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Abstract: In this paper, a new method using wind turbulence excitation is proposed to estimate
the parameters of the mechanical system (drivetrain and pitch angle controller) in a Doubly Fed
Induction Generator (DFIG) Wind Turbine (WT). Firstly, simulations were carried out for a DFIG
WT under turbulence excitations. The spectral contents of the responses imply that the transients of
the electrical system (generator and converter), which are much faster than those of the mechanical
system, can be neglected when estimating the mechanical parameters. Based on this, a simplified
model related to the mechanical system of the DFIG WT was derived by applying the model reduction
technique. Secondly, the parameter sensitivity of Power Spectral Density (PSD) was used to quantify
the impacts of individual parameters on the dynamics of the mechanical system, and the influential
parameters were selected on the basis of the sensitivity results. Finally, a weighted least-squares
optimization problem, which is suitable for a system with close oscillation modes, was formulated for
parameter estimation. The estimation results based on two different types of optimization methods
were compared, and their estimation accuracies validate the effectiveness of the proposed method.

Keywords: DFIG; identifiability; parameter estimation; PSD sensitivity; weighted Levenberg–
Marquardt method

1. Introduction

Wind turbine technology has experienced rapid developments in the past few years.
A DFIG WT can be operated over a wide range of rotor speeds and therefore is considered
one of the most popular technologies to generate power from wind. To achieve its full
potential, accurate representation of the DFIG WT is of vital importance. Detailed or generic
models have been developed in many papers [1,2]. However, it is a common practice to use
either “manufacturer specified” or “typical” values to specify the WT’s parameters, which
may lead to significant inaccuracy because many parameters or operating conditions may
change over time. In this context, there are efforts to develop online estimation methods
for obtaining the parameters of a WT [3].

Testing the design is an important task for parameter estimation since one test can
only excite partial dynamics of the system, and the parameters corresponding to the excited
dynamics can be estimated. Normally, disturbances in the power grid, such as voltage dips
or short-circuit faults, are applied, and power measurements are used to validate models of
wind turbines [4–9]. In [10], an experiment to estimate the mechanical parameters of WTs
was performed by islanding the wind farm. In [11–13], a short-circuit fault was used to
estimate the inertia of a WT based on measurements of frequency trajectories, and in [14],
the parameters of an induction generator were identified based on the change in system
frequency. In [15], to overcome the disadvantage of the model reference adaptive system
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method of needing to excite all of the system dynamics, a new online estimation method
that does not require an excitation signal was investigated to estimate DFIG parameters.
However, many tests can only be performed by manufacturers, and post-disturbance data
may be insufficient in real cases, introducing more challenges when conducting parameter
estimations. A parameter estimation procedure can be formulated as an optimization
problem, and the optimization objective is to determine parameter values by curve fitting
techniques. In [16], a recursive least-squares algorithm was applied, and the estimation
results showed that the algorithm was able to track the actual values of parameters with
rapid variations. In Reference [5], the cubature Kalman filter, which can be used to estimate
both the system dynamic state and a modified set of parameters, was proposed for variable-
speed permanent magnet synchronous machine wind turbines, and the robustness of the
technique was proven with three different performance tests.

In recent years, with the development of artificial intelligence and wide-area mea-
surement technology, data-driven methods for WT modeling have been developed. In
Reference [17], a neural network–based nonlinear wind turbine model was proposed to
estimate the output power of a wind turbine, and a real example showed that the estimated
mean square errors were less than 1%. In [18], a deep auto-encoder network based on
SCADA data combined with extreme value theory was applied to determine the fault
components of wind turbines. Reference [19] proposed a dynamic load modeling method
based on a long short-term memory neural network. Data-driven methods are highly
adaptable when the model structure is unknown or difficult to express mathematically.
However, they typically require a large amount of historical data, and the model accuracy
can be easily affected by noise. Since wind turbulence varies over time, it becomes possible
to estimate the realistic parameters of wind turbines. Reference [20] used natural wind
turbulence as excitation to estimate the drivetrain parameters of a fixed-speed wind turbine.
Such a method is non-intrusive, and its measurements are always available. Therefore, it is
a perfect complement to the post-disturbance method.

This paper extends the method in [20] by estimating the parameters of the drivetrain
and pitch angle controller in a DFIG WT. The parameter estimation procedure is formu-
lated as a nonlinear least-squares problem, and the parameters are estimated based on an
improved weighted L-M optimization method, which is applicable when there is more
than one dynamic mode or close modes in the system [21]. The novelty of this paper is
summarized below:

(1) A simplified model related to the mechanical system of the DFIG WT is derived
according to the model reduction technique. The obtained model can be used to
estimate its mechanical parameters under turbulence excitations.

(2) The parameter sensitivity of Power Spectral Density (PSD) is introduced, which can be
used to quantify the impacts of individual parameters on the dynamics of the mechan-
ical system. The influential parameters are selected based on the sensitivity values.

(3) A weighted optimization problem is formulated for parameter estimation. A two-step
parameter estimation process is proposed.

The rest of the paper is organized as follows. Section 2 presents the small signal
stability analysis of the DFIG WT and describes simulations under turbulence excitations.
Section 3 describes the sensitivity analysis technique, the parameter estimation process and
the estimation results. Section 4 presents the conclusions of the paper.

2. Dynamics of the DFIG WT
2.1. Model of DFIG WT

Figure 1 illustrates the block diagram of the DFIG WT model [22], which includes
modules representing the drivetrain, pitch angle controller, generator, back-to-back con-
verter and its controller. Generally, the equivalent circuit of the DFIG is similar to that of
an induction machine. The converter controller consists of rotor side control and grid side
control. The rotor side control aims to control the DFIG output active power for tracking
the input of the wind turbine torque and to maintain the terminal voltage at the control
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setting. Meanwhile, the grid side converter controller is normally utilized to maintain the
DC link voltage and to regulate the terminal reactive power. This paper focuses on the
slower dynamics associated with the drivetrain and the pitch angle controller. Accordingly,
only the drivetrain and pitch angle controller are discussed in detail; other components can
be found in [23].
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Figure 1. The block diagram of DFIG WT model.

The two-mass model of the drivetrain is defined as follows:
dωr
dt = Tm−Kshθtw−Dsh [ωr−(1−sr)ωs ]

Tt
dθtw

dt = ωB[ωr − (1− sr)ωs]

dsr
dt = −Te−Kshθtw−Dsh [ωr−(1−sr)ωs ]

Tg

(1)

where ωr and θtw are the wind turbine angle speed and shaft equivalent torsional angle,
respectively; Tt and Tg represent the inertia constant of the turbine and that of the generator,
respectively; Ksh is the shaft stiffness coefficient; and Dsh is the damping coefficient. The
electromagnetic torque Te and mechanical torque Tm are as follows:

Te = Pe/ωs =
(
E′dids + E′qiqs

)
/ωs (2)

Tm = 0.5ρπR2Cpv3
w/ωr (3)

where Pe is the stator active power; E′d and E′q are the d- and q-axis voltages behind the
transient reactance, while ids and iqs are the d- and q-axis stator currents; ρ is the air density;
R is the wind turbine blade radius; vw is the wind speed; and Cp is the power coefficient,
the maximum value of which can be achieved by controlling the WT speed.

The pitch angle β is controlled such that the rotating speed of the WT can be maintained
at the optimal speed. Figure 2 illustrates the specific control loop, and the corresponding
dynamic equations are described in (4).

dx8/dt = ωr.re f −ωr

βre f = Kr

(
ωr.re f −ωr

)
+ Krx8/Tr

dβ/dt =
(

βre f − β
)

/Tβ

(4)
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Figure 2. Pitch angle controller.

The parameters x8, Kr and Tr denote the inner state variable, the proportional gain
and the integral coefficients of the pitch angle controller, respectively; Tβ denotes the time
constant of the actuators, and βref and ωr.ref are the pitch angle and rotor speed set points.

2.2. Small Signal Stability Analysis

The dynamic characteristics of the DFIG WT can be evaluated based on the eigenvalues
derived by linearizing its dynamic equations around the operating point. A single machine
infinite bus (SMIB) system consisting of a wind farm with 6 DFIG wind turbines, a motor
load and an infinite voltage source is used as an example in the following. The details of
the system are shown in Figure 3, which can be found in MATLAB v7.1 Demo.
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Small signal stability analysis for the SMIB system was carried out, and its eigenvalues
and participation factors are shown in Table 1. In Table 1, x1~x4 are the inner state variables
of the rotor side converter controller; vDC is the capacitor DC voltage; x5~x7 are the inner
state variables of the grid side converter controller, and P is the participation factor.

Table 1. Eigenvalues and dominant participation factors.

λ = σ ± j ω ζ/% f /Hz Dominant States and
Their Participation Factors

λ1,2 = −75.42 ± j 379.26 19.50 60.36 P_ids = 0.62, P_iqs = 0.89
λ3,4 = −193.47 ± j 64.88 94.81 10.33 P_E′d = 0.85, P_E′q = 0.66

λ5,6 = −7.30 ± j 67.25 10.79 10.70 P_x1 = 0.53, P_x3 = 0.58
λ7,8 = −20.83 ± j 24.66 64.53 3.93 P_vDC = 0.66, P_x5 = 0.65
λ9,10 = −0.82 ± j 10.41 7.85 1.66 P_θtw = 0.51, P_sr = 0.43
λ11,12 = −0.07 ± j 0.98 7.12 0.16 P_ωt = 0.43, P_x8 = 0.50

λ13,14 = −27.26 ± j 1.08 99.92 0.17 P_x2 = 0.54, P_x4 = 0.53
λ15 = −60.00 100.00 / P_x6 = 1.00
λ16 = −3.33 100.00 / P_β = 0.92

λ17 = −100.00 100.00 / P_x7 = 1.00
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It can be seen from Table 1 that the SMIB system has 7 oscillation modes and 3 decaying
modes. In particular, the participation factors can describe the physical nature of the system.
Specifically, the eigenvalues λ1,2 and λ3,4 are electrical modes associated with the DFIG
stator and rotor dynamics; λ9,10 and λ11,12 are mechanical modes associated with the
drivetrain and pitch control dynamics; and λ5,6, λ7,8 and λ13,14 are electrical modes related
to the converter and controllers.

According to the computed participation factors, the state variables ids, iqs, E′d and
E′q participate mainly in modes λ1,2 and λ3,4, while state variables ωt, θtw, sr and x8
participate mainly in modes λ9,10 and λ11,12, which means that electrical modes (λ1,2, λ3,4)
and mechanical modes (λ9,10, λ11,12) are loosely coupled.

2.3. Dynamic Simulations of the DFIG WT under Turbulence Excitations

Simulations were performed by utilizing a 5 min simulated turbulence series as input
signals [20]. The PSD of output signals (generator angle speed ωr, pitch angle β, DC voltage
vDC and stator active power Pe) for a typical wind speed of 15 m/s is shown in Figure 2.

It can be seen from Figure 2 that there are two local maxima in all output signals: one
is around 0.16 Hz, which is related to the eigenfrequency of the pitch angle controller; the
other is around 1.60 Hz, which corresponds to the drivetrain dynamics. The converter
eigenfrequency of 10 Hz is only visible in active power Pe, while the 60 Hz stator dynamics
are not visible in all output signals. Since the mechanical modes (0.16 Hz and 1.65 Hz)
dominate all output signals under wind turbulence excitations, the electrical dynamics can
be neglected when estimating the mechanical parameters.

2.4. Model Reduction

From Table 1 and Figure 4, it can be seen that the dynamics of the WT with DFIG span
a wide time scale. Specifically, the dynamics of the pitch angle controller and the drivetrain
system are quite slow, and the dynamics of the converter and DFIG are faster than the
mechanical ones. This indicates that the mechanical dynamics and electrical dynamics are
loosely coupled.

Since the time scales for the dynamics of the WT with DFIG are highly diversified,
such systems can be analyzed with the aid of the Singular Perturbation Theory. Taking
Equation (5) as an example, we have:{ .

x = f (x, y)
ε

.
y = g(x, y)

(5)

System (5) is called a fast and slow system, where x and y are its slow and fast
components, respectively; ε is the small parameter vector. If we focus on the slow part, the
small parameters ε are set to zero, and System (5) becomes Equation (6).{ .

x = f (x, y)
0 = g(x, y)

(6)

For the full-order model of the WT with DFIG, the time scales of the mechanical
systems are much slower than those of the electrical components, and the dynamics of the
mechanical components and the electrical components are decoupled. Therefore, when
the parameters of the drive system and the pitch angle controller are of interest, we can
ignore the fast dynamics of the DFIG WT by setting their derivatives to zero. In this case,
the dynamic equations in (1) and (4), algebraic equations of electrical systems and network
equations are used to constitute the simplified model of the WT with DFIG, which is
applicable when the slow dynamics of the mechanical system are of concern.



Energies 2022, 15, 2277 6 of 14Energies 2022, 15, x FOR PEER REVIEW 6 of 14 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

10
-2

10
-1

10
0

10
1

10
2

-300

-250

-200

-150

-100

-50

0

f /(Hz)

ω
r / 

(d
B

/H
z)

10
-2

10
-1

10
0

10
1

10
2

-200

-150

-100

-50

0

50

f /(Hz)

β 
/ (

dB
/H

z)

10
-2

10
-1

10
0

10
1

10
2

-200

-150

-100

-50

0

50

f /(Hz)

v DC
 / 

(d
B

/H
z)

10
-2

10
-1

10
0

10
1

10
2

-550

-500

-450

-400

-350

-300

-250

-200

f /(Hz)

P
e / 

(d
B

/H
z)
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capacitor voltage vDC; (d) active power Pe.
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2.5. Linearization of the Simplified Model

A linear representation of the DFIG WT can be obtained around the operating condition
because the magnitude of the turbulence excitations is quite small. Here, the rotor speed
ωr and pitch angle β are selected as output signals.

Linearizing Equations (2) and (3), we can respectively obtain:

∆Pe = ids0∆E′d + E′d0∆ids + iqs0∆E′q + E′q0∆iqs (7)

∆Tm = a∆β + b∆ωr + c ∆v (8)

where a = ∂Tm
∂β

∣∣∣
0
, b = ∂Tm

∂ωt

∣∣∣
0

and c = ∂Tm
∂v

∣∣∣
0
.

Linearizing the algebraic equations of electrical systems and network equations around
the operation point, we can obtain:

M∆y = ∆z (9)

where ∆y = [∆vds, ∆ids, ∆iqs, ∆E′d, ∆E′q, ∆vdr, ∆vqr, ∆idr, ∆iqr]T, and ∆z = [∆ωt, ∆sr]T.
Substituting (9) into (8), we can obtain:

∆Pe = Kpe1∆ωt + Kpe2∆sr (10)

where Kpe1 and Kpe2 are the coefficients of4Pe.
The linearized equations of the simplified model of the WT with DFIG are shown

in (11). 

Tt
d∆ωt

dt = (b− Dsh)∆ωt − Ksh∆θtw − Dsh∆sr + a∆β + c∆v
d∆θtw

dt = ωB(∆ωt + ∆sr)

Tg
d∆s
dt = −

(
Dsh + Kpe1

)
∆ωt − Ksh∆θtw −

(
Dsh + kpe2

)
∆sr

d∆x8
dt = ∆sr

d∆β
dt = 1

Tβ
Kr∆sr +

Kr
TβTr

∆x8 − 1
Tβ

∆β

(11)

Parameters a, b and c are associated with the aerodynamic system, and they can be
estimated in advance based on real measurements or identification techniques [22,24]. Once
parameters a, b and c are known, the other parameters to be estimated are pitch controller
parameters θ1 = [Kr, Tβ, Tr]T and drive system parameters θ2 = [Tt, Tg, Ksh, Dsh, Kpe1, Kpe2]T.

3. Parameter Estimation
3.1. Parameter Estimation Procedure

The simplified model of the WT with DFIG is shown in (10). When the signal of pitch
angle β is used as a measurement, the parameters in θ1 can be estimated. The transfer
function from ∆v to ∆β can be derived from Equation (11) as follows:

G1(s) =
∆β(s)
∆v(s)

=
m2s2 + m1s + m0

s5 + l4s4 + l3s3 + l2s2 + l1s + l0
(12)

If the signal of rotor speed ωr is used as a measurement, the parameters in θ2 can
be estimated. The transfer function from ∆v to ∆ωr can be derived from Equation (11)
as follows:

G2(s) =
∆ωr(s)
∆v(s)

=
m′3s3 + m′2s2 + m′1s

s5 + l4s4 + l3s3 + l2s2 + l1s + l0
(13)

The expressions of m0~m2, m′0~m′2 and l0~l4 are shown in Appendix A. The parame-
ters in θ1 and θ2 are estimated by the following procedure:
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Step 1 Initialize the estimation of the drive system parameters θ20;
Step 2 The first round of parameter estimation includes two steps: (1) estimate the pitch

controller parameters in θ1 from the power spectra of the output signal β within the
frequency range for the 0.16 Hz mode; (2) on the basis of the estimated θ1, estimate
the drive system parameters in θ2 from the power spectra of the rotor angle speed
ωr within the frequency range for the 1.66 Hz mode;

Step 3 In the second round of parameter estimation, the estimated θ2 in the first round is
used as the initial estimation, and the parameters in θ1 and θ2 are estimated again
from the power spectra of output signals β and ωr;

Step 4 If the error of each estimated parameter between two neighboring rounds is smaller
than a small threshold value, the estimation procedure stops; otherwise, the estima-
tion procedure returns to step 3.

3.2. Sensitivity Analysis

The impacts of parameters on system dynamics can be quantified by using the sensi-
tivity of output power spectra, which is determined as follows.

Sθi = lim
∆θi→0

SYY(ω, θ1, · · · , θi + ∆θi, · · · , θm)− SYY(ω, θ)

∆θi/θi0
(14)

where Sθi is power spectral sensitivity corresponding to parameter θi; θi0 is the original
value of θi; SYY represents the PSD of output signal y, which can be obtained by numerical
integration; ∆ is the small deviation of the parameter; and m is the number of parameters
to be estimated.

The influential parameters in the WT model can be identified directly based on the
power spectral sensitivity. Within the frequency range of drive system dynamics, the
power spectral sensitivities of parameters θ2 = [Tt, Tg, Ksh, Dsh, Kpe1, Kpe2] are calculated;
accordingly, the power spectral sensitivities of parameters θ1 = [Kr, Tβ, Tr] are computed
within the frequency range of pitch angle controller dynamics. The system dynamics are
more sensitive to parameters with larger sensitivity values. Therefore, the sensitivity values
can be used to select important parameters to be estimated. Figure 5 and Table 2 show the
power spectral sensitivities from the response data under turbulence excitation.

Table 2. PSD sensitivities of each parameter.

Module Parameters Sensitivity

Pitch controller
t ∈ [0.05, 0.25] s

θ1

Kr/pu 10.6048
Tβ 18.1330
Tr 8.1299

Drive train
t ∈ [1.55, 1.75] θ2

Ksh 14.8417
Dsh 0.9721
Tt 6.0793
Tg 18.1332

Kpe1 0.0678
Kpe2 0.0011

It can be seen from Figure 5 and Table 2 that parameters θ1 = [Kr, Tβ, Tr] have
high sensitivities around 0.16 Hz and therefore are likely to play a more important role
in affecting the dynamics of the pitch angle controller system. In addition, some of the
parameters in θ2 = [Tt, Tg, Ksh, Dsh, Kpe1, Kpe2], namely, Tg, Ksh and Tt, have high sensitivities,
while the other parameters Dsh, Kpe1 and Kpe2 have smaller effects on the drive system
dynamics. In other words, parameters Dsh, Kpe1 and Kpe2 are difficult to estimate.
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Figure 5. PSD sensitivity curves of each parameter. (a) θ1; (b) Tt, Tg and Ksh; (c) Dsh, Kpe1 and Kpe2.
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3.3. Parameter Estimation with L-M Algorithm

A window size of 5 min was used to collect the measurements of β and ωr, which yields
sufficient information for parameter estimation. The objective of parameter estimation is
to find the values of θ1 = [Kr, Tβ, Tr] and θ2 = [Tt, Tg, Ksh, Dsh, Kpe1, Kpe2] such that the
measured samples and the simulation trajectories are close enough to each other.

Based on the output measurement y(t) and input signal v(t), the measured magnitude
spectrum of the transfer function can be obtained as follows:

|G(ω)| =

√
SYY(ω)

Svv(ω)
(15)

Moreover, by replacing s with jω in (12) and (13), the mathematical models of the
magnitude spectrum are as follows:

∣∣Ĝ1(jω)
∣∣ =

√
(m0 −m2ω2)

2 + m2
1ω2√

(l4ω4 − l2ω2 + l0)
2
+ ω2(ω4 − l3ω2 + l1)

2
(16)

∣∣Ĝ2(jω)
∣∣ =

√
(m2ω2)

2 + ω2(m1 −m3ω2)
2√

(l4ω4 − l2ω2 + l0)
2
+ ω2(ω4 − l3ω2 + l1)

2
(17)

Generally, the least-squares optimization method is applied for nonlinear curve fitting.
The objective function L1 or L2 is the difference between the measured spectrum G(ω) and
the spectrum calculated from (18) or (19), which are defined as follows:

L1 =
n

∑
j=1

(
|G(ω)| −

∣∣∣∣Ĝ1

(
ω,

^
θ

)∣∣∣∣)2

(18)

L2 =
m

∑
j=1

(
|G(ω)| −

∣∣∣∣Ĝ2

(
ω,

^
θ

)∣∣∣∣)2

(19)

where n and m are the number of samples in the estimation time window.
The mode with a frequency of 0.16 Hz, which is related to pitch angle controller

dynamics, dominates the output signal β, while there are two dominant oscillation modes,
0.16 Hz and 1.66 Hz, in the power spectra of the output signal ωr. Therefore, parameters
θ1 = [Kr, Tβ, Tr] are estimated first from objective function L1, after which the parameters
θ2 = [Tt, Tg, Ksh, Dsh, Kpe1, Kpe2] are estimated from objective function L2.

There are two dominant oscillation modes, 0.16 Hz and 1.66 Hz, in the power spectra
of the output signal ωr. The 0.16 Hz mode may affect the frequency response of the 1.66 Hz
mode in the power spectrum, which may result in a large estimation error. In order to
solve this problem, a weighted function [25,26] is formulated in objective function L2, and
Equation (19) is updated to the following format.

L2 =
m

∑
j=1

wj
(
|G(ω)| −

∣∣Ĝ2
(
ω, θ̂

)∣∣)2 (20)

The weight coefficient is selected based on experience; here, we choose:

wj = 1/( f − fm) (21)

where fm is an eigenfrequency of 1.66 Hz.
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3.4. Parameter Estimation Results

The parameter estimation results from two rounds with the L-M method are shown in
Table 3.

Table 3. Estimated values in two estimation rounds.

Parameters Real Values

L-M PSO

1st Round
Estimation

2nd Round
Estimation Error/% 1st Round

Estimation
2nd Round
Estimation Error/%

Drive system

Ksh/pu 0.3 0.2765 0.2809 −6.3667 0.2654 0.2764 −7.8667
Dsh/pu 0.1 0.1010 0.0999 −0.0100 0.1501 0.1138 13.8001

Tt/s 6.0 5.3636 5.3635 −10.6083 6.7803 6.7550 12.5833
Tg/s 1.0 0.9456 0.9446 −5.5400 0.9552 0.9637 −3.6298

Kpe1/pu −0.0523 −0.0395 −0.0396 24.2830 −0.0665 −0.0662 −26.5774
Kpe2/10−4 −1.4944 −2.0379 −2.0379 / −0.7300 −0.7301 −51.1442

Pitch angle
controller

Kr/pu 10.0 9.5355 9.5355 −4.6450 11.6203 10.5357 5.3570
Tβ/s 0.3 0.3458 0.3458 15.2667 0.2538 0.2834 −5.5333
Tr/s 0.3 0.3484 0.3448 14.9333 0.3500 0.3210 7.0325

It can be seen from Table 3 that

(1) Parameters Tg, Ksh and Tt in θ2 have larger sensitivities, and the corresponding
estimation accuracies are much higher;

(2) The initial estimation of Dsh is quite close to its real value, indicating a good estimation
accuracy, while the error of Kpe1 and Kpe2 makes their estimation results implausible.

(3) Additionally, the estimation results of parameters in θ1 are in line with their sensitivity
values in Table 3.

3.5. Parameter Estimation Accuracy Compared with PSO Algorithm

To validate the estimation results of the L-M method, the estimation accuracies of
the particle swarm optimization (PSO) algorithm [27] are compared with those of the
L-M method. PSO is an evolutionary algorithm, which is suitable for solving large-scale
nonlinear optimization problems. A group of random particles are initialized first, and then
the optimal solution is found through multiple iterations. In each iteration, the historical
best position of the particle itself and the best position in the neighborhood are used to
guide the search. The selected particles are equal to the number of estimated parameters,
and the upper and lower bounds of the parameters are within the range of [−50%, 200%]
relative to the real values. The parameter estimation results with the PSO method are also
shown in Table 3.

It can be seen from Table 3 that most parameter estimation accuracies based on the PSO
method are very close to those of the L-M method, which shows that the L-M optimization
method is applicable. However, the estimation accuracies of Dsh, Kpe1, Kpe2 and Tt remain
high in both methods. The reasons are as follows:

(1) The excitation degree of wind turbulence is very small, and the system dynamics may
not be fully excited; therefore, parameters are more difficult to estimate than those
under fault disturbances. However, online parameter estimation is very useful in
power systems because ambient data are always available, in contrast to insufficient
post-disturbance data, which are only relevant when disturbances occur.

(2) Parameter estimation accuracy is related not only to sensitivity but also to the initial
estimations. According to the trajectory sensitivity results in Table 2, we can see that
the sensitivities of Dsh, Kpe1 and Kpe2 are very small, which shows that they are difficult
to estimate. Therefore, their estimation accuracy is not desirable. The high estimation
errors of parameters Tt, Tβ or Tr may come from their initial estimation bias.
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4. Conclusions

Simulation results demonstrate that the drive system and pitch controller dominate the
dynamics of a WT with DFIG under turbulence excitations, which implies the feasibility of
estimating drivetrain and pitch controller parameters by neglecting the electrical dynamics
of the WT.

A sensitivity index of PSD is proposed in this paper to illustrate the difficulty of
estimating parameters. The results indicate that it is much easier to estimate a parameter
with a larger sensitivity.

The mechanical system parameters are successfully estimated by formulating the
system as a weighted least-squares optimization problem, which is applicable when there
are two or more dominant modes in output signals. The results with two types of estima-
tion methods show that the estimated values agree well with the sensitivity values. The
parameter estimation accuracy is also discussed.
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Appendix A

The expressions of m0~m2, m′0~m′2 and l0~l4 are as follows:

m0 = −c
ω0KrKsh
TβTgTtTr

(A1)

m1 = −c

(
Dsh + Kpe1 + ω0KshTr

)
Kr

TβTgTtTr
(A2)

m2 = −c
Kr
(

Dsh + Kpe1
)

TβTgTt
(A3)

m′1 =
cω0Ksh
TβTgTt

(A4)

m′2 = c

(
Dsh + Kpe1 + ω0KshTβ

)
TβTgTt

(A5)

m′3 = c

(
Dsh + Kpe1

)
TgTt

(A6)

l0 =
ω0KrKsha
TβTgTrTt

(A7)

l1 =

(
Dsh + Kpe1

)
Kra + ω0KshTr

(
Kpe2 − Kpe1 − b

)
TβTgTrTt

+
ω0KrKshTra

TβTgTrTt
(A8)

l2 =
DshTr(Kpe2−Kpe1−b)−Kpe2Trb

TβTgTrTt
+

ω0KshTr(Tg+Tt)+(Dsh+Kpe1)KrTra
TβTgTrTt

+
ω0KshTβTr(Kpe2−Kpe1−b)

TβTgTrTt

(A9)
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l3 =
(Dsh−b)TgTr+(Dsh+Kpe2)TrTt

TβTgTrTt
+

(Kpe2−Kpe1)DshTβTr−(Dsh+Kpe2)TβTrb
TβTgTrTt

+
ω0KshTβTr(Tg+Tt)

TβTgTrTt

(A10)

l4 =
TgTrTt + DshTβTr

(
Tg + Tt

)
TβTgTrTt

+
Kpe2TβTrTt − TβTgTrb

TβTgTrTt
(A11)
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