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Abstract: Electrical load forecasting has a fundamental role in the decision-making process of energy
system operators. When many users are connected to the grid, high-performance forecasting models
are required, posing several problems associated with the availability of historical energy consump-
tion data for each end-user and training, deploying and maintaining a model for each user. Moreover,
introducing new end-users to an existing network poses problems relating to their forecasting model.
Global models, trained on all available data, are emerging as the best solution in several contexts,
because they show higher generalization performance, being able to leverage the patterns that are
similar across different time series. In this work, the lodging/residential electricity 1-h-ahead load
forecasting of multiple time series for smart grid applications is addressed using global models,
suggesting the effectiveness of such an approach also in the energy context. Results obtained on a
subset of the Great Energy Predictor III dataset with several global models are compared to results
obtained with local models based on the same methods, showing that global models can perform
similarly to the local ones, while presenting simpler deployment and maintainability. In this work,
the forecasting of a new time series, representing a new end-user introduced in the pre-existing
network, is also approached under specific assumptions, by using a global model trained using data
related to the existing end-users. Results reveal that the forecasting model pre-trained on data related
to other end-users allows the attainment of good forecasting performance also for new end-users.

Keywords: residential load forecasting; machine learning; nanogrid; time series analysis

1. Introduction

The electrification of energy consumption associated with a constant increase in the use
of Renewable Energy Sources (RES) plays a central role in the European energy transition
for the achievement of the decarbonization objectives of the overall energy system, thanks
to the intrinsic efficiency of the electricity sector and the technological maturity of RES.
The trends in electrification and the increase in RES have already been underway for
several years in many OECD countries. According to IEA’s semi-annual Electricity Market
Report [1], global electricity demand is constantly growing: after reducing by around 1% in
2020 due to the COVID-19 pandemic, it was set to grow by around 5% in 2021 and will rise
by another 4% in 2022. At the same time, electricity generation from RES is considered to
grow worldwide by more than 6% in 2022.

The transformation required is not zero-impact for the electricity system and implies a
series of challenges to be faced so that the energy transition process can be carried out in a
decisive and effective manner, maintaining the current high levels of service quality and, at
the same time, avoiding excessive costs for citizens.

The growing integration of non-programmable renewable generation contributes
to increasing the variability associated with electrical loads, significantly affecting the
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network management activities of Transmission System Operators (TSOs), based on always
balancing the generation and demand of electricity for guaranteeing to citizens a safe,
constant and reliable supply of energy.

In this context, electrical load forecasting can play a key role in effectively optimizing
the use of energy resources for the purposes of energy system operation, also being able to
contribute to energy management and to improve the decision-making process related to
the generation and import of electricity and to the planning of the construction of energy
infrastructure [2].

Electric load forecasting can also play an important role in smart grid environments,
where demand-side management strategies represent essential aspects [3] for the proper
design and operation. Due to the nonlinear nature of electrical loads, accurate forecasting
is often challenging and can require much effort to be properly addressed [4].

In the last few years, many authors have dealt with the electrical load forecasting
in the smart grid context, using conventional methods [5,6] or AI-based methods [7–9],
such as Recurrent Neural Network (RNN) [10], Support Vector Regression (SVR) [11,12],
Long Short-Term Memory (LSTM) [13], hybrid methods [14] and eXtreme Gradient Bost-
ing (XGBoost) [15]. In a previous work [16], we have implemented different data-driven
approaches, such as Persistence (PER), several Linear Regression (LR) methods, Feed For-
ward Neural Networks (FFNN), Convolutional Neural Networks (CNN), LSTM, XGBoost
(XGB) and SVR, to forecast the electrical loads of individual households in a nanogrid
environment. The main results of the analysis show that, for specific use cases, all methods
tested have similar performance, and the methods that work best are Multivariate Linear
Regression (MLR), FFNN and XGB.

In the smart grid context, the forecasting of multiple time series can be complex due to
the potential large number of users involved. In this case, two approaches can be used: train
one single model for each time series with the parameters that are learned separately (local
method) or train a single model where its parameters are learned using all the available
time series (global method) [17].

In the last few years, the local methods have been the most used approach, but, recently,
the great availability of data and the new empirical and theoretical results have shown
the high potential of global models. In fact, when the number of users is high, creating a
predictive model for each user could be prohibitive in terms of training time, deployment
and maintenance of the solution. Moreover, since the global models can leverage the
patterns that are similar across different time series, they are less prone to overfitting than
local models, resulting in improved generalization.

The global approaches have been often applied to the demand forecasting of prod-
ucts [18], including thousands of products over different sites, and have emerged as the
winning solutions in different forecasting competitions, such as M4 [19] and M5 [20].

The main assumption related to the use of global methods is that the time series
come from data generating processes that are similar or related; however, recent results
show that the forecasting performance is good also when the considered time series are
not [21]. This makes the global approaches more interesting, as it is always possible to
obtain heterogeneous time series to improve the performance [22,23].

Recent works [22,24] have investigated these aspects and some interesting insights
emerged. In particular, [22] evidenced that, independently of the heterogeneity of the time
series, a global model that can perform as well as local models (or outperform them) always
exists. This result is very relevant because it refutes the first impression that a global model
is more limited and the idea that the relation among time series is fundamental for the
effectiveness of the global approach.

However, such a global model is not simple to construct and, hence, it is interesting to
understand how these insights could be useful in a smart grid context.

Managing more data, the global models can be more complex than local ones, continu-
ing to obtain better generalization performance. The complexity of global models can be
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increased with more lags as inputs or non-linear, non-parametric models, or using data
partitioning [22,24].

A data-driven approach to regression problems that is particularly useful when data
are not sufficient to train new prediction models is transfer learning [25]. With this approach,
models pre-trained on a large dataset can be customized and reused without having to
train another model for the new dataset from scratch.

In the context of building energy demand prediction, transfer learning comes in handy
when extensive historical data of power consumption are not available, as is the case of
new buildings.

Several studies in the literature have recently assessed the value of transfer learn-
ing in predicting building energy demand for different building types (e.g., commercial,
residential) over different time horizons [26–30]. These case studies often revealed an
increase in prediction accuracy using data from additional buildings, compared with a
model that used only a small target dataset. This happens especially when the source and
target data share some characteristics, such as belonging to similar building types (but
different distributions) or to the same climate zone (but different locations). In this study,
the pre-trained models investigated are directly reused for a new case, without adaptations,
as we assume for the new case that no data are available.

Focusing on lodging/residential energy demands, this work aims to show how, in the
smart grid context, the forecasting of multiple time series could be tackled using global
models with good results.

In particular, the work addresses the comparison of local and global approaches with
the minimum manual intervention on the training of the models. To reach this goal, we
trained the models using the same hyperparameters. In fact, in a real scenario, searching
for the optimal set of hyperparameters is computationally expensive, as well as possibly
hampering the prompt deployment of the models in the production system.

The forecasting performance obtained with the global models is similar to the per-
formance obtained by using the local ones, while presenting simpler deployment and
maintainability. A recent work has investigated similar aspects, evaluating the benefits of
the cross-learning approach [31]. Differently from the mentioned study, this work does
not use external features, being based entirely on historical energy demand, and considers
some state-of-the-art methods frequently used for forecasting problems.

Furthermore, the work aims to show that, under specific assumptions, the forecast of
a new user’s energy demand can be approached using a global model trained using data
from the existing users with an acceptable loss in performance.

The rest of the paper is structured as follows: in Section 2, the considered approach, the
residential user dataset, the evaluation method and the performance metrics are described.
The results are shown in Section 3 and discussed in Section 4. Finally, Section 5 reports the
main conclusions of the work.

2. Materials and Methods
2.1. Models

Among several forecasting models, for the objectives of this study, we have selected
the most used and promising forecasting approaches, namely the Linear Regression Model
(Linear), LSTM [13], Temporal Convolutional Network (TCN) [32], Neural Basis Expan-
sion Analysis Time Series Forecasting (NBEATS) [33], Light Gradient Boosted Model
(LGBM) [34] and Transformer [35]. As a baseline, the Persistence model (Persistence) has
also been implemented.

2.2. Dataset Description

In 2019, the Great Energy Predictor III (GEPIII) challenge [36] was organized by
ASHRAE through the Kaggle platform. The hourly energy consumption is gathered
from the energy meters (electricity, chilled water, steam and hot water) of 1448 buildings
distributed on 16 unknown sites worldwide. The complete dataset covers three years from
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2016 to 2018, but only the energy measurements related to year 2016 were provided to the
competitors. For this reason, in this work, only 2016 has been considered. This situation
is frequently encountered in a real situation where the measurement campaign has been
implemented for less than a year.

The buildings are grouped based on their primary use (e.g., education, office, public
services, lodging/residential, etc.).

In our work, we have focused on the electricity measurements of the buildings belong-
ing to site 15 since it contains the highest number of buildings with lodging/residential
primary use (28). Most of the buildings in site 15 have 15% of data missing (especially from
the middle of February to the end of March).

Figure 1 shows the electricity consumption of a generic week of all 28 buildings of
site 15, whereas Figure 2 shows the average and standard deviation for the whole period of
observation. From the figures, it can be noted that the scales and patterns among buildings
are very different even if all users belong to the same group.

Figure 1. Hourly electricity consumption for the 28 considered buildings in a generic week of the
measuring period.

Figure 2. Hourly electricity consumption for the 28 considered buildings.



Energies 2022, 15, 2037 5 of 18

2.3. Experimental Setting

This work presents two types of experiments related to the 1-h-ahead forecasting, con-
sisting of comparing local and global models and reusing pre-trained forecasting models.

The first experiment aims to compare the local and global models’ performance
(trained with same hyperparameters) in forecasting the energy demand of a single building.
The local model for building i is trained using only the energy consumption of building i.
Therefore, one model for each considered building is produced. The global model is trained
using the energy consumption of all 28 buildings, resulting in only one model for all
considered buildings.

The second experiment aims to understand if a global model, trained using the energy
consumption data related to some buildings, can be used to forecast the energy demand
of an additional building not seen before. For this purpose, four buildings that present
different scales and/or patterns have been selected (Figure 3) as additional buildings
and, for each one, a global model is trained using the energy consumption data of all
other 27 buildings. The only information assumed known about the additional building
is its average energy consumption, which is estimated from the training set in this work.
However, if historical electricity data are not available, it could be estimated making some
assumptions on the nominal power, the average consumption in similar cases, etc.

Figure 3. Hourly electricity consumption for buildings 1358, 1395, 1406, 1412 in a generic week of the
measuring period, showing variations in scale and profile.

2.4. Preprocessing

From Figures 1 and 2, it is evident that the time series related to different buildings
present different scales (due to the different nominal power, user behavior, etc.). For the
local models, this aspect can be negligible, but for a global model, it could be problem-
atic [37]. For this reason, each time series is properly normalized, dividing by its average
consumption (mean-scale normalization) [38].

The missing data are resolved with a simple average imputation.

2.5. Model Training

In order to forecast 1-h-ahead electricity consumption for the 28 considered buildings,
the available data have been divided into training and test sets. Eight months are used
for the training set (from 1 January to 31 August) and 4 months for the test set (from
1 September to 31 December). A validation set has been extracted from the training set
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(1 July to 31 August) for tuning the number of training epochs and to avoid the overfitting
phenomenon (early stopping technique). Once the number of training epochs has been
selected, the model is refitted using the complete training set. Each model uses the last
24 h of measurement to forecast the next hour. The mean value of each time series, used by
mean-scale normalization, is estimated from the training set.

In Table 1, the main hyperparameters chosen for the considered models are listed:
most hyperparameters are set to typical values for simulating the usage of the off-the-
shelf models without high hyperparameterization. Other hyperparameters are set to the
same value across all the models, in order to define the same conditions for all algo-
rithms (e.g., optimizer, learning rate, batch size, number of lags, maximum number of
epochs, etc.).

Table 1. Main parameters chosen for the considered models.

Model Name Main Chosen Hyperparameters

Linear Fit Intercept: True

LSTM
Batch Size: 1024; Hidden Size: 25

Optimizer: Adam with Learning Rate 1 × 10−3; Maximum Number of
Epochs: 200.

TCN

Batch Size: 1024; Dilation: 1; Kernel Size: 3; Number of Filters: 25;
Dropout: 0.2

Optimizer: Adam with Learning Rate 1 × 10−3; Maximum Number of
Epochs: 200.

NBEATS

Batch Size: 1024; Number of stacks: 30, Number of blocks: 1, Number of
fully connected layers: 4, Number of neurons for each fully connected

layer: 256, Expansion Coefficient: 5
Optimizer: Adam with Learning Rate 1 × 10−3; Maximum Number of

Epochs: 200.
LGBM Number of estimators: 100; Learning Rate:0.1

Transformer

Batch Size: 1024; Dropout: 0.1; Number of multi head attention: 4;
Number of encoding layers: 3; Number of decoding layers: 3; Dimension

of the feed-forward network model: 512
Optimizer: Adam with Learning Rate 1 × 10−3; Maximum Number of

Epochs: 200.
The models have been implemented using Python with the following libraries: Darts [39], NumPy and pandas.
The experiments have been performed using a PC with CPU Intel Core i7-9700 @ 3.00GHz–8 cores (Santa Clara,
CA, USA), 16GB of RAM, GPU NVIDIA GeForce GTX 1050Ti (Santa Clara, CA, USA), O.S. Microsoft Windows 10
Pro (Redmond, WA, USA).

2.6. Model Performance Evaluation

For model performance evaluation, the Coefficient of Variation (CV) and the Root
Mean Squared Error (RMSE) are computed, as follows:

CV =

√
1
N ∑N

t=1(y(t)− ŷ(t))2

y
∗ 100 (1)

RMSE =

√
∑N

t=1(y(t)− ŷ(t))2

N
(2)

where y(t) indicates the target value, ŷ(t) the predicted value, y the average value of
the target and N the number of values considered. The CV is a dispersion index that
allows the comparison of different methods and/or different datasets, and it is expressed
in percentage. The RMSE is expressed here in kWh, referring to the energy load.

The performance has been evaluated discarding imputed values from the test set.
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3. Results
3.1. Comparison between Local and Global Models

In the following, the results obtained from comparing the performance of the local
and global models on the test set are presented for each building.

In detail, Figures 4–15 show the comparison and the difference between the RMSE
(even numbered figures) and CV (odd numbered figures) obtained by the global and local
models for the Linear, LSTM, TCN, LGBM, NBEATS and Transformer methods, respectively.
In the figures, the difference is indicated with green (or red) bars, meaning that the RMSE
or CV value obtained using the local model is higher (or lower) than the RMSE or CV
obtained using the global model for the specific building.

Figure 4. The upper figure shows the comparison between the RMSE obtained from the local and
global Linear models on test set. The lower figure contains the difference between the RMSE obtained
for the local and global Linear models on test set.

Figure 5. Comparison (in the upper figure) and difference (in the lower figure) between the CV
obtained from local and global Linear models on test set.
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Figure 6. Comparison (in the upper figure) and difference (in the lower figure) between the RMSE
obtained from local and global LSTM models on test set.

Figure 7. Comparison (in the upper figure) and difference (in the lower figure) between the CV
obtained from local and global LSTM models on test set.

Figure 8. Comparison (in the upper figure) and difference (in the lower figure) between the RMSE
obtained from local and global TCN models on test set.
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Figure 9. Comparison (in the upper figure) and difference (in the lower figure) between the CV
obtained from local and global TCN models on test set.

Figure 10. Comparison (in the upper figure) and difference (in the lower figure) between the RMSE
obtained from local and global LGBM models on test set.

Figure 11. Comparison (in the upper figure) and difference (in the lower figure) between the CV
obtained from local and global LGBM models on test set.
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Figure 12. Comparison (in the upper figure) and difference (in the lower figure) between the RMSE
obtained from local and global NBEATS models on test set.

Figure 13. Comparison (in the upper figure) and difference (in the lower figure) between the CV
obtained from local and global NBEATS models on test set.

Figure 14. Comparison (in the upper figure) and difference (in the lower figure) between the RMSE
obtained from local and global Transformer models on test set.
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Figure 15. Comparison (in the upper figure) and difference (in the lower figure) between the CV
obtained from local and global Transformer models on test set.

To clarify the comparison among local and global models for the considered methods,
Figure 16 shows the forecasting results, in terms of CV, of the tested models across the
considered buildings. The details are given in Table 2: it shows that the local and global
approaches work similarly (LSTM excluded), with a small performance decrease for the
global models, which is probably acceptable in a real scenario.

Figure 16. Comparison between the CV obtained from the considered local and global models on
test set. The Persistence model has been added as a baseline.



Energies 2022, 15, 2037 12 of 18

Table 2. In the table are reported the forecasting results of tested models in terms of median CV and
the 25th and 75th percentiles (in parentheses). The Wilcoxon signed rank is used to test the null
hypothesis that the paired CV samples for local and global models come from the same distribution.
The (*) indicates that the null hypothesis was rejected for p-value < 0.05. The last column represents
the variation in performance (CV) of a global model with respect to its local counterpart: if negative,
the performance decreased.

Model Type Local (%) Global (%) Variation(Local-Global)/Local * 100

LSTM (*) 11.29 (9.06, 15.55) 9.00 (6.31, 11.08) 8.85 (−0.12, 45.13)

TCN (*) 9.58 (7.96, 11.72) 10.23 (8.01, 12.39) −3.49 (−5.79, −1.84)

LGBM (*) 8.78 (6.25, 11.14) 9.01 (6.23, 11.10) −1.09 (−3.67, 0.43)

NBEATS 8.93 (6.22, 10.98) 8.73 (6.13, 11.05) −0.89 (−2.20, 0.59)

Transformer 9.32 (7.07, 11.76) 9.26 (6.55, 11.45) 0.16 (−5.44, 6.56)

Linear (*) 9.11 (6.76, 10.76) 9.23 (6.87, 11.54) −2.01 (−4.14, −0.69)

3.2. Reuse of Pre-Trained Forecasting Models

Figure 17 shows the comparison between the forecasting results obtained for building
1358 by using LGBM local and global models as described in Section 3.1, and an LGBM
global model trained using the training set of time series of all buildings excluding building
1358 (Global-except).

Figure 17. Comparison between the forecasting results using LGBM model for building 1358. Actual:
ground-truth; Local: local model trained using training set of building 1358; Global: global model
trained using training set of all buildings; Global-except: global model trained using training set of
all the buildings excluding building 1358.

The Figures 18–23 show, for each selected building (1358, 1395, 1406, 1412), the predic-
tion performance of the local model, of the global model trained using all the available data
and of the global model trained using all the available data except the energy consumption
related to the selected building.
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Figure 18. Comparison between the CV on test set obtained using Linear method with different
modalities: local, global and global trained using all the available data except the energy consumption
related to the selected building.

Figure 19. Comparison between the CV on test set obtained using LSTM method with different
modalities: local, global and global trained using all the available data except the energy consumption
related to the selected building.
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Figure 20. Comparison between the CV on test set obtained using TCN method with different
modalities: local, global and global trained using all the available data except the energy consumption
related to the selected building.

Figure 21. Comparison between the CV on test set obtained using LGBM method with different
modalities: local, global and global trained using all the available data except the energy consumption
related to the selected building.
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Figure 22. Comparison between the CV on test set obtained using NBEATS method with different
modalities: local, global and global trained using all the available data except the energy consumption
related to the selected building.

Figure 23. Comparison between the CV on test set obtained using Transformer method with different
modalities: local, global and global trained using all the available data except the energy consumption
related to the selected building.

4. Discussion

As shown in Figures 6 and 7 for the LSTM method, the global model can perform, on
average, better than the local ones (Figure 16). This is probably related to the training phase
of the local models, when the maximum number of epochs is reached before the minimum
of validation loss is observed. As shown in Figures 14 and 15, for the Transformer method,
the global model is able to perform slightly better for some buildings. This could depend on
the advantage that the global models receive in having access to more data for the training
phase. Concerning the other algorithms, the global models have the same or slightly lower
forecasting performance than the local ones.

From Figure 16, reporting the comparison between the CV obtained from the consid-
ered local and global models on the test set, a clear indication about the best-performing
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method does not emerge, but the LGBM, NBEATS and Linear methods outperform the
LSTM and TCN ones.

It is worth noting that global models can be more complex than local ones before
encountering the overfitting problem [22] and likely need to have sufficient complexity in
order to achieve high performance for the prediction of different building profiles. This
means that global models are likely to be outperformed by the local ones using the same
set of hyperparameters, if their complexity is not sufficient.

In our study, we found that local models obtained a statistically significantly lower CV
than global models (3 out of 5 models, excluding LSTM). However, the observed difference
is minimal, thus supporting the use of global models in conditions lacking historical data,
with simplified deployment and maintenance.

The performance of the Persistence method defines a baseline that is outperformed
by almost all the other approaches, except for the LSTM-Local (as discussed before). This
indicates that the 1-h-ahead forecasting on this dataset cannot be solved by simply using a
Persistence model, and more complex approaches are required, justifying the necessity of
the learning, deployment and maintenance of the selected model.

The experiments carried out show that the global models, already known as good
approaches for reducing the maintainability and deployment effort in the real context,
could also be a valuable alternative in terms of performance.

The experiments on the reuse of pre-trained forecasting models, reported in Figures 18–23,
show that the forecasting of the energy demand of a completely new building could be
efficiently solved using a model already trained on energy demand data observed for
other buildings. The only information needed is the scale of the energy demand for the
new user, which can be estimated using a priori knowledge, such as the nominal power,
user’s category, information related to the average consumption in similar cases, etc. The
impact of a wrong estimate and the assessment of the robustness of the algorithms to the
uncertainty present in the estimated scale are important aspects that we plan to investigate
in a future work.

5. Conclusions

In this work, several approaches have been tested to forecast 1-h-ahead electricity
consumption for 28 lodging/residential buildings, by considering both local and global
models. For each considered approach, a local model has been produced for each building,
whereas only one global model has been produced considering the 28 buildings all together.

Two different experiments have been carried out consisting of comparing the local
and global models’ performance in forecasting the energy demand of a single building and
forecasting—using a global model called Global-except—the energy demand of a building
using the energy consumption data of the other 27 buildings. The approaches used for the
experiments are the Linear Regression Model, Long Short-Term Model, Temporal Convolu-
tional Network, NBEATS, LightGBM, Transformer and Persistence. The performance of
each approach has been evaluated by means of the Coefficient of Variation and the Root
Mean Square Error.

Results highlight that the global models represent a valuable alternative to local models
in predicting energy consumption, presenting at the same time benefits in terms of reducing
the complexity of deployment and maintainability of the forecasting solutions. Moreover,
the results show the efficacy of the Global-except model. This result is remarkable as it
reveals how, without any assumption on the characteristics of the time series involved, the
forecasting results obtained on a completely new building could be obtained using a global
model previously trained on existing buildings, providing a significant advantage to the
smart grid/energy community manager.
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