivalent to room temperature (see
the evolution of temperatures shown in Appendix A). This study was limited to 40◦ by
the membrane contactor characteristics. To investigate the effect of feed temperature on
the flux and the overall mass transfer coefficient, experiments were conducted with a
feed concentration of 0.8 mol/L (67.2 g/L) and an osmotic concentration of 6.16 mol/L
(360 g/L). The feed flow rate and the osmotic flow rate were at their optimal values for this
system. The results are presented in Figure 6. When the feed temperature increases, the
flux increases due to the vapor pressure difference created by the temperature difference
and the concentration difference across the membrane at the same time. After some time of
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operation, the feed solution and the osmotic solution reach the same temperature, since the
two streams are recirculated in the experimental setup. The membrane contactor acts as an
excellent heat exchanger between the feed and osmotic solutions, which unfortunately is
not the desired effect, since most of the energy is lost in heating the osmotic solution rather
than evaporating the water in the feed. Thus, it is more efficient if a membrane with a lower
heat conductivity is used. Unlike the flux, the mass transfer coefficient decreases when
the temperature increases, which could be explained by the presence of the temperature
polarization effect. These phenomena were also observed by Salmon et al. [18] and by
Boubakry et al. [24].
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The results of previous studies on membrane crystallization are presented in Table 2,
for comparison with the results obtained in this study. It can be observed that the flux
obtained in this work was in good agreement with the values obtained with the same type of
hollow fibers but was inferior to the flux obtained in bigger membrane contactors. The fact
that most of the studies did not report the mass transfer coefficient is a critical limitation, in
terms of making a fair comparison. Sparenberg et al. [20] used the same type of membrane
contactor for direct contact and vacuum membrane crystallization. The vacuum membrane
crystallization had a higher flux in comparison to OMCD and DCMD, as the heat losses
during the process were lower. The same applied to Kov: the values obtained in previous
studies using the same type of hollow fibers were near the values obtained in this study,
ranging from 4.8 × 10 − 11 m3/m2·Pa·s to 6.53 × 10 − 11 m3/m2·Pa·s.

Table 2. Comparison of performance of previous membrane crystallization processes with the process
in this study.

Reference Membrane
Process

Membrane
Type Material Crystal Product Jmax (kg/m2·h) Kmax (m3/m2 Pa s)

[18] OMCD Hollow fiber PP NaCO3 0.138 6.53 × 10−11

[20] VMD/DCMD Hollow fiber PP NaCO3 0.8 and 0.11 4.8 × 10−11 and 3.7 × 10−11

[25] MDC Flat sheet PTFE CaCO3, NaCl, KC 6 -
[26] MDC Hollow fiber PVDF/PTFE particles NaCl 8 -
[27] VMDC Hollow fiber PVDF Al(NO3) 9.6 -
[28] MDC Flat sheet Elongated PTFE NH4NO3 2–5 -

This study OMCD Hollow fiber PP NaCO3 0.269 6.41 × 10−11

3.4. Crystalline Phases

Commercial crystals were observed via SEM for comparison with the crystals pro-
duced at 15, 20, 30, 35, and 40 ◦C. The images produced via SEM are shown in Figure 7a–f.
Commercial sodium bicarbonate is a powder consisting of flat sheet crystals with no
preferential shape, while the crystals produced by membrane distillation crystallization
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were in the form of squares, sticks, and other shapes. The shape of the crystals obtained
in this study was similar to that of crystals obtained in the literature using other novel
crystallization processes. Therefore, the effect of OMDC on the shape of the crystals was
not significant [17,29,30]. The temperature influenced the morphology and the size of the
crystals, giving bigger crystals at 35 ◦C. This is due to the fact that temperature has a great
effect on the nucleation and growth rate of crystals [16]. The experiment at 35 ◦C gave
larger crystals. This experiment was repeated four times, and it was observed that on two
occasions the crystal size was similar to the size in the experiment at 40 ◦C, while on the
other two occasions bigger crystals were obtained. For this reason, the average size should
be taken carefully. This is due to the effect that temperature, or the residence time of the
crystals in the tank, has on the nucleation and growth rate of crystals. The crystal size
obtained in this study agreed with the crystal size obtained by Adnan Abdel-Rahaman
et al. [31]. To find an optimal temperature, higher temperatures may have to be tested,
but this was not possible in this study due to the thermal limitations of the material of the
module.
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XRD analysis was performed on various bicarbonate crystals. The first was the original
sodium bicarbonate powder from the industrial supplier. The second to the sixth samples
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analyzed were NaHCO3 crystals obtained after membrane crystallization distillation at 15,
20, 30, 35, and 40 ◦C for the feed solution. A comparison of the different XRD spectra is
shown in Figure 8. As previously reported [32,33], all the spectra compared showed peaks
at 29.7, 35.4, and 40.8 (2Theta), attributed to the NaHCO3 crystal phase.
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The purity of the crystals obtained was in a range between 96.4 and 100%. While
the crystals obtained at 30◦ had the lowest purity, showing a composition of 96.4% pure
NaHCO3 and 3.6% hydrated Na2CO3, the highest purity was observed at 20, 35, and
40 ◦C, with crystals of 100% NaHCO3. The quantitative analysis of purity is included in
Appendix B. As observed by Wang et al. [34], two factors influence the decomposition
process of NaHCO3 to Na2CO3 + CO2 + H2O: temperature and water activity. The change
in water activity is sensitive to both temperature and the composition of the liquid. The
variation in the purity of the crystal can be explained by the membrane system’s energy
losses while heating the osmotic solution. This produces a slight variation along the
membrane that can induce decomposition of NaHCO3 to Na2CO3.

4. Conclusions

Osmotic membrane distillation crystallization (OMDC) is a novel technology consid-
ered as an alternative to conventional crystallizers. OMDC has been studied for crystal-
lization of sodium bicarbonate, due to its advantages such as lower energy and material
consumption, control over the operational parameters, and larger evaporation surface area,
among others. Several parameters such as the feed and osmotic velocities, feed concentra-
tion, and feed temperature were optimized. Regarding the feed and osmotic velocities, as
the velocity increases the possibility of membrane wetting increases significantly. Therefore,
a feed velocity of 0.078 m/s and an osmotic velocity of 0.01 m/s were chosen as the optimal
conditions, which resulted in obtaining a Kov of 5.4 × 10 − 11 m3/Pa·m2·s. In addition,
since the driving force in OMDC is the difference in concentration, an increase in feed
concentration reduces the driving force and results in a reduction in the flux. However,
when studying Kov and removing the driving force effect, the process was found to be
affected by concentration polarization, and Kov still decreased by 23.6%. Finally, the effect
of the temperature on water evaporation showed that the driving force of the system
increased with temperature, as the flux increased from 2.45 × 10−8 to 7.49 × 10−8 m3/m2·s,
but a great deal of energy was lost via the heat exchange between the feed and osmotic
solutions. It was also observed that the size and the purity of the crystals were affected by
the temperature, with larger sizes and higher purities obtained at higher temperatures.

5. Patents

The process presented here is registered under the patent application EP 2021163.
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